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Abstract

This is a continuation of our paper [2]. We prove that for functions f in the Hölder class Λα(R) and
1 < p < ∞, the operator f (A) − f (B) belongs to Sp/α , whenever A and B are self-adjoint operators with
A − B ∈ Sp . We also obtain sharp estimates for the Schatten–von Neumann norms ‖f (A) − f (B)‖Sp/α

in terms of ‖A − B‖Sp
and establish similar results for other operator ideals. We also estimate Schatten–

von Neumann norms of higher order differences
∑m

j=0(−1)m−j
(m

j

)
f (A + jK). We prove that analogous

results hold for functions on the unit circle and unitary operators and for analytic functions in the unit
disk and contractions. Then we find necessary conditions on f for f (A) − f (B) to belong to Sq under
the assumption that A − B ∈ Sp . We also obtain Schatten–von Neumann estimates for quasicommutators
f (A)R − Rf (B), and introduce a spectral shift function and find a trace formula for operators of the form
f (A − K) − 2f (A) + f (A + K).
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is a continuation of our paper [2]. In [2] we obtained sharp estimates for the norms
of f (A) − f (B) in terms of the norm of A − B for various classes of functions f . Here A and
B are self-adjoint operators on Hilbert space and f is a function on the real line R. We also
obtained in [2] sharp estimates for the norms of higher order differences

(
�m

Kf
)
(A)

def=
m∑

j=0

(−1)m−j

(
m

j

)
f (A + jK), (1.1)

where A and K are self-adjoint operators. Similar results were obtained in [2] for functions of
unitary operators and for functions of contractions.

In this paper we are going to obtain sharp estimates for the Schatten–von Neumann norms of
first order differences f (A)−f (B) and higher order differences (�m

Kf )(A) for functions f that
belong to a Hölder–Zygmund class Λα(R), 0 < α < ∞, (see Section 2 for the definition of these
spaces).

In particular we study the question, under which conditions on f the operator f (A) − f (B)

(or (�m
Kf )(A)) belongs to the Schatten–von Neumann class Sq , whenever A−B (or K) belongs

to Sp .
We also obtain related results for more general ideals of operators on Hilbert space (see Sec-

tion 3 for the introduction to operator ideals on Hilbert space).
In connection with the Lifshits–Krein trace formula, M.G. Krein asked in [16] the ques-

tion whether f (A) − f (B) ∈ S1, whenever f is a Lipschitz function (i.e., |f (x) − f (y)| �
const |x − y|, x, y ∈ R) and A − B ∈ S1. Functions f satisfying this property are called trace
class perturbations preserving.

Farforovskaya constructed in [13] an example that shows that the answer to the Krein question
is negative.

Later in [27] and [29] necessary conditions and sufficient conditions for f to be trace class
perturbations preserving were found. It was shown in [27] and [29] that if f belongs to the Besov
space B1∞1(R) (see Section 2), then f is trace class perturbations preserving. On the other hand,
it was shown in [27] that if f is trace class perturbations preserving, then it belongs to the Besov
space B1

1 (R) locally. This necessary condition also proves that a Lipschitz function does not
have to be trace class perturbations preserving. Moreover, in [27] and [29] a stronger necessary
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condition was also found. Note that a function is trace class perturbations preserving if and only
if it is operator Lipschitz (see [27] and [18]).

We also mention here the paper [28], in which analogs of the above results were obtained for
perturbations of class Sp with p ∈ (0,1).

On the other hand, Birman and Solomyak in [9] proved that a Lipschitz function f must
preserve Hilbert–Schmidt class perturbations: f (A) − f (B) ∈ S2, whenever A − B ∈ S2 and

∥∥f (A) − f (B)
∥∥

S2
� sup

x �=y

|f (x) − f (y)|
|x − y| ‖A − B‖S2 .

To prove that result, Birman and Solomyak developed in [7,8], and [9] their beautiful theory
of double operator integrals and established a formula for f (A) − f (B) in terms of double
operator integrals (see Section 4). Note also that the paper [18] studies functions that preserve
perturbations belonging to operator ideals.

We mention here two recent results. In [22] it was proved that if f is a Lipschitz function
and rank(A − B) < ∞, then f (A) − f (B) belongs the weak space S1,∞ (see Section 3 for the
definition). It was also shown in [22] that if A − B ∈ S1, then f (A) − f (B) belongs to the
ideal SΩ , i.e.,

n∑
j=0

sj
(
f (A) − f (B)

)
� const log(2 + n)

(here sj is the j th singular value). This allowed the authors of [22] to deduce that for p � 1
and ε > 0, the operator f (A) − f (B) belongs to Sp+ε , whenever f is a Lipschitz function and
A − B ∈ Sp .

The epsilon was removed later in [34] in the case 1 < p < ∞. It was shown in [34] that for
p ∈ (1,∞), the operator f (A)−f (B) belongs to Sp , whenever A−B ∈ Sp and f is a Lipschitz
function.

Note that similar results also hold for functions on the unit circle T and unitary operators.
It was shown in [6] that if A and B are positive self-adjoint operators and I is a normed

ideal of operators on Hilbert space with majorization property, then for α ∈ (0,1), the following
inequality holds: ∥∥Aα − Bα

∥∥
I

�
∥∥|A − B|α∥∥

I
.

In this paper we study the problem under which conditions on a function f and a (quasi)normed
ideal I of operators on Hilbert space the following inequality holds:∥∥f (A) − f (B)

∥∥
I

� const
∥∥|A − B|α∥∥

I
.

In Section 5 of this paper among other results we show that if f belongs to the Hölder class
Λα , 0 < α < 1, and 1 < p < ∞, then f (A) − f (B) ∈ Sp/α and∥∥f (A) − f (B)

∥∥
Sp/α

� const‖f ‖Λα(R)‖A − B‖α
Sp

.

On the other hand, this is not true for p = 1 (a counter-example is given in Section 9).
Nevertheless, for p = 1, under the assumptions that f ∈ Λα(R) and A − B ∈ S1, we
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prove that f (A) − f (B) belongs to the weak space S1/α,∞. To make the conclusion that
f (B) − f (A) ∈ S1/α under the assumption that A − B ∈ S1, we need the stronger condition:
f belongs to the Besov space Bα

∞1. We also obtain similar results for other ideals of operators
on Hilbert space. In particular, we show that for every p ∈ (1,∞) and every l � 0, the following
inequality holds

l∑
j=0

(
sj
(∣∣f (A) − f (B)

∣∣1/α))p � const‖f ‖p/α

Λα(R)

l∑
j=0

(
sj (A − B)

)p
,

where the constant does not depend on l. We also establish in Section 5 similar results for higher
order differences (�m

Kf )(A) and functions f ∈ Λα(R) with α ∈ [m − 1,m).
In Section 6 we obtain analogs of the result of Section 5 for functions on T and unitary

operators, while in Section 7 we establish similar results for functions analytic in the unit disk
and contractions.

In Section 8 we obtain refinements of some results of Section 6 in the case of finite rank
perturbations of unitary operators. We also give some necessary conditions on a function f for
f (U) − f (V ) to belong to Sq , whenever U − V ∈ Sp . Analogs of the results of Section 8 for
self-adjoint operators are given in Section 9.

In Section 10 we consider the problem of evaluating the trace of f (A − K) − 2f (A) +
f (A + K) under the assumptions that K ∈ S2 and f belongs to the Besov class B2∞1(R). We
introduce a spectral shift function ς associated with the pair (A,K) and establish the following
trace formula:

trace
(
f (A − K) − 2f (A) + f (A + K)

)= ∫
R

f ′′(x)ς(x) dx.

We also show that similar results hold in the case of unitary operators.
The final Section 11 is devoted to estimates of commutators and quasicommutators in the

norm of Schatten–von Neumann classes (as well as in the norms of more general operator ideals).
We consider a bounded operator R, self-adjoint operators A and B and for a function f ∈ Λα(R),
we prove that f (A)R − Rf (B) ∈ Sp/α , whenever p > 1 and AR − RB ∈ Sp . We also obtain
norm estimates for f (A)R − Rf (B) that are similar to the estimates obtained in Section 5 for
first order differences f (A) − f (B).

In Section 2 we give a brief introduction to Besov spaces and, in particular, we discuss Hölder–
Zygmund classes Λα(R), 0 < α < ∞.

In Section 3 we introduce quasinormed ideals of operators on Hilbert space and define the
upper Boyd index of a quasinormed ideal.

In Section 4 we give an introduction to double and multiple operator integrals which will be
used in the paper to obtain desired estimates. We also define multiple operator integrals with
respect to semi-spectral measures.

