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Abstract

The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investi-

gated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employed and the constitutive equations for

evaluation of the properties of a hybrid SMA composite laminate are obtained. Based on the nonlinear theory of symmetrically laminated

anisotropic plates, the governing equations of flexural vibration in terms of displacement and stress functions are derived. The Galerkin 

method has been used to convert the original partial differential equation into a nonlinear ordinary differential equation, which is then 

solved with harmonic balance method. The numerical results show that the relationship between nonlinear natural frequency ratio and 

temperature for the nonlinear plate has similar characteristics compared with that of the linear one, and the effects of temperature on 

forced response behavior during phase transformation from Martensite to Austenite are significant. The effects of the volume fraction of 

the SMA fiber, aspect ratio and free vibration amplitude on the dynamical behavior of the plate are also discussed. 
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1 Introduction
*

In recent ten years, great progress has been 

made on the research of shape memory alloy (SMA) 

reinforced smart structure systems. Through the de-

sign of SMA intelligent composite structure systems 

with highly integrated sensors and actuators, the 

control of complex flexible structures with rigorous 

weight limitations such as aeronautic structures has 

become possible. For example, the buckling and 

vibration characteristics of SMA reinforced com-

posite plate and beam structures have been greatly 

improved when compared to traditional composite 

structures, this makes SMA be widely used in buck-

*Corresponding author. Tel.: +86-532-88032695. 
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ling and vibration control[1-2].

For the structures with high strength and large 

flexibility used in aircraft design, the geometric 

nonlinear effect resulted from large deformation 

cannot be ignored. For instance, the shapes of the 

panels of the supersonic aircraft will be changed due 

to the large thermal deflections induced by aerody-

namic heating, which will affect the aerodynamic 

characteristics and reduce the flight performance of 

the aircraft. In order to control such kind of nonlin-

ear structures, it is necessary to know the effect of 

geometric nonlinearity on the vibration of structures. 

However, most of the researches on SMA reinforced 

composite plates and beams are based on the classic 

small deflection theory and only a few are concern-

ing with the large deflection nonlinearity issues. 
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Based on von Karman plate theory, Chu L C[3]

established the nonlinear finite element model for 

the SMA fiber reinforced composite large-deflection 

plate and studied the suppression of the flutter of 

panels of aircraft. Zou Jing[4] derived the incre-

mental finite element motion equation for the 

nonlinear composite laminate embedded with SMA 

fibers on the basis of the virtual work principle, and 

the bending, thermo-buckling and post-buckling 

issues of the SMA reinforced composite laminate 

under transverse loading were discussed. Dano M L 

et al.[5] studied the effect of SMA on the snap- 

through characteristics of the nonlinear unsymmet-

ric fiber-reinforced composite laminate with large- 

deflections. They established the approximate the-

ory to analyze the snap-through characteristics of 

the unsymmetric fiber-reinforced composite lami-

nate activated by SMA wires, where the mechanical 

properties of the laminate are predicted with the 

assumed strain-displacement field, Rayleigh-Ritz 

method and the virtual work principle, and the law 

of snap-through varying with the temperature was 

obtained through solving relevant simultaneous 

equations and the equation describing SMA proper-

ties. Park J S et al.[6-7] established the finite element 

model of composite laminates and supersonic plates 

under nonlinear vibration and nonlinear flutter by 

using the von Karman plate theory, the one-order 

shearing deformation plate theory and the first-order 

piston theory. The boundary problems of thermo- 

post-buckling nonlinear vibration and flutter were 

then investigated for the SMA fiber reinforced 

composite plate under thermal and aerodynamic 

loading. Cho M et al.[8] studied the deformation of 

the nonlinear composite plate with two-way shape 

memory effect with the theory of the one-order 

shearing deformation plate with large deflections 

and the thermo-mechanical constitutive equation 

proposed by Lagoudas et al.  

Based on the above literature review, we rea-  

lize that:  most of the current researches on the 

geometric nonlinearity of the SMA fiber (or layer) 

reinforced composite plate are limited to using the 

finite element numerical method[3-7], and little work 

has been reported to use the nonlinear elastic theory 

to get the analytical vibration solution for the SMA 

reinforced nonlinear anisotropic laminates;  about 

the description of the mechanical behavior of SMA, 

some are based on the expression of the approxi-

mate experimental fitting[3], the others use the ap-

proximate data derived from the curves of SMA[6-7],

and the well-developed and practical constitutive 

equation of SMA based on the phenomenal theory 

such as Brinson’s equation[4,9] is hardly used;  the 

effect of SMA fibers on the nonlinear vibration of 

composite plates still needs to be investigated fur-

ther. 

