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Abstract A new type of aluminum lithium alloy (Al–Li alloy) Al–Li–S–4 was investigated by test

in this paper. Alloy plate of 400 mm · 140 mm · 6 mm with single edge notch was made into sam-

ples bonded with Ti–6Al–4V alloy (Ti alloy) strap by FM 94 film adhesive after the surface was trea-

ted. Fatigue crack growth of samples was investigated under cyclic loading with stress ratio (R) of

0.1 and load amplitude constant. The results show that Al–Li alloy plate bonded with Ti alloy strap

could retard fatigue crack propagation. Retardation effect is related with width and thickness of

strap. Flaws have an observable effect on crack propagation direction.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Large commercial aircraft is being manufactured in China.

Plane design is a cross-disciplinary technology which focuses
on aviation safety and reliability, besides flight dynamics, fea-
sible propulsion systems, reduced fuel consumption, noise

reduction and others.
Researches show that consumption of fuel will reduce

2900 kg/year if the weight of aircraft structure is lightened by
1 kg. It has been reported that the latest Boeing 787 with less

weight can increase fuel efficiency by 20%.1 With the develop-
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ment of welding technology, integral structures can bring the
benefits of reducing parts quantities, saving weight and
simplifying inspection. However, integral structures do not

contain special parts which could retard crack growth, so extra
components should be added in some dangerous positions
where crack might initiate at manufacture stage.

The need for higher safety promotes design philosophy of
airplane structure shafting from safe-life or fail-safe to damage
tolerance safety. One of the promising solutions is to use selec-

tive reinforcement or bonded straps in airplane structure,2–6

which is a novel method based on durability design. This has
not being widely used in the aircraft design in China before.
Liu7 studied the effectiveness of composites on preventing fa-

tigue crack propagation and extending fatigue life of steel
plates; his results showed that double-sided repairing scheme
increased fatigue life by 2.2–2.7 times over un-patched steel

plates when normal modulus carbon fiber reinforced poly-
mer/plastic (CFRP) sheets were used, and by 4.7–7.9 times
when high modulus CFRP sheets were used. Brighenti8 opti-

mized the shape of a patch repairing for a cracked plate by ge-
netic algorithm method. His research results illustrated that
SAA & BUAA. Open access under CC BY-NC-ND license.
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Fig. 1 Sketch of Al–Li plate bonded with strap.
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stress-intensity factor can be reduced to about 40%–60% by
optimizing patch shape. Zhang and Boscolo2 studied alumi-
num alloy panels bonded with three kinds of different straps

by numerical modeling and experimental tests. The results
indicated that fatigue life can be significantly improved by
bonding discrete straps to an integral structure.

All these work and data are available to Chinese plane de-
sign. There are many design parameters, such as materials,
dimension and condition, that influence the fatigue crack

growth rate. At the same time, many experiments are needed
before new materials and novel design methods are used on
plane.

This paper focuses on fatigue crack propagation of new

type Al–Li alloy and the effectiveness of crack growth retarda-
tion by Ti alloy straps bonding on the Al–Li plates. We won-
der whether this special structure made of Al–Li alloy and

reinforced by Ti alloy straps could retard crack growth
effectively.

2. Specimens and experiments

2.1. Materials

Al–Li–S–4 is a new type of Al–Li alloy, which is specially used
for Chinese commercial aircraft design and made by Alumi-

num Company of American. Compared with similar alumi-
num alloys, the alloy has better properties, such as, strength,
fracture toughness and elongation. Material composition and

properties are given in Tables 1 and 2.
FM 94 film adhesive in this study was imported from Cytec

Company of the United States, and mechanical properties of
adhesive and Ti alloy strap described are given in Table 3.2,9
Table 3 Properties of adhesive and Ti alloy.

Property Adhesive Ti–6Al–4V

Elastic modulus (GPa) 1.9 113.8

Poisson’s ratio 0.52 0.342

rb (MPa) 43.7 900

Elongation (%) –– 5

Table 1 Composition of Al–Li–S–4 (mass fraction, %).

Si Fe Cu Mn Mg Zn Ag Li Zr Ti Al

0.014 0.028 3.64 0.29 0.71 0.36 0.32 0.68 0.12 0.026 Bal.