Note that in this paper we give detailed proofs in the case of bounded self-adjoint operators
and explain briefly that the main results also hold in the case of unbounded self-adjoint operators.
We are going to consider in detail the case of unbounded self-adjoint operators in [3]. Note also
that we are going to consider separately in [4] similar problems for perturbations of dissipative
operators and improve earlier results of [20].

The main results of this paper have been announced without proofs in [1].
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2. Besov spaces

The purpose of this section is to give a brief introduction to Besov spaces that play an impor-
tant role in problems of perturbation theory. We start with Besov spaces on the unit circle.

Let 0 < p,q � ∞ and s ∈ R. The Besov class Bs
pq of functions (or distributions) on T can be

defined in the following way. Let w be an infinitely differentiable function on R such that

w � 0, suppw ⊂
[

1

2
,2

]
, and w(x) = 1 − w

(
x

2

)
for x ∈ [1,2]. (2.1)

Consider the trigonometric polynomials Wn, and W
�
n defined by

Wn(z) =
∑
k∈Z

w

(
k

2n

)
zk, n � 1, W0(z) = z̄ + 1 + z, and W�

n(z) = Wn(z), n � 0.

Then for each distribution f on T,

f =
∑
n�0

f ∗ Wn +
∑
n�1

f ∗ W�
n.

The Besov class Bs
pq consists of functions (in the case s > 0) or distributions f on T such that

{∥∥2nsf ∗ Wn

∥∥
Lp

}
n�1 ∈ 	q and

{∥∥2nsf ∗ W�
n

∥∥
Lp

}
n�1 ∈ 	q. (2.2)

Besov classes admit many other descriptions. In particular, if s > 0 and s > 1/p−1, the space
Bs

pq admits the following characterization. A function f ∈ Lp belongs to Bs
pq , s > 0, if and only

if ∫
T

‖�n
τf ‖q

Lp

|1 − τ |1+sq
dm(τ ) < ∞ for q < ∞

and

sup
τ �=1

‖�n
τf ‖Lp

|1 − τ |s < ∞ for q = ∞, (2.3)

where m is normalized Lebesgue measure on T, n is an integer greater than s, and �τ , τ ∈ T, is
the difference operator:

(�τf )(ζ ) = f (τζ ) − f (ζ ), ζ ∈ T.

We use the notation Bs
p for Bs

pp .

The spaces Λα
def= Bα∞ form the Hölder–Zygmund scale. If 0 < α < 1, then f ∈ Λα if and

only if

∣∣f (ζ ) − f (τ)
∣∣� const|ζ − τ |α, ζ, τ ∈ T,
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while f ∈ Λ1 if and only if f is continuous and

∣∣f (ζτ) − 2f (ζ ) + f (ζ τ̄ )
∣∣� const|1 − τ |, ζ, τ ∈ T.

By (2.3), α > 0, f ∈ Λα if and only if f is continuous and

‖f ‖Λα

def= sup
τ

|1 − τ |−α
∥∥�n

τf
∥∥

L∞ < ∞,

where n is the positive integer such that n − 1 � α < n.
Note that the ‖f ‖Λα is equivalent to

∥∥(f − f̂ (0)
) ∗ W0

∥∥
L∞ + sup

n�1
2nα
(∥∥f ∗ Wn

∥∥
L∞ + ∥∥f ∗ W�

n

∥∥
L∞
)
,

where for a function or a distribution f on T, f̂ (n) is the nth Fourier coefficient of f .
It is easy to see from the definition of Besov classes that the Riesz projection P+,

P+f =
∑
n�0

f̂ (n)zn,

is bounded on Bs
pq . Functions (or distributions) in (Bs

pq)+
def= P+Bs

pq admit a natural extension
to analytic functions in the unit disk D. It is well known that the functions in (Bs

pq)+ admit the
following description:

f ∈ (Bs
pq

)
+ ⇐⇒

1∫
0

(1 − r)q(n−s)−1
∥∥f (n)

r

∥∥q

p
dr < ∞, q < ∞,

and

f ∈ (Bs
p∞
)
+ ⇐⇒ sup

0<r<1
(1 − r)n−s

∥∥f (n)
r

∥∥
p

< ∞,

where fr(ζ )
def= f (rζ ) and n is a nonnegative integer greater than s.

Let us proceed now to Besov spaces on the real line. We consider homogeneous Besov spaces
Bs

pq(R) of functions (distributions) on R. We use the same function w as in (2.1) and define the

functions Wn and W
�
n on R by

FWn(x) = w

(
x

2n

)
, FW�

n(x) = FWn(−x), n ∈ Z,

where F is the Fourier transform:

(Ff )(t) =
∫

f (x)e−ixt dx, f ∈ L1.
R
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With every tempered distribution f ∈ S ′(R) we associate a sequences {fn}n∈Z,

fn
def= f ∗ Wn + f ∗ W�

n.

Initially we define the (homogeneous) Besov class Ḃs
pq(R) as the set of all f ∈ S ′(R) such that

{
2ns‖fn‖Lp

}
n∈Z

∈ 	q(Z). (2.4)

According to this definition, the space Ḃs
pq(R) contains all polynomials. Moreover, the distribu-

tion f is defined by the sequence {fn}n∈Z uniquely up to a polynomial. It is easy to see that the
series

∑
n�0 fn converges in S ′(R). However, the series

∑
n<0 fn can diverge in general. It is

easy to prove that the series
∑

n<0 f
(r)
n converges uniformly on R for each nonnegative integer

r > s − 1/p if q > 1 and the series
∑

n<0 f
(r)
n converges uniformly, whenever r � s − 1/p if

q � 1.
Now we can define the modified (homogeneous) Besov class Bs

pq(R). We say that a distribu-

tion f belongs to Bs
pq(R) if {2ns‖fn‖Lp }n∈Z ∈ 	q(Z) and f (r) =∑n∈Z

f
(r)
n in the space S ′(R),

where r is the minimal nonnegative integer such that r > s − 1/p in the case q > 1 and r is the
minimal nonnegative integer such that r � s − 1/p in the case q � 1. Now the function f is
determined uniquely by the sequence {fn}n∈Z up to a polynomial of degree less that r , and a
polynomial ϕ belongs to Bs

pq(R) if and only if degϕ < r .

We use the same notation Wn and W
�
n for functions on T and on R. This will not lead to a

confusion.
Besov spaces Bs

pq(R) admit equivalent definitions that are similar to those discussed above in

the case of Besov spaces of functions on T. In particular, the Hölder–Zygmund classes Λα(R)
def=

Bα∞(R), α > 0, can be described as the classes of continuous functions f on R such that

∣∣(�m
t f
)
(x)
∣∣� const|t |α, t ∈ R,

where the difference operator �t is defined by

(�tf )(x) = f (x + t) − f (x), x ∈ R,

and m is the integer such that m − 1 � α < m.
As in the case of functions on the unit circle, we consider the following (semi)norm on Λα(R):

sup
n∈Z

2nα
(‖f ∗ Wn‖L∞ + ∥∥f ∗ W�

n

∥∥
L∞
)
, f ∈ Λα(R).

We refer the reader to [24] and [30] for more detailed information on Besov spaces.

3. Ideals of operators on Hilbert space

In this section we give a brief introduction to quasinormed ideals of operators on Hilbert
space. First we recall the definition of quasinormed vector spaces.
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Let X be a vector space. A functional ‖ · ‖ : X → [0,∞) is called a quasinorm on X if

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖αx‖ = |α| · ‖x‖, for every x ∈ X and α ∈ C;

(iii) there exists a positive number c such that ‖x + y‖ � c(‖x‖ + ‖y‖) for every x and y in X.

We say that a sequence {xj }j�1 of vectors of a quasinormed space X converges to x ∈ X

if limj→∞ ‖xj − x‖ = 0. It is well known that there exists a translation invariant metric on X

which induces an equivalent topology on X. A quasinormed space is called quasi-Banach if it is
complete.

To proceed to operator ideals on Hilbert space, we also recall the definition of singular values
of bounded linear operators on Hilbert space. Let T be a bounded linear operator. The singular
values sj (T ), j � 0, are defined by

sj (T ) = inf
{‖T − R‖: rankR � j

}
.

Clearly, s0(T ) = ‖T ‖ and T is compact if and only if sj (T ) → 0 as j → ∞.
For a bounded operator T on Hilbert space we also introduce the sequence {σn(T )}n�0 defined

by

σn(T )
def= 1

n + 1

n∑
j=0

sj (T ). (3.1)

Definition. Let H be a Hilbert space and let I be a nonzero linear manifold in the set B(H )

of bounded linear operators on H that is equipped with a quasi-norm ‖ · ‖I that makes I a
quasi-Banach space. We say that I is a quasinormed ideal if for every A and B in B(H ) and
T ∈ I,

AT B ∈ I and ‖AT B‖I � ‖A‖ · ‖B‖ · ‖T ‖I. (3.2)

A quasinormed ideal I is called a normed ideal if ‖ · ‖I is a norm.
Note that we do not require that I �= B(H ).