In this paper, the free and forced vibration of 

the SMA reinforced composite laminates with large 

deflections will be studied. The thermo-mechanical 

constitutive equation of SMA proposed by Brinson 

et al.[4] and the mixture theory for evaluating the 

properties of laminates are employed to establish the 

constitutive equation of the SMA reinforced com-

posite laminates with large deflections. Based on the 

nonlinear theory of symmetrically laminated ani-

sotropic plates, the transverse vibration equation 

and the compatible equation will be derived in terms 

of the transverse deflection and the stress function. 

The Galerkin approximate method and the harmonic 

balance method (HBM) will be used to solve the 

Duffing’s differential equation and to study the ef-

fect of the content of SMA fibers, the nonlinear vi-

bration amplitude and the excitation force amplitude 

on the natural frequency and steady-state response 

of the system. 

2 Basic Theories 

2.1 The constitutive equation of the anisotr-  

opic laminate with embedded SMA fibers 

As the SMA reinforced anisotropic lamina has 

the following off-axis stress-strain relation[10]

r

( ) ( )
r

r

x xx x

k k
y ij y ij y y

xy xy xy xy

TQ Q   (1) 
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the constitutive equation of the SMA reinforced 

laminate can be written as 

0
r

r

T

T

N NN A B

M MM B D
 (2) 

where 0 and  denote the strain vector and the 

curvature vector of the mid-plane, respectively. The 

in-plane forces and moments induced by SMA (de-

noted by the subscript r) and temperature (denoted 

by the subscript T ) are respectively expressed as 
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The A, B and D in Eq.(2) are expressed as 

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

,

A A A B B B

A A A B B B

A A A B B B

A B
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D D D
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D             (4) 

where each element in Eq.(4) is defined as 

2 2

2
, , 1, , d

h

ij ij ij ijh
A B D Q z z z      (5) 

where ijQ  represents the off-axis elastic constants of 

the SMA fiber hybrid lamina. 

The recovery stresses of SMA and the stresses 

induced by temperature of the k lamina after coor-

dinate transformation have the following form, re-

spectively. 

( ) 2 2

r r s
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where ijQ  (i = 1, 2, 6; j = 1, 2, 6) denotes the elastic 

constant of the composite medium. m and n are the 

cosine and sine functions of the ply angle in each 

lamina, respectively. 

From Eq.(2), we have 

0
rTM B D M M      (7) 

0
r( )TA N B A N N    (8) 

where 1 1,A A B A B .

Substituting Eq.(8) into Eq.(7), we get 

r
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With the following expression 

1 1 T T( ) ( )BA BA A B B   (10) 

Eq.(9) can be rewritten as 

T T
r

r

( ) ( ) ( )T

T
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where 1
D D BA B .

By expanding Eq.(8), we have the following 

expression
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where , , ,, , 2 ;x xx y yy xy xyw w w and w is 

the transverse deflection of the laminate. 

2.2 Transverse vibration equations 

For convenience, the stress function ( , )x y  is 

introduced as a separate variable and the in-plane 

forces are expressed in terms of ( , )x y  as 

, , ,, ,x yy y xx xy xyN N N       (13) 

For the symmetric orthotropic laminate, we 

have

3

0, , ,
12

ij ij

ij ij ij ij T

Q h Q
B A D D

h
M Mr =

0 and 1
Q Q  with the expression of Q as 

1 12 2

21 1 2

12

0

0

0 0

E E

E E

G

Q       (14) 

where Q is the matrix consisting of elastic constants 

of the orthotropic lamina with 12 211 ,

12 1 21 2E E ; Ei, ij and Gij (i = 1, 2; j = 1, 2) 

denote the engineering elastic constants of the SMA 

fiber hybrid composites which are calculated ac-

cording to the mixture method proposed by Zhong Z 

W et al.[11] (see appendix A).  