Table 2 Properties of Al–Li–S–4 at ambient temperature.

Property Al–Li–S–4

Elastic modulus E (GPa) 75.9 ––

Poisson’s ratio m 0.33 0.33

rb (L) (MPa) 532 547

rb (L–T) (MPa) 533 541

ry (L) (MPa) 475 504

ry (L–T) (MPa) 464 485

Elongation (L) (%) 12.5 10.7

Elongation (L–T) (%) 12.7 10.9

Fig. 2 MTS810 test system.
2.2. Specimens and test equipment

Experimental Al–Li alloy plate bonded with strap is shown in

Fig. 1. The thicknesses of Al–Li alloy, adhesive and Ti alloy
strap are 6, 0.2, and 2 mm separately.

The single edge notch tension plate of Al–Li–S–4, 6 mm

thick, was subject to fatigue loading. The cracked plates
were prepared according to the ASTM E-647 specifications.
Initial notch of 17 mm length was cut using wire-cut tech-

nique. Straps were made of Ti alloy, which shows high spe-
cific strength and toughness (shown in Table 3) combined
with light weight and excellent corrosion resistance,10

bonded to Al–Li alloy plate using FM 94 adhesive cured

at 121 �C.
Fatigue crack growth tests were carried out on experi-

mental system MTS810, as shown in Fig. 2. The experimen-

tal system is mainly used for the testing of static and
dynamic mechanical properties of materials at different tem-
peratures ranging from �200 to 1200 �C, including tensile,

fatigue (high and low-cycle fatigue), fracture toughness tests
and so on.



Fig. 3 Number of cycles vs. crack length under different loading.

Fatigue crack propagation of new aluminum lithium alloy bonded with titanium alloy strap 603
2.3. Sample preparation

Surface treatment process of aluminum alloy refers to ASTM
D 3933.11 Ti alloy strap surface treatment method was pre-
pared according to ASTM D 2651.12 Assembling details of

sample are described in Ref. 13.

3. Results and analysis

3.1. Results of crack propagation

3.1.1. Effect of stress on sample crack propagation

Fig. 3 show the crack length (the length from fringe of Al–Li

plate) data versus the number of cycles from tests for Al–Li al-
loy plate bonded with straps. Results show that crack propaga-
tion rate speeded up when cyclic stress amplitude gradually
became higher. Under 72 MPa cyclic loading, cycles of sample

was 57400 as it broke down, while it was 358000 under 36 MPa
load. The crack length became larger when tests were finished.
At the same time, crack growth rate slowed down. Cycle life
Fig. 4 Number of cycles vs. crack length under 43 MPa.
were about 200000 under 43 MPa loading, while crack length
was about 40 mm after 230000 cycles under 36 MPa cyclic
load, far from the cycle life of component. Bonded strap re-

tarded the crack propagation by exerting a bridging force on
the crack surfaces. This is called bridging effect.2,14

3.1.2. Effect of strap width on crack propagation

Fig. 4 depicts a set of test data of crack length versus the num-
ber of cycles for Al–Li alloy plate without or with different
width straps bonded. The fatigue life of samples varied signif-

icantly. The life of the sample without strap was only 110109
cycles before collapsing under normal cyclic loading of
43 MPa, while the plate bonded with 60 mm wide strap under-

went 328971 cycles. This comparison clearly showed that Al–
Li alloy plate bonded with straps performed much better than
that without strap. Retardation of fatigue crack growth rate

was obvious. Further, it shows that the width of straps had
an effect on the fatigue life. The plate bonded with 20 mm wide
strap increased the fatigue life by more than 1.75 times con-
trasting to Al–Li alloy plate without strap, while fatigue life

of Al–Li alloy plate bonded with 60 mm wide strap increased
by more than four times relative to that of plate without strap.
This improvement in fatigue life performance was due to the

increasing areas which retarded crack propagation and low-
ered stress intensity factor at the crack tip in the presence of
strap. During experimental process, an interesting case was ob-