It is easy to see that if T1 and T2 are operators in a quasinormed ideal I and sj (T1) = sj (T2)

for j � 0, then ‖T1‖I = ‖T2‖I. Thus there exists a function Ψ = ΨI defined on the set of
nonincreasing sequences of nonnegative real numbers with values in [0,∞] such that T ∈ I if
and only if Ψ (s0(T ), s1(T ), s2(T ), . . .) < ∞ and

‖T ‖I = Ψ
(
s0(T ), s1(T ), s2(T ), . . .

)
, T ∈ I.

If T is an operator from a Hilbert space H1 to a Hilbert space H2, we say that T belongs to I if
Ψ (s0(T ), s1(T ), s2(T ), . . .) < ∞.

For a quasinormed ideal I and a positive number p, we define the quasinormed ideal I{p} by

I{p} = {T :
(
T ∗T

)p/2 ∈ I
}
, ‖T ‖I{p}

def= ∥∥(T ∗T
)p/2∥∥1/p

.

I
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If T is an operator on a Hilbert space H and d is a positive integer, we denote by [T ]d the
operator on the orthogonal sum

⊕d
j=1 Tj , where Tj = T , 1 � j � d . It is easy to see that

sn
([T ]d

)= s[n/d](T ), n � 0,

where [x] denotes the largest integer that is less than or equal to x.
We denote by βI,d the quasinorm of the transformer T �→ [T ]d on I. Clearly, the sequence

{βI,d}d�1 is nondecreasing and submultiplicative, i.e., βI,d1d2 � βI,d1βI,d2 . It is well known
that the last inequality implies that

lim
d→∞

logβI,d

logd
= inf

d�2

logβI,d

logd
. (3.3)

An analog of (3.3) for submultiplicative functions on (0,∞) is proved in [17], Ch. 2, Theo-
rem 1.3. To reduce the case of sequences to the case of functions, one can proceed as follows.
Suppose that {βn}n�1 is a nondecreasing submultiplicative sequence such that β1 = 1. We can
define the function v on (0,∞) by v(t) = min{βn: n � t}. Then v(n) = βn and to prove (3.3), it
suffices to apply Theorem 1.3 of Ch. 2 of [17] to the function v.

Definition. If I is a quasinormed ideal, the number

βI
def= lim

d→∞
logβI,d

logd
= inf

d�2

logβI,d

logd

is called the upper Boyd index of I.

It is easy to see that βI � 1 for an arbitrary normed ideal I. It is also clear that βI < 1 if and
only if limd→∞ d−1βI,d = 0.

Note that the upper Boyd index does not change if we replace the initial quasinorm in the
quasinormed ideal with an equivalent one that also satisfies (3.2). It is also easy to see that

βI{p} = p−1βI.

Theorem 3.1 below is known to experts. Its analog for rearrangement invariant spaces can be
found in [17], Ch. 2, Theorem 6.6 (see also [19], Theorem 2(i)). A similar method can be used
to prove Theorem 3.1.

We give a proof here for reader’s convenience.

Theorem 3.1. Let I be a quasinormed ideal. The following are equivalent:

(i) βI < 1;
(ii) for every nonincreasing sequence {sn}�0 of nonnegative numbers,

ΨI

({σn}n�0
)
� constΨI

({sn}n�0
)
, (3.4)

where σn
def= (1 + n)−1∑n

sj .
j=0
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In the proof of Theorem 3.1 we are going to use an elementary fact that if
∑

n�1 xn is a
series of vectors in a quasi-Banach space X such that ‖xn‖ � constγ n for some γ < 1, then
the series converges in X. This is obvious if cγ < 1, where c is the constant in the definition of
quasinorms. In the general case we can partition the series

∑
n�1 xn in several series, after which

each resulting series satisfies the above assumption.

Proof of Theorem 3.1. Let us first show that (i) ⇒ (ii). Suppose that βI < δ < 1. Then there
exists C > 0 such that βI,d � Cδd for all positive d . Let {sn}n�0 be a nonincreasing sequence of
positive numbers such that Ψ ({sn}n�0) < ∞. Let {ej }j�0 be an orthonormal basis in a Hilbert
space H . For k � 0, we consider the operator Ak ∈ B(H ) defined by Akej = s[2−kj ]ej , j � 0.
It is easy to see that Ak is unitarily equivalent to the operator [A0]2k and

‖Ak‖I � C2δk‖A0‖I = C2δkΨ
({sn}n�0

)
.

It follows that the series A =∑∞
k=0 2−kAk converges in I and ‖A‖I � cΨ ({sn}n�0), where c is

a positive number. Clearly, sn(A) =∑∞
k=0 2−ks[ n

2k ].
We have

n∑
j=0

sj = sn +
1+[log2 n]∑

k=1

[2−k+1n]−1∑
j=[2−kn]

sj

� sn +
1+[log2 n]∑

k=1

([
2−k+1n

]− [2−kn
])

s[2−kn]

� sn +
1+[log2 n]∑

k=1

(
2−kn + 1

)
s[2−kn] � sn + 3n

∞∑
k=1

2−ks[2−kn]

� 3(n + 1)

∞∑
k=0

2−ks[2−kn].

Hence, σn � 3sn(A), n � 0, and so

ΨI

({σn}n�0
)
� 3Ψ

({
σn(A)

}
n�0

)= 3‖A‖I � 3cΨI

({sn}n�0
)
.

Let us prove now that (ii) ⇒ (i). Let {sn}n�0 be a nonincreasing sequence of nonnegative
numbers. Put

ξn
def= 1

n + 1

n∑
k=0

σn = 1

n + 1

n∑
k=0

(
1

k + 1

k∑
j=0

sj

)
= 1

n + 1

n∑
j=0

(
n∑

k=j

1

k + 1

)
sj .
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For an arbitrary positive integer d , we have

ξn � s[n/d]
n + 1

[n/d]∑
j=0

(
n∑

k=j

1

k + 1

)

� s[n/d]
n + 1

([n/d] + 1
)( n∑

k=[n/d]

1

k + 1

)

� ([n/d] + 1)s[n/d]
n + 1

n∫
[n/d]

dx

x + 1

� s[n/d]
d

log
n + 2

[n/d] + 1

� logd

d
s[n/d].

This together with inequality (3.4) applied twice yields

ΨI

({s[n/d]}n�0
)
� d

logd
ΨI

({ξn}n�0
)
� const

d

logd
ΨI

({sn}n�0
)

for d � 2. Thus βI,d < d for sufficiently large d , and so βI < 1. �
Remark. Suppose that I is a normed ideal and let CI be the best possible constant in inequal-
ity (3.4). It is easy to see from the proof of Theorem 3.1 that

CI � 3
∞∑

k=0

2−kβI,2k . (3.5)

Let Sp , 0 < p < ∞, be the Schatten–von Neumann class of operators T on Hilbert space such
that

‖T ‖Sp

def=
(∑

j�0

(
sj (T )

)p)1/p

.

This is a normed ideal for p � 1. We denote by Sp,∞, 0 < p < ∞, the ideal that consists of
operators T on Hilbert space such that

‖T ‖Sp,∞
def=
(

sup
j�0

(1 + j)
(
sj (T )

)p)1/p

.

The quasinorm ‖ · ‖p,∞ is not a norm, but it is equivalent to a norm if p > 1. It is easy to see that

βSp = βSp,∞ = 1

p
, 0 < p < ∞.

Thus Sp and Sp,∞ satisfy the hypotheses of Theorem 3.1 for p > 1.
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It follows easily from (3.5) that for p > 1,

CSp � 3
(
1 − 21/p−1)−1

.

Suppose now that I is a quasinormed ideal of operators on Hilbert space. With a nonnegative
integer l we associate the ideal (l)I that consists of all bounded linear operators on Hilbert space
and is equipped with the norm

Ψ(l)I(s0, s1, s2, . . .) = Ψ (s0, s1, . . . , sl,0,0, . . .).

It is easy to see that for every bounded operator T ,

‖T ‖(l)I = sup
{‖RT ‖I: ‖R‖ � 1, rankR � l + 1

}
= sup

{‖T R‖I: ‖R‖ � 1, rankR � l + 1
}
.

The following fact is obvious.

Lemma 3.2. Let I be a quasinormed ideal. Then for all l � 0,

C(l)I � CI.

Note that if I = Sp , p � 1, then Sl
p

def= (l)Sp is the normed ideal that consists of all bounded
linear operators equipped with the norm

‖T ‖Sl
p

def=
(

l∑
j=0

(
sj (T )

)p)1/p

.