According to the characteristics of the sym-

metric orthotropic laminates, we have the following 

expressions

2 22 1
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Also, Eq.(8)and Eq.(11) are simplified as 

0
r( )TA N A N N        (16) 

M D                (17) 

Then the transverse vibration equation in terms of 

the transverse deflection w and the stress function 

is written as 

1 , 3 , 2 ,

,
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where
3 3

1 2
1 2 3 12 2 4, , 2 ,

12 12

E h E h
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3
12

4
12

G h
D ,  and q represent the density and the 

transverse excitation force of the plate respectively. 

The arithmetic operator L*(w, ) in Eq.(18) is 

expressed as 

, , , , , ,( , ) 2xx yy yy xx xy xyL w w w w   (19) 

The compatible equation is written as 

0 0 0 2
, , , , , ,x yy y xx xy xy xy xx yyw w w    (20) 

Substituting Eq.(16) into Eq.(20) and consi- 

dering that TN  and rN  are independent of the co-

ordinates, we get the following supplemental equa-

tion
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2
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The von Karman’s nonlinear strain-displace-

ment relations are 

0 0 2
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where u0, v0 are in-plane displacements of the plate 

in x and y directions, respectively. 

Replacing the items in the first two equations 

in Eq.(16) with Eq.(22) and integrating them for x

and y, we can obtain the displacements in the mid- 

plane. The in-plane displacement boundary condi-

tions can be expressed as 

0 0
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2
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It should be noted that Eq.(18) and Eq.(21) are 

the basic equations of the SMA reinforced 

orthotropic laminates with large deflections in 

nonlinear vibration, and Eq.(23) and Eq.(24) are the 

equations with in-plane unmovable constraints. 

2.3 Galerkin approximate solution 

For the simply-supported plate, one-item ap-

proximate solution is taken as 

( , , ) ( ) cos cos
2 2

x y
w x y t hf t

a b
     (25) 

Substituting the above solution into Eq.(21), 

we have 

1 , 3 , 2 ,

2 2
3 2

2

1
( ) (cos cos )

2 2 2

xxxx xxyy yyyy

x y
h f t

a b a b
  (26) 

Assume the general solution of Eq.(26) is 

p c              (27) 

where, p and c denote the inhomogeneous par-

ticular solution and the homogeneous general solu-

tion of Eq.(26), respectively. Assume 

p 1 2cos sin
x y

C C
a b

       (28) 

Substituting it into Eq.(26) produces 
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Taking c  as 
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into the displacement boundary conditions Eq.(23) 

and Eq.(24), we have 
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where 11 22

2
12

1
A A

A
, Nx = N Tx – Nrx, Ny = N Ty –

Nry.

Using the Galerkin method after substituting 

Eq.(25) and Eq.(27) into Eq.(18), we get 
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,
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By integrating the above equation and making 

some simplifications, the nonlinear differential 

equation with respect to time t is obtained. 
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If some non-dimensional quantities are intro-

duced as below 
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Eq.(33) will become a non-dimensional equation. 
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2 4
1
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2.4 The recovery stress of the constrained   

SMA fibers 

Based on the one-dimensional model of SMA 

proposed by Brinson[9] and assuming all SMA fibers 

are fully constrained, we can get the following ex-

pressions for the recovery stress of SMA  

0 0 s

1 s s 0 0 s

r

0 s0 s s f

2 f f

( )                       0

( ) ( ) ( )

( ) ( )         

( )                     

T T T A

E E

T A A T A

T A T A

 (36) 

where  denotes the Martensite fraction; s ( )E  de-

notes the elastic modulus of SMA,  represents the 

thermal elastic modulus, T represents temperature 

and T0 is the reference temperature, the subscript 0 

denotes initial conditions, sA  and fA denote the 

start and finish temperatures of Austenite under 

stress, s is the Martensite fraction induced by stress. 

The first expression in Eq.(36) is used for SMA in 

the initial Martensite state, while the third expres-

sion is used for SMA in 100% Austenite state, and 

the second one is used for SMA in the phase trans-

formation state from Martensite to Austenite.  

The phase transformation coefficient ( )

and the elastic modulus s ( )E  can be expressed 

respectively as 

s

s A M A

( ) ( )

( ) ( )

L E

E E E E
        (37) 

The Austenite start temperature sA  and finish 

temperature fA  under stress have the following 

expressions

A s A 0 0
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The two constants in Eq.(36) are 

1 0 s 0

2 1 A s 0 0 0 s0 f s

( )

( ) ( ) ( )

A T

E E A A

(39)

The dynamic equations of SMA transformed from 

Martensite to Austenite are 

0 r
A s
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where Ms, Mf, As and Af denote the Martensite start, 

Martensite finish, Austenite start and Austenite fi- 

nish temperatures respectively, T denotes the Mar- 

tensite fraction induced by temperature, CM and CA

are phase transformation constants. 