served that plate bonded with 60 mm wide strap sustained
crack propagation until the Al–Li alloy plate broke and only
then the strap disjointed from plate. Also lower K (stress inten-

sity factors) results in longer broken crack.6

3.1.3. Effect of strap stiffness on crack propagation

Schijve6 and Bagnoli et al.15 hold that crack retardation effect

of strap bonded to aluminum plate is related to the global stiff-
ness ratio, defined as

l ¼
P

EstrapAstrap

� �

EAlAAl þ
P

EstrapAstrap

� � ð1Þ

where l is global stiffness ratio; Estrap elastic modulus of repair

strap, GPa; Astrap section areas of strap, mm2; EAl elastic mod-
ulus of aluminum alloy, GPa; AAl section areas of aluminum
lithium alloy, mm.2

Jiang et al.16 uses numerical method to study the relation-
ship between stress intensity factor and non-dimensional
parameter b, her results show that the stress intensity factor

is reduced significantly for bigger b values, and

b ¼ EstrapBstraptstrap
EAltAlLAl

ð2Þ

where b is non-dimensional parameter; Bstrap width of strap,
mm; tstrap thickness of strap, mm; tAl thickness of aluminum
alloy, mm; LAl length of aluminum alloy, mm.

Schubbe17 defines a stiffness ratio S to treat a strap as a re-
pair patch:

b ¼ Estraptstrap
EAltAl

ð3Þ

His research also shows that the increase in the stiffness ra-
tio improved the fatigue life of the repaired panels.

In order to evaluate the effect of stiffness ratio on fatigue
life, the straps were selected of 2 mm and 4 mm thickness,



Fig. 5 Number of cycles vs. crack length under 43 MPa cyclic

loading.

Fig. 6 Trace of crack growth.
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respectively, while the length and width of strap kept constant
as 200 mm and 20 mm. Fig. 5 shows the measured crack

lengths versus number of cycles for plates bonded with differ-
ent thickness straps, as well as crack growth curve for the Al–
Li–S–4 alloy without a strap. It can be seen that the thickness

of the straps has an effect on fatigue life of Al–Li alloy plate.
The fatigue life of plate bonded with 4 mm thick strap is much
longer than that of plate bonded with 2 mm thick strap.

It was observed that as the crack tip progressed through the
strap, the rate of the crack propagation slowed down. This is
because of the strap undertaking a part of cyclic loading of
Al–Li plate, reducing the stress intensity factors. Zhang and

Boscolo2 think that adhesive disbanding induces separating
strap from the substrate at post cyclic stage, leading to invali-
dation of retardation.

3.2. Trace of fatigue crack growth

Flaws in alloy substrate affect the direction of crack propaga-

tion. For some reason, there are always flaws existing in mate-
rials, for examples, mircrocrack, cavity, slight microcutting
and so on. These flaws were perhaps created in the process
of plate production, transport or surface treatment before
bonding. All these flaws around crack influenced propagation

direction of crack. One of the crack traces in this investigation
is shown in Fig. 6.

It can be seen that crack propagation trace went through

flaws. Stress concentration was created at these pits under cyc-
lic loading, crack originated at these pits firstly, then grew and
joined together so as to form a twisted trace. Flaw was one of

the reasons why crack trace curved.

4. Conclusions

1. The crack propagation rate becomes faster as cyclic loading

becomes larger. Bridging effect shows obvious under
36 MPa load.

2. Different wide straps have various effects on the retarding

crack propagation. Generally speaking, the wider strap is,
the longer fatigue life has. At the same time wider strap
leads to heavier structure weight. The retardation effect
presents from the beginning stage of crack, and crack of

Al–Li plate bonded with Ti alloy strap propagates slower
than that without strap. This effect becomes more signifi-
cant when strap is behind advancing crack tip and strap

undertakes a part of cyclic loading of Al–Li plate, reducing
the stress intensity factors.

3. Thickness of the straps has an effect on the fatigue life of

Al–Li alloy plate. Fatigue life of Al–Li alloy plate bonded
with 4 mm strap rises about 170% than Al–Li alloy without
strap.

4. Flaws in alloy substrate near crack tip affect direction of

crack propagation. Crack passes through these flaws and
curves.
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