It is well known that ‖ · ‖Sl
p

is a norm for p � 1 (see [10]).

We need the following well-known inequality:

‖T1T2‖Sl
r
� ‖T1‖Sl

p
‖T2‖Sl

q
, (3.6)

where T1 and T2 bounded operator on Hilbert space and 1/p + 1/q = 1/r . Inequality (3.6) can
be deduced from the corresponding inequality for Sp norms. Indeed, let R be an operator of
rank l such that ‖T1T2‖Sl

r
= ‖T1T2R‖Sr . There exists an orthogonal projection P of rank l such

that ‖T1T2R‖Sr = ‖PT1T2R‖Sr . Then

‖T1T2‖Sl
r
= ‖PT1T2R‖Sr � ‖PT1‖Sp‖T2R‖Sq � ‖T1‖Sl

p
‖T2‖Sl

q
.

We refer the reader to [14] and [10] for further information on singular values and normed
ideals of operators on Hilbert space.
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4. Multiple operator integrals

4.1. Multiple operator integrals with respect to spectral measures

In this subsection we review some aspects of the theory of double and multiple operator
integrals. Double operator integrals appeared in the paper [12] by Daletskii and S.G. Krein. In
that paper the authors obtained the following formula

d

dt

(
f (A + tK) − f (A)

)∣∣∣
t=0

=
∫ ∫

(Df )(x, y) dEA(x)K dEA(y)

for a function f of class C2(R), and bounded self-adjoint operators A and K (EA stands for the
spectral measure of A). Here we use the notation

(Df )(x, y)
def= f (x) − f (y)

x − y
, x �= y, (Df )(x, x)

def= f ′(x), x, y ∈ R.

However, the beautiful theory of double operator integrals was developed later by Birman and
Solomyak in [7–9], see also their survey [11].

We are not going to define double operator integrals
∫∫

Φ(x,y) dE1(x)QdE2(y) in the case
of Hilbert–Schmidt operators Q that was the starting point in [7–9]. We use the approach based
on (integral) projective tensor products. In the case of bounded or trace class operators Q this
approach is equivalent to the approach of Birman and Solomyak, see [27].

Let (X ,E1) and (Y ,E2) be spaces with spectral measures E1 and E2 on Hilbert spaces
H1 and H2. Suppose that a function Φ on X × Y belongs to the projective tensor product
L∞(E1) ⊗̂ L∞(E2) of L∞(E1) and L∞(E2), i.e., Φ admits a representation

Φ(x,y) =
∑
n�0

ϕn(x)ψn(y), (4.1)

where ϕn ∈ L∞(E1), ψn ∈ L∞(E2), and

∑
n�0

‖ϕn‖L∞‖ψn‖L∞ < ∞. (4.2)

Then for an arbitrary bounded linear operator Q : H2 → H1 we put

∫
X

∫
Y

Φ(x,y) dE1(x)QdE2(y)
def=
∑
n�0

(∫
X

ϕn dE1

)
Q

(∫
Y

ψn dE2

)
.

Note that if Φ belongs to the projective tensor product L∞(E1)⊗̂L∞(E2), its norm in L∞(E1)⊗̂
L∞(E2) is, by definition, the infimum of the left-hand side of (4.2) over all representations (4.1).
It is easy to see that∥∥∥∥

∫ ∫
Φ(x,y) dE1(x)QdE2(y)

∥∥∥∥� ‖Φ‖L∞(E1)⊗̂L∞(E2)
‖Q‖.
X Y
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Moreover, if Q belongs to a normed ideal I and Φ ∈ L∞(E1) ⊗̂ L∞(E2), then

∫
X

∫
Y

Φ(x,y) dE1(x)QdE2(y) ∈ I

and

∥∥∥∥∥
∫
X

∫
Y

Φ(x,y) dE1(x)QdE2(y)

∥∥∥∥∥
I

� ‖Φ‖L∞(E1)⊗̂L∞(E2)
‖Q‖I.

We can enlarge the class of functions Φ , for which double operator integrals can be defined
by considering integral projective tensor products. We do this in the case of multiple operator
integrals. This approach for multiple operator integrals was given in [32]. To simplify the nota-
tion, we consider here the case of triple operator integrals; the case of arbitrary multiple operator
integrals can be treated in the same way.

Let (X ,E1), (Y ,E2), and (Z,E3) be spaces with spectral measures E1, E2, and E3 on
Hilbert spaces H1, H2, and H3. Suppose that Φ belongs to the integral projective tensor product
L∞(E1) ⊗̂i L

∞(E2) ⊗̂i L
∞(E3), i.e., Φ admits a representation

Φ(x,y, z) =
∫
Ω

ϕ(x,ω)ψ(y,ω)χ(z,ω)dσ(ω), (4.3)

where (Ω,σ) is a measure space with a σ -finite measure, ϕ is a measurable function on X ×Ω ,
ψ is a measurable function on Y × Ω , χ is a measurable function on Z × Ω , and

∫
Ω

∥∥ϕ(·,ω)
∥∥

L∞(E1)

∥∥ψ(·,ω)
∥∥

L∞(E2)

∥∥χ(·,ω)
∥∥

L∞(E3)
dσ (ω) < ∞. (4.4)

Suppose now that T1 is a bounded linear operator from H2 to H1 and T2 is a bounded linear
operator from H3 to H2. For a function Φ in L∞(E1) ⊗̂i L

∞(E2) ⊗̂i L
∞(E3) of the form (4.3),

we put

∫
X

∫
Y

∫
Z

Φ(x,y, z) dE1(x)T1 dE2(y)T2 dE3(z)

def=
∫
Ω

(∫
X

ϕ(x,ω)dE1(x)

)
T1

(∫
Y

ψ(y,ω)dE2(y)

)
T2

(∫
Z

χ(z,ω)dE3(z)

)
dσ(ω). (4.5)

It was shown in [32] (see also [5] for a different proof) that the above definition does not
depend on the choice of a representation (4.3). The norm ‖Φ‖L∞⊗̂iL

∞⊗̂iL
∞ is defined as the

infimum of the left-hand side of (4.4) over all representations (4.3).
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It is easy to see that the following inequality holds∥∥∥∥∥
∫
X

∫
Y

∫
Z

Φ(x,y, z) dE1(x)T1 dE2(y)T2 dE3(z)

∥∥∥∥∥� ‖Φ‖L∞⊗̂iL
∞⊗̂iL

∞‖T1‖ · ‖T2‖.

In particular, the triple operator integral on the left-hand side of (4.5) can be defined if Φ

belongs to the projective tensor product L∞(E1) ⊗̂ L∞(E2) ⊗̂ L∞(E3). It is easy to see that if
T1 ∈ Sp and T2 ∈ Sq , and 1/p + 1/q � 1, then the triple operator integral (4.5) belongs to Sr

and∥∥∥∥∥
∫
X

∫
Y

∫
Z

Φ(x,y, z) dE1(x)T1 dE2(y)T2 dE3(z)

∥∥∥∥∥
Sr

� ‖Φ‖L∞⊗̂iL
∞⊗̂iL

∞‖T1‖Sp · ‖T2‖Sq ,

where 1/r = 1/p + 1/q .
Note tat similar inequalities hold for multiple operator integrals and for Sl

p norms.
Recall that multiple operator integrals were considered earlier in [23] and [36]. However, in

those papers the class of functions Φ for which the left-hand side of (4.5) was defined is much
narrower than in the definition given above.

It follows from the results of Birman and Solomyak [9] that if A is a self-adjoint operator (not
necessarily bounded), K is a bounded self-adjoint operator, and f is a continuously differentiable
function on R such that Df ∈ L∞(EA+K) ⊗̂i L

∞(EA), then

f (A + K) − f (A) =
∫ ∫
R×R

(Df )(x, y) dEA+K(x)K dEA(y) (4.6)

and if K belongs to a normed ideal I, then f (A + K) − f (A) ∈ I and

∥∥f (A + K) − f (A)
∥∥

I
� const‖Df ‖L∞(EA+K)⊗̂L∞(EA)‖K‖I.

In case I = Sp or I = Sl
p , p � 1, the last inequality admits the following improvement:

∥∥f (A + K) − f (A)
∥∥

I
� const‖Df ‖L∞(EA+K)⊗̂iL

∞(EA)‖K‖I. (4.7)

Similar results also hold for unitary operators, in which case we have to integrate the divided
difference Df of a function f on the unit circle with respect to the spectral measures of the
corresponding operator integrals.