3 Numerical Results and Discussions 

Using HBM, the natural frequency equation 

and the steady-state frequency-response equation in 

forced vibration of the system are obtained as fol-

lows:
2

2N N
12
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3
1

4
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where 1 2,A A are the free and forced vibration am-

plitude respectively, L and N are linear and 

nonlinear natural frequencies respectively,  is ex-

cited frequency. 

In the present work the symmetric NiTi/graph-

ite/epoxy laminate [0/90/0/90/0]s with the thickness 

h = 0.002 m is used for simulation, where the thick-

ness of each layer is hk = 0.002/10 m (k = 1, 2, ···, 

10). The material parameters used in this simulation 

are given below. 

(1) Graphite/epoxy[12]

4
1m

4
2m

4
12m

3
m

6 3
1m

6 4
2m

ref ref 12m
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30.1 10 (1 0.41 10 ) (1/ C)

, 20 C, 0.22

E T

E T

G T

T

T

T T T T

(2) SMA fibers 

A M s

f s f

M A

L 0 0 s0

3
T0 0 s s

6
s

67 GPa, 26.3 GPa, 18.4 C 

9 C, 34.5 C, 49 C

8 MPa / C, 13.8 MPa / C, 0.55

0.067, 0, 20 C, 0.075

0, 0.05, 0.33, 6 450 kg / m

10.26 10  (1/ C)

E E M

M A A

C C

T

The simulation results are shown in the fol-

lowing figures. Fig.1 gives the free-vibration fre-

quency ratio of the NiTi/graphite/epoxy symmetric 

laminate varying with temperature, where 5,

b/h = 10, Vs = 0.4 and 1A = 1.0. It can be seen that 

the natural frequency of the nonlinear laminate is 

larger than that of the linear one due to the increased 

in-plane stiffness and the frequency ratio of the 

nonlinear laminate to the linear one shows ascend-

ing, descending and then ascending trend with the 

increasing of temperature. This situation results 

from the variation of the recovery stress of the fully 

constrained NiTi fibers in the laminate. When tem-

perature is between 0 and 20 °C, as NiTi fibers are 

not actuated, the recovery stress r is zero. But the 

in-plane compressive forces induced by temperature 

exist in the laminate, which results in the descend-

ing of L as temperature is increasing; When tem-

perature lies within the range of 20 °C and sA , L,   

still decreases with the increasing of temperature. 

Though NiTi fibers are actuated in this temperature 

range, yet new Austenite has not produced and r is 

very small. The laminate is still in in-plane com-

pression; When temperature is between sA  and fA ,

r increases obviously with the increasing of tem-

perature due to the phase transformation from 

Martensite to Austenite and the total in-plane forces 

of the laminate become tensile, so L increases ob-

viously with the increasing of temperature; When 

temperature is higher than fA , the curve shows the 

same trend as that in the temperature range of 20 °C

and sA . Because Martensite in NiTi fibers are fully 

transformed into Austenite and the in-plane forces 

induced by temperature become dominant forces 

again that lead to the total compressive in-plane 

forces in the laminate. 

Fig.1  The free-vibration frequency ratio of NiTi/graphite/ 

epoxy symmetric laminate varying with temperature. 

( = 0.5, b/h = 10, Vs= 0.4, 1A = 1.0) 

It should be pointed out that L is existing in 

the denominator of Eq.(41), so it shows an opposite 

trend with that of r as shown in Fig.1. 

Fig.2(a) shows the free-vibration frequency ra-

tio varying with temperature for NiTi/ raphite/epoxy 

laminates with two non-dimensional vibration am-

plitudes. We can see that the smaller the non-di- 

mensional vibration amplitude is, the flatter the 
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curve becomes. 

The effects of volume fractions of NiTi on the 

free-vibration frequency ratio are shown in Fig.2(b). 

From this figure we can see that the volume fraction 

of NiTi can improve the free-vibration frequency 

ratio. And the higher the volume fraction of NiTi is, 

the more wide the curve varying range is. This fig-

ure also demonstrates that the natural frequency of 

the linear laminate becomes more and more obvious 

with the increase of volume fractions of NiTi, which 

means that the less effects of the geometric nonlin-

earity of the laminate will be when the volume frac-

tion of NiTi fibers is higher. 