It was shown in [27] that if f is a trigonometric polynomial of degree d , then

‖Df ‖C(T)⊗̂C(T) � constd‖f ‖L∞ . (4.8)

On the other hand, it was shown in [29] that if f is a bounded function on R whose Fourier
transform is supported on [−σ,σ ] (in other words, f is an entire function of exponential type at
most σ that is bounded on R), then Df ∈ L∞ ⊗̂i L

∞ and

‖Df ‖ ∞ ˆ ∞ � constσ‖f ‖L∞(R). (4.9)
L ⊗iL
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In this paper we are going to integrate divided differences of higher orders to estimate the
norms of higher order operator differences (1.1).

For a function f on R, the divided difference Dkf of order k is defined inductively as follows:

D0f
def= f ;

if k � 1, then in the case when x1, x2, . . . , xk+1 are distinct points in R,

(
Dkf

)
(x1, . . . , xk+1)

def= (Dk−1f )(x1, . . . , xk−1, xk) − (Dk−1f )(x1, . . . , xk−1, xk+1)

xk − xk+1

(the definition does not depend on the order of the variables). Clearly,

Df = D1f.

If f ∈ Ck(R), then Dkf extends by continuity to a function defined for all points x1, x2,

. . . , xk+1.
It can be shown that

(
Dnf

)
(x1, . . . , xn+1) =

n+1∑
k=1

f (xk)

k−1∏
j=1

(xk − xj )
−1

n+1∏
j=k+1

(xk − xj )
−1.

Similarly, one can define the divided difference of order k for functions on T.
It was shown in [32] that if f is a trigonometric polynomial of degree d , then

∥∥Dkf
∥∥

C(T)⊗̂···⊗̂C(T)
� constdk‖f ‖L∞ . (4.10)

It was also shown in [32] that if f is an entire function of exponential type at most σ and is
bounded on R, then

∥∥Dkf
∥∥

L∞⊗̂i···⊗̂iL
∞ � constσk‖f ‖L∞(R). (4.11)

4.2. Multiple operator integrals with respect to semi-spectral measures

Let H be a Hilbert space and let (X ,B) be a measurable space. A map E from B to the
algebra B(H ) of all bounded operators on H is called a semi-spectral measure if

E (�) � 0, � ∈ B, E (∅) = 0 and E (X ) = I,

and for a sequence {�j }j�1 of disjoint sets in B,

E

( ∞⋃
j=1

�j

)
= lim

N→∞

N∑
j=1

E (�j ) in the weak operator topology.

Multiple operator integrals with respect to semi-spectral measures were defined in [33] (see
also [28]); the definition is based on integral projective tensor products of L∞ spaces.
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If T is a contraction on a Hilbert space H , then by the Sz.-Nagy dilation theorem (see [37]),
T has a unitary dilation, i.e., there exist a Hilbert space K such that H ⊂ K and a unitary
operator U on K such that

T n = PH Un|H , n � 0, (4.12)

where PH is the orthogonal projection onto H . Let EU be the spectral measure of U . Consider
the operator set function E defined on the Borel subsets of the unit circle T by

E (�) = PH EU(�)|H , � ⊂ T.

Then E is a semi-spectral measure. It follows immediately from (4.12) that

T n =
∫
T

ζ n dE (ζ ) = PH

∫
T

ζ n dEU(ζ )|H , n � 0. (4.13)

Such a semi-spectral measure E is called a semi-spectral measure of T. Note that it is not unique.
To have uniqueness, we can consider a minimal unitary dilation U of T , which is unique up to
an isomorphism (see [37]).

The following analog of the Birman–Solomyak formula holds:

f (R) − f (T ) =
∫ ∫
T×T

(Df )(ζ, τ ) dER(ζ ) (R − T )dET (τ ).

Here T and R contractions on Hilbert space, ET and ER are their semi-spectral measures, and f

is an analytic function in D of class (B1∞1)+ (see [28] and [33]).

5. Self-adjoint operators. Sufficient conditions

Recall that for l � 0 and p > 0, the normed ideal Sl
p consists of all bounded linear operators

equipped with the norm

‖T ‖Sl
p

def=
(

l∑
j=0

(
sj (T )

)p)1/p

.

Theorem 5.1. Let 0 < α < 1. Then there exists a positive number c > 0 such that for every l � 0,
p ∈ [1,∞), f ∈ Λα(R), and for arbitrary self-adjoint operators A and B on Hilbert space with
bounded A − B , the following inequality holds:

sj
(
f (A) − f (B)

)
� c‖f ‖Λα(R)(1 + j)−α/p‖A − B‖α

Sl
p

for every j � l.
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Proof. Put fn
def= f ∗ Wn + f ∗ W

�
n , n ∈ Z, and fix an integer N . We have by (4.7) and (4.9),

∥∥∥∥∥
N∑

n=−∞

(
fn(A) − fn(B)

)∥∥∥∥∥
Sl

p

�
N∑

n=−∞

∥∥fn(A) − fn(B)
∥∥

Sl
p

� const
N∑

n=−∞
2n‖fn‖L∞‖A − B‖Sl

p

� const‖f ‖Λα(R)

N∑
n=−∞

2n(1−α)‖A − B‖Sl
p

� const 2N(1−α)‖f ‖Λα(R)‖A − B‖Sl
p
.

On the other hand, ∥∥∥∥∑
n>N

(
fn(A) − fn(B)

)∥∥∥∥� 2
∑
n>N

‖fn‖L∞

� const‖f ‖Λα(R)

∑
n>N

2−nα

� const 2−Nα‖f ‖Λα(R).

Put

RN
def=

N∑
n=−∞

(
fn(A) − fn(B)

)
and QN

def=
∑
n>N

(
fn(A) − fn(B)

)
.

Clearly, for j � l,

sj
(
f (A) − f (B)

)
� sj (RN) + ‖QN‖
� (1 + j)−1/p

∥∥f (A) − f (B)
∥∥

Sl
p

+ ‖QN‖
� const

(
(1 + j)−1/p2N(1−α)‖f ‖Λα(R)‖A − B‖Sl

p
+ 2−Nα‖f ‖Λα(R)

)
.

To obtain the desired estimate, it suffices to choose the number N so that

2−N < (1 + j)−1/p‖A − B‖Sl
p

� 2−N+1. �
Theorem 5.2. Let 0 < α < 1. Then there exists a positive number c > 0 such that for every
f ∈ Λα(R) and arbitrary self-adjoint operators A and B on Hilbert space with A − B ∈ S1, the
operator f (A) − f (B) belongs to S1/α,∞ and the following inequality holds:

∥∥f (A) − f (B)
∥∥

S1/α,∞ � c‖f ‖Λα(R)‖A − B‖α
S1

.
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Proof. This is an immediate consequence of Theorem 5.1 in the case p = 1. �
Note that the assumptions of Theorem 5.2 do not imply that f (A)−f (B) ∈ S1/α . In Section 9

we obtain a necessary condition on f for f (A) − f (B) ∈ S1/α whenever A − B ∈ S1.
The following result ensures that the assumption that A−B ∈ S1 implies that f (A)−f (B) ∈

S1/α under a slightly more restrictive condition on f .

Theorem 5.3. Let 0 < α � 1. Then there exists a positive number c > 0 such that for every
f ∈ Bα

∞1(R) and arbitrary self-adjoint operators A and B on Hilbert space with A − B ∈ S1,
the operator f (A) − f (B) belongs to S1/α and the following inequality holds:

∥∥f (A) − f (B)
∥∥

S1/α
� c‖f ‖Bα∞1(R)‖A − B‖α

S1
.

Note that in the case α = 1 this was proved earlier in [29].

Proof of Theorem 5.3. Put fn = f ∗ Wn + f ∗ W
�
n . Clearly, fn is trace class perturbations

preserving and it is easy to see that

∥∥fn(A) − fn(B)
∥∥

S1/α
�
∥∥fn(A) − fn(B)

∥∥α

S1

∥∥fn(A) − fn(B)
∥∥1−α

. (5.1)

Since f (A) − f (B) =∑n∈Z
(fn(A) − fn(B)), it suffices to prove that

∑
n∈Z

∥∥fn(A) − fn(B)
∥∥

S1/α
< ∞.

We have by (5.1) and (4.7),∑
n∈Z

∥∥fn(A) − fn(B)
∥∥

S1/α
�
∑
n∈Z

∥∥fn(A) − fn(B)
∥∥α

S1
· ∥∥fn(A) − fn(B)

∥∥1−α

� const
∑
n∈Z

2nα‖fn‖α
L∞ · 21−α‖fn‖1−α

L∞ ‖A − B‖α
S1

� const
∑
n∈Z

2nα‖fn‖L∞‖A − B‖α
S1

� const‖f ‖Bα∞1(R)‖A − B‖α
S1

. �
Theorem 5.4. Let 0 < α < 1. Then there exists a positive number c > 0 such that for every
f ∈ Λα(R) and arbitrary self-adjoint operators A and B on Hilbert space with bounded A − B ,
the following inequality holds:

sj
(∣∣f (A) − f (B)

∣∣1/α)� c‖f ‖1/α

Λα(R)
σj (A − B), j � 0.