(a) The effects of non-dimensional vibration range 1A

(b) The effects of volume fractions of TiNi fibers Vs

Fig.2  The free-vibration frequency ratio of NiTi/graphite/ 

epoxy symmetric laminate varies with temperature. 

( =0.5, b/h=10)

Under forced vibration, the steady-state fre-

quency responses of the laminate embedded with 

NiTi fibers in 100% Austenite, initial 100% Marten-

site and phase transformation from Martensite to 

Austenite states are shown in Fig.3, Fig.4 and Fig.5 

respectively. In each figure, three amplitudes of the 

excitation forces with 5, 20 and 50q q q  are 

considered to observe their effects on the frequency 

responses. It can be seen that the temperature nearly 

has no effects on the shapes of the frequency-re- 

sponse curves, but it has certain effects on the posi-

tions of the framework curves, that is the framework 

curves shift rightwards with the increasing of tem-

perature. Among the three typical cases, the frame-

work curves will shift rightwards with the largest 

range when NiTi fibers are in the phase transforma-

tion state from Martensite to Austenite. This is due 

to the large increase of r and results in the large 

increase of the in-plane stiffness, which corresponds 

to the conclusion derived from Fig.1. 

The frequency-response curves of the NiTi hy-

brid laminate are shown in Fig.6 with the aspect 

ratio of =0.25, =0.50 and =1.00. It can be seen 

that the frequency-response curves are sensitive to 

the aspect ratio . The framework curve of the fre-

quency-response curves will shift leftwards with a 

large range when  is increased while the vibration 

amplitudes are also increased obviously. 

Fig.3  Frequency responses of the laminate embedded with 

100%-Austenite NiTi fibers under the excitations 

with different amplitudes. (T=100 , =0.5, Vs=0.4)

Fig.4  Frequency responses of the laminate embedded with 

initial 100%-Martensite NiTi fibers under the excita-

tions with different amplitudes. (T=30 , =0.5,

Vs=0.4)
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Fig.5  Frequency responses of the laminate embedded with 

NiTi fibers in the phase transformation state from 

Martensite to Austenite under the excitations with 

different amplitudes. (T=70 , =0.5, Vs=0.4)

Fig.6  Frequency responses of the laminate embedded with 

100%-Austenite NiTi fibers at three different aspect 

ratios .  (T=100 , Vs=0.4, 20q )

4 Conclusions 

Based on the nonlinear theory of the symmetric 

orthotropic elastic laminates and the Brinson’s SMA 

model, the natural frequency equation under free 

vibration and the steady-state frequency-response 

equation under forced vibration are established for 

the SMA reinforced composite laminates with large 

deflections by using the Galerkin approximate 

method and HBM. The following conclusions can 

be drawn: 

(1) The trend of the frequency ratio of NiTi/ 

graphite/epoxy symmetric laminate under nonlinear 

free vibration varies with temperature is similar to 

that of the recovery stresses of fully constrained 

NiTi fibers when actuated. And this behavior be-

comes more obvious when the volume fraction of 

NiTi fibers is higher.  

(2) At the same actuation temperature, the 

frequency ratio of the laminate under nonlinear free 

vibration increases with the increasing of volume 

fractions of NiTi fibers and the non-dimensional 

vibration amplitudes. 

(3) Under the forced vibration, the framework 

curve of the frequency-response curves of the lami-

nate will shift rightwards with the largest range 

when NiTi fibers are in the phase transformation 

state from Martensite to Austenite due to the 

corresponding largest in-plane stiffness. 

(4) The aspect ratio  of the laminate has a 

dramatic effect of the frequency-response curves. 

The framework curve of the frequency-response 

curves will shift leftwards with a large range and the 

vibration range will also be increased obviously. 
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Appendix A: The Elastic Constants of NiTi  

             Fiber Hybrid Composites 

The elastic constants are calculated according 

to the following mixture theory[11]
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where the subscript m denotes the composite me-

dium, and the subscript s denotes SMA. E, G and 

denote the tension-compression elastic modulus, the 

shearing elastic modulus and the possion ratio re-

spectively.  and  denote thermal expansion coef-

ficient and density respectively. V denotes the vol-

ume percentage. 