Proof. It suffices to apply Theorem 5.1 with l = j and p = 1. �
Now we are in a position to obtain a general result in the case f ∈ Λα(R) and A − B ∈ I for

an arbitrary quasinormed ideal I with upper Boyd index less than 1.
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Theorem 5.5. Let 0 < α < 1. Then there exists a positive number c > 0 such that for every
f ∈ Λα(R), for an arbitrary quasinormed ideal I with βI < 1, and for arbitrary self-adjoint
operators A and B on Hilbert space with A − B ∈ I, the operator |f (A) − f (B)|1/α belongs to
I and the following inequality holds:

∥∥∣∣f (A) − f (B)
∣∣1/α∥∥

I
� cCI‖f ‖1/α

Λα(R)
‖A − B‖I.

Proof. Theorem 3.1 implies that

ΨI

({
σn(A − B)

}
n�0

)
� const‖A − B‖

I
,

and Theorem 5.4 implies that

∥∥∣∣f (A) − f (B)
∣∣1/α∥∥

I
� c‖f ‖1/α

Λα(R)
ΨI

({
σn(A − B)

}
n�0

)
. �

We can reformulate Theorem 5.5 in the following way.

Theorem 5.6. Under the hypothesis of Theorem 5.5, the operator f (A)−f (B) belongs to I{1/α}
and ∥∥f (A) − f (B)

∥∥
I{1/α} � cαCα

I‖f ‖Λα(R)‖A − B‖α
I.

We deduce now some more consequences of Theorem 5.5.

Theorem 5.7. Let 0 < α < 1 and 1 < p < ∞. Then there exists a positive number c such that
for every f ∈ Λα(R), every l ∈ Z+, and arbitrary self-adjoint operators A and B with bounded
A − B , the following inequality holds:

l∑
j=0

(
sj
(∣∣f (A) − f (B)

∣∣1/α))p � c‖f ‖p/α

Λα(R)

l∑
j=0

(
sj (A − B)

)p
.

Proof. The result immediately follows from Theorem 5.5 and Lemma 3.2. �
Theorem 5.8. Let 0 < α < 1 and 1 < p < ∞. Then there exists a positive number c such that
for every f ∈ Λα(R) and for arbitrary self-adjoint operators A and B with A − B ∈ Sp , the
operator f (A) − f (B) belongs to Sp/α and the following inequality holds:∥∥f (A) − f (B)

∥∥
Sp/α

� c‖f ‖Λα(R)‖A − B‖α
Sp

.

Proof. The result is an immediate consequence of Theorem 5.7. �
Suppose now that m−1 � α < m and f ∈ Λα(R). For a self-adjoint operator A and a bounded

self-adjoint operator K , we consider the finite difference

(
�m

Kf
)
(A)

def=
m∑

(−1)m−j

(
m

j

)
f (A + jK).
j=0
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In the case when A is unbounded, by the right-hand side we mean the following operator

∑
n∈Z

m∑
j=0

(−1)m−j

(
m

j

)
fn(A + jK),

where as usual, fn = f ∗Wn+f ∗W
�
n . It has been proved in [2] that under the above assumptions,

∑
n∈Z

∥∥∥∥∥
m∑

j=0

(−1)m−j

(
m

j

)
fn(A + jK)

∥∥∥∥∥< ∞.

(We refer the reader to [3], where the situation with unbounded A will be discussed in detail.)
We are going to use the following representation for (�m

Kf )(A) in terms of multiple operator
integrals:

(
�m

Kf
)
(A)

= m!
∫

· · ·
∫

︸ ︷︷ ︸
m+1

(
Dmf

)
(x1, . . . , xm+1) dEA(x1)K dEA+K(x2)K · · ·K dEA+mK(xm+1), (5.2)

where A is a self-adjoint operator, K is a bounded self-adjoint operator, and f ∈ Bm
∞1(R). For-

mula (5.2) was obtained in [2].
It follows from (5.2), (4.11), and (3.6) that if p � m � 1, l � 0, and f is an entire function of

exponential type at most σ that is bounded on R, then

∥∥(�m
Kf
)
(A)
∥∥

Sl
p
m

� constσm‖f ‖L∞‖K‖m

Sl
p

. (5.3)

Moreover, the constant in (5.3) does not depend on p.

Theorem 5.9. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for
every l � 0, p ∈ [m,∞), f ∈ Λα(R), and for arbitrary self-adjoint operator A and bounded
self-adjoint operator K , the following inequality holds:

sj
((

�m
Kf
)
(A)
)
� c‖f ‖Λα(R)(1 + j)−α/p‖K‖α

Sl
p

for j � l.

Proof. As in the proof of Theorem 5.1, we put

RN
def=
∑(

�m
Kfn

)
(A) and QN

def=
∑(

�m
Kfn

)
(A).
n�N n>N



3696 A.B. Aleksandrov, V.V. Peller / Journal of Functional Analysis 258 (2010) 3675–3724
It follows from (5.3) that

‖RN‖Sl
p/m

�
∑
n�N

const 2mn‖fn‖L∞‖K‖m

Sl
p

� ‖K‖m

Sl
p

‖f ‖Λα(R)

∑
n�N

2(m−α)n

� 2(m−α)N‖f ‖Λα(R)‖K‖m

Sl
p

.

On the other hand, it is easy to see that

‖QN‖ � const
∑
n>N

‖fn‖L∞ � ‖f ‖Λα(R)

∑
n>N

2−nα � 2−αN‖f ‖Λα(R).

Hence,

sj
((

�m
Kfn

)
(A)
)
� sj (RN) + ‖QN‖
� (1 + j)−m/p‖RN‖Sl

p/m
+ ‖QN‖

� const‖f ‖Λα(R)

(
(1 + j)−m/p2(m−α)N‖K‖m

Sl
p

+ 2−αN
)
.

To complete the proof, it suffices to choose N such that

2−N < (1 + j)−1/p‖K‖Sl
p

� 2−N+1. �
The following result is an immediate consequence from Theorem 5.9.

Theorem 5.10. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for
every f ∈ Λα(R), and for an arbitrary self-adjoint operator A and an arbitrary self-adjoint
operator K of class Sm, the operator (�m

Kf )(A) belongs to S m
α

,∞ and the following inequality
holds:

∥∥(�m
Kf
)
(A)
∥∥

S m
α ,∞

� c‖f ‖Λα(R)‖K‖α
Sm

.

As in the case 0 < α < 1 (see Theorem 5.3), we are going to improve the conclusion of
Theorem 5.10 under a slightly more restrictive assumption on f . Note that in the following
theorem α is allowed to be equal to m.

Theorem 5.11. Let α > 0 and m − 1 � α � m. There exists a positive number c such that for
every f ∈ Bα

∞1(R), and for an arbitrary self-adjoint operator A and an arbitrary self-adjoint
operator K of class Sm, the operator (�m

Kf )(A) belongs to S m
α

and the following inequality
holds:

∥∥(�m
Kf
)
(A)
∥∥

S m
α

� c‖f ‖Bα∞1(R)‖K‖α
Sm

.
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Proof. Clearly,

∥∥(�m
Kfn

)
(A)
∥∥

S m
α

�
∥∥(�m

Kfn

)
(A)
∥∥α/m

S1

∥∥(�m
Kfn

)
(A)
∥∥1−α/m

.

By (5.3),

∥∥(�m
Kfn

)
(A)
∥∥

S1
� const 2mn‖fn‖L∞‖K‖m

Sm
.

Thus

∑
n∈Z

∥∥(�m
Kfn

)
(A)
∥∥

S m
α

�
∑
n∈Z

∥∥(�m
Kfn

)
(A)
∥∥α/m

S1

∥∥(�m
Kfn

)
(A)
∥∥1−α/m

� const
∑
n∈Z

2αn‖fn‖α/m
L∞ ‖K‖α

Sm
‖fn‖1−α/m

L∞

� const‖K‖α
Sm

∑
n∈Z

2αn‖fn‖L∞

� const‖f ‖Bα∞1(R)‖K‖α
Sm

. �
Recall that for a bounded linear operator T the numbers, σj (T ) are defined by (3.1).

Theorem 5.12. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for ev-
ery f ∈ Λα(R), and for arbitrary self-adjoint operator A and bounded self-adjoint operator K ,
the following inequality holds:

sj
(∣∣(�m

Kf
)
(A)
∣∣m/α)� c‖f ‖m/α

Λα(R)
σj

(|K|m), j � 0.

Proof. The result follows immediately from Theorem 5.9 in the case j = l and p = m. �
Theorem 5.13. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for
every f ∈ Λα(R), every quasinormed ideal I with βI < m−1, and for arbitrary self-adjoint
operator A and bounded self-adjoint operator K , the following inequality holds:

∥∥∣∣(�m
Kf
)
(A)
∣∣1/α∥∥

I
� cC

1/m

I{1/m}‖f ‖1/α

Λα(R)
‖K‖I.

Proof. Clearly, |K|m ∈ I{1/m} and βI{1/m} = mβI < 1. Therefore, by Theorem 5.12,

∥∥∣∣(�m
Kf
)
(A)
∣∣m/α∥∥

I{1/m} � cCI{1/m}‖f ‖m/α

Λα(R)

∥∥|K|m∥∥
I{1/m}

which implies the result. �
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Theorem 5.14. Let α > 0, m − 1 � α < m, and m < p < ∞. There exists a positive number c

such that for every f ∈ Λα(R), every l ∈ Z+, and for arbitrary self-adjoint operator A and
bounded self-adjoint operator K , the following inequality holds:

l∑
j=0

(
sj
(∣∣(�m

Kf
)
(A)
∣∣1/α))p � c‖f ‖p/α

Λα(R)

l∑
j=0

(
sj (K)

)p
.

Proof. The result follows from Theorem 5.13 and Lemma 3.2. �
The last theorem of this section is an immediate consequence of Theorem 5.14.

Theorem 5.15. Let α > 0, m − 1 � α < m, and m < p < ∞. There exists a positive number c

such that for every f ∈ Λα(R), for an arbitrary self-adjoint operator A, and an arbitrary self-
adjoint operator K of class Sp , the following inequality holds:

∥∥(�m
Kf
)
(A)
∥∥

Sp/α
� c‖f ‖Λα(R)‖K‖α

Sp
.

6. Unitary operators. Sufficient conditions

In this section we are going to obtain analogs of the results of the previous section for functions
of unitary operators. In the case of first order differences we can use the Birman–Solomyak
formula for functions of unitary operators and the proofs are the same as in the case of functions
of self-adjoint operators. However, in the case of higher order differences, formulae that express a
difference of order m involves not only multiple operator integrals of multiplicity m+ 1, but also
multiple operator integrals of lower multiplicities, see [2]. This makes proofs more complicated
than in the self-adjoint case.

We start with first order differences. If U and V are unitary operators, then by the Birman–
Solomyak formula,

f (U) − f (V ) =
∫ ∫
T×T

f (ζ ) − f (τ)

ζ − τ
dEU(ζ ) (U − V )dEV (τ), (6.1)

whenever the divided difference Df belongs to L∞ ⊗̂ L∞. Here EU and EV are the spectral
measures of U and V . Recall that it was shown in [27] that (6.1) holds if f ∈ B1∞1.

It follows from (4.8) that if I is a normed ideal, U −V ∈ I and f is a trigonometric polynomial
of degree d , then f (U) − f (V ) ∈ I and

∥∥f (U) − f (V )
∥∥

I
� constd‖f ‖L∞‖U − V ‖I. (6.2)

Moreover, the constant does not depend on I.

Theorem 6.1. Let 0 < α < 1. Then there exists a positive number c > 0 such that for every l � 0,
p ∈ [1,∞), f ∈ Λα , and for arbitrary unitary operators U and V on Hilbert space, the following
inequality holds:
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sj
(
f (U) − f (V )

)
� c‖f ‖Λα(1 + j)−α/p‖U − V ‖α

Sl
p

for every j � l.

Theorem 6.2. Let 0 < α < 1. Then there exists a positive number c > 0 such that for every
f ∈ Λα and arbitrary unitary operators U and V on Hilbert space with U −V ∈ S1, the operator
f (U) − f (V ) belongs to S1/α,∞ and the following inequality holds:

∥∥f (U) − f (V )
∥∥

S1/α,∞ � c‖f ‖Λα‖U − V ‖α
S1

.

As in the self-adjoint case, the assumptions of Theorem 6.2 do not imply that f (U)−f (V ) ∈
S1/α . In Section 8 we obtain a necessary condition on f for f (U) − f (V ) ∈ S1/α , whenever
U − V ∈ S1.

Theorem 6.3. Let 0 < α � 1. Then there exists a positive number c > 0 such that for every
f ∈ Bα

∞1 and arbitrary unitary operators U and V on Hilbert space with U − V ∈ S1, the
operator f (U) − f (V ) belongs to S1/α and the following inequality holds:

∥∥f (U) − f (V )
∥∥

S1/α
� c‖f ‖Bα∞1

‖U − V ‖α
S1

.

Note that in the case α = 1 this was proved earlier in [27].

Theorem 6.4. Let 0 < α < 1. Then there exists a positive number c > 0 such that for every
f ∈ Λα and arbitrary unitary operators U and V on Hilbert space, the following inequality
holds:

sj
(∣∣f (U) − f (V )

∣∣1/α)� c‖f ‖1/α
Λα

σj (U − V ), j � 0.

Recall that the numbers σj (U − V ) are defined in (3.1).

Theorem 6.5. Let 0 < α < 1. Then there exists a positive number c > 0 such that for every
f ∈ Λα , for an arbitrary quasinormed ideal I with βI < 1, and for arbitrary unitary operators
U and V on Hilbert space with U −V ∈ I, the operator |f (U)−f (V )|1/α belongs to I and the
following inequality holds:

∥∥∣∣f (U) − f (V )
∣∣1/α∥∥

I
� cCI‖f ‖1/α

Λα(R)
‖U − V ‖I.

Theorem 6.6. Let 0 < α < 1 and 1 < p < ∞. Then there exists a positive number c such that for
every f ∈ Λα , every l ∈ Z+, and arbitrary unitary operators U and V , the following inequality
holds:

l∑
j=0

(
sj
(∣∣f (U) − f (V )

∣∣1/α))p � c‖f ‖p/α
Λα

l∑
j=0

(
sj (U − V )

)p
.
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Theorem 6.7. Let 0 < α < 1 and 1 < p < ∞. Then there exists a positive number c such that
for every f ∈ Λα and for arbitrary unitary operators U and V with U − V ∈ Sp , the operator
f (U) − f (V ) belongs to Sp/α and the following inequality holds:

∥∥f (U) − f (V )
∥∥

Sp/α
� c‖f ‖Λα‖U − V ‖α

Sp
.

The proofs of the above results are almost the same as in the self-adjoint case. The only
difference is that we have to use (6.2) instead of the corresponding inequality for self-adjoint
operators.

We proceed now to higher order differences. Let U be a unitary operator and A a self-adjoint
operator. We are going to study properties of the following higher order differences

m∑
k=0

(−1)k
(

m

k

)
f
(
eikAU

)
. (6.3)

As we have already mentioned in the introduction to this section, such finite differences can be
expressed as a linear combination of multiple operator integrals of multiplicity at most m + 1.
We refer the reader to [2], Theorem 5.2. For simplicity, we state the formula in the case m = 3.
Let f ∈ B2∞1. Let U1, U2, and U3 be unitary operators. Then

f (U1) − 2f (U2) + f (U3)

= 2
∫ ∫ ∫ (

D2f
)
(ζ, τ, υ) dE1(ζ ) (U1 − U2) dE2(τ ) (U2 − U3) dE3(υ)

+
∫ ∫

(Df )(ζ, τ ) dE1(ζ ) (U1 − 2U2 + U3) dE3(τ ). (6.4)

Let U1 = U , U2 = eiAU , and U3 = e2iAU .

Lemma 6.8. Let I be a normed ideal such that I{1/2} is also a normed ideal. If f is a trigono-
metric polynomial of degree d and A ∈ I, then f (U) − 2f (eiAU) + f (e2iAU) ∈ I{1/2} and

∥∥f (U) − 2f
(
eiAU

)+ f
(
e2iAU

)∥∥
I{1/2} � const · d2‖f ‖L∞‖A‖2

I.

Moreover, the constant does not depend on I.

Proof. Let U1 = U , U2 = eiAU , and U3 = e2iAU . By (4.10), we have

∥∥∥∥
∫ ∫ ∫ (

D2f
)
(ζ, τ, υ) dE1(ζ ) (U1 − U2) dE2(τ ) (U2 − U3) dE3(υ)

∥∥∥∥
I{1/2}

� const · d2‖f ‖L∞‖U1 − U2‖I‖U2 − U3‖I.

Clearly,

‖U1 − U2‖I = ‖U2 − U3‖I = ∥∥I − eiA
∥∥ � const‖A‖I.
I
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On the other hand, by (4.8),∥∥∥∥
∫ ∫

(Df )(ζ, τ ) dE1(ζ ) (U1 − 2U2 + U3) dE3(τ )

∥∥∥∥
I{1/2}

� const · d‖U1 − 2U2 + U3‖I{1/2}

and

‖U1 − 2U2 + U3‖I{1/2} = ∥∥(I − eiA)2∥∥
I{1/2} � const‖A‖2

I.

The result follows now from (6.4). �
In the general case, for a trigonometric polynomial f of degree d , the following inequality

holds: ∥∥∥∥∥
m∑

k=0

(−1)k
(

m

k

)
f
(
eikAU

)∥∥∥∥∥
I{1/m}

� const · dm‖f ‖L∞‖A‖m
I , (6.5)

whenever I is a normed ideal such that I{1/m} is also a normed ideal. This follows from an analog
of formula (6.4) for higher order differences, see [2], Theorem 5.2.

We state the remaining results in this section without proofs. The proofs are practically the
same as in the self-adjoint case. The only difference is that instead of inequality (5.3), one has to
use inequality (6.5) with I = Sl

p , p � m.

Theorem 6.9. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for
every l � 0, p ∈ [m,∞), f ∈ Λα , and for arbitrary unitary operator U self-adjoint operator A,
the following inequality holds:

sj

(
m∑

k=0

(−1)k
(

m

k

)
f
(
eikAU

))
� c‖f ‖Λα(1 + j)−α/p‖A‖α

Sl
p

for j � l.

Theorem 6.10. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for
every f ∈ Λα , and for an arbitrary unitary operator U and an arbitrary self-adjoint operator A

of class Sm, the operator (6.3) belongs to S m
α

,∞ and the following inequality holds:

∥∥∥∥∥
m∑

k=0

(−1)k
(

m

k

)
f
(
eikAU

)∥∥∥∥∥
S m

α ,∞

� c‖f ‖Λα‖A‖α
Sm

.

Theorem 6.11. Let α > 0 and m − 1 � α � m. There exists a positive number c such that for
every f ∈ Bα

∞1, and for an arbitrary unitary operator U and an arbitrary self-adjoint operator
A of class Sm, the operator (6.3) belongs to S m

α
and the following inequality holds:

∥∥∥∥∥
m∑

k=0

(−1)k
(

m

k

)
f
(
eikAU

)∥∥∥∥∥
S m

� c‖f ‖Bα∞1
‖A‖α

Sm
.

α
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Theorem 6.12. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for
every f ∈ Λα , and for arbitrary unitary operator U and bounded self-adjoint operator A, the
following inequality holds:

sj

(∣∣∣∣∣
m∑

k=0

(−1)k
(

m

k

)
f
(
eikAU

)∣∣∣∣∣
m/α)

� c‖f ‖m/α
Λα

σj

(|A|m), j � 0.

Theorem 6.13. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for
every f ∈ Λα , every quasinormed ideal I with βI < m−1, and for arbitrary unitary operator U

and bounded self-adjoint operator A, the following inequality holds:

∥∥∥∥∥
∣∣∣∣∣

m∑
k=0

(−1)k
(

m

k

)
f
(
eikAU

)∣∣∣∣∣
1/α∥∥∥∥∥

I

� cC
1/m

I{1/m}‖f ‖1/α
Λα

‖A‖I.

Theorem 6.14. Let α > 0, m − 1 � α < m, and m < p < ∞. There exists a positive number c

such that for every f ∈ Λα , every l ∈ Z+, and for arbitrary unitary operator U and bounded
self-adjoint operator A, the following inequality holds:

l∑
j=0

(
sj

(∣∣∣∣∣
m∑

k=0

(−1)k
(

m

k

)
f
(
eikAU

)∣∣∣∣∣
1/α))p

� c‖f ‖p/α
Λα

l∑
j=0

(
sj (A)

)p
.

Theorem 6.15. Let α > 0, m − 1 � α < m, and m < p < ∞. There exists a positive number c

such that for every f ∈ Λα , for an arbitrary unitary operator U , and an arbitrary self-adjoint
operator A of class Sp , the following inequality holds:

∥∥∥∥∥
m∑

k=0

(−1)k
(

m

k

)
f
(
eikAU

)∥∥∥∥∥
Sp/α

� c‖f ‖Λα‖A‖α
Sp

.

7. The case of contractions

In this section we obtain analogs of the results of Sections 5 and 6 for contractions. To obtain
desired estimates, we use multiple operator integrals with respect to semi-spectral measures.

Suppose that T and R are contractions on Hilbert space and f is a function in the disk-
algebra CA (i.e., f is analytic in D and continuous in closD). We are going to study properties
of differences

m∑
k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

)
, m � 1. (7.1)

In particular, when m = 1, we obtain first order differences f (T ) − f (R). In this section we are
not going to state separately results for first order differences. They can be obtained from the
general results by putting m = 1.
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It was shown in [2] that

m∑
k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

)

= m!
mm

∫
· · ·
∫

︸ ︷︷ ︸
m+1

(
Dmf

)
(ζ1, . . . , ζm+1) dE1(ζ1)(R − T ) · · · (R − T )dEm+1(ζm+1), (7.2)

where Ek is a semi-spectral measure of T + k
m

(R − T ).
Suppose now that I is a normed ideal such that I{1/m} is also a normed ideal. It follows from

(7.2) and (4.11) that for an arbitrary trigonometric polynomial f of degree d ,

∥∥∥∥∥
m∑

k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

)∥∥∥∥∥
I{1/m}

� const · dm‖f ‖L∞‖T − R‖m
I , (7.3)

where the constant can depend only on m.
We state the results without proofs. The proofs are almost the same as in the self-adjoint case.

The only difference is that to estimate higher order differences, we should use inequality (7.3).

Theorem 7.1. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for
every l � 0, p ∈ [m,∞), f ∈ (Λα)+, and for arbitrary contractions T and R on Hilbert space,
the following inequality holds:

sj

(
m∑

k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

))
� c‖f ‖Λα(1 + j)−α/p‖T − R‖α

Sl
p

for j � l.

Theorem 7.2. Let α > 0 and m − 1 � α < m. There exists a positive number c such that for
every f ∈ (Λα)+, and for arbitrary contractions T and R with T − R ∈ Sm, the operator (7.1)
belongs to S m

α
,∞ and the following inequality holds:

∥∥∥∥∥
m∑

k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

)∥∥∥∥∥
S m

α ,∞

� c‖f ‖Λα‖T − R‖α
Sm

.

Theorem 7.3. Let α > 0 and m − 1 � α � m. There exists a positive number c such that for
every f ∈ (Bα

∞1)+, and for arbitrary contractions T and R with T − R ∈ Sm, the operator (7.1)
belongs to S m

α
and the following inequality holds:

∥∥∥∥∥
m∑

k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

)∥∥∥∥∥
S m

α

� c‖f ‖Bα∞1
‖T − R‖α

Sm
.
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Theorem 7.4. Let α > 0 and m−1 � α < m. There exists a positive number c such that for every
f ∈ (Λα)+, and for arbitrary contractions T and R, the following inequality holds:

sj

(∣∣∣∣∣
m∑

k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

)∣∣∣∣∣
m/α)

� c‖f ‖m/α
Λα

σj

(|T − R|m), j � 0.

Theorem 7.5. Let α > 0 and m−1 � α < m. There exists a positive number c such that for every
f ∈ (Λα)+, every quasinormed ideal I with βI < m−1, and for arbitrary contractions T and R,
the following inequality holds:

∥∥∥∥∥
∣∣∣∣∣

m∑
k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

)∣∣∣∣∣
1/α∥∥∥∥∥

I

� cC
1/m

I{1/m}‖f ‖1/α
Λα

‖T − R‖I.

Theorem 7.6. Let α > 0, m−1 � α < m, and m < p < ∞. There exists a positive number c such
that for every f ∈ (Λα)+, every l ∈ Z+, and for arbitrary contractions T and R, the following
inequality holds:

l∑
j=0

(
sj

(∣∣∣∣∣
m∑

k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

)∣∣∣∣∣
1/α))p

� c‖f ‖p/α
Λα

l∑
j=0

(
sj (T − R)

)p
.

Theorem 7.7. Let α > 0, m−1 � α < m, and m < p < ∞. There exists a positive number c such
that for every f ∈ (Λα)+, for arbitrary contractions T and R with T − R ∈ Sp , the following
inequality holds:∥∥∥∥∥

m∑
k=0

(−1)k
(

m

k

)
f

(
T + k

m
(R − T )

)∥∥∥∥∥
Sp/α

� c‖f ‖Λα‖T − R‖α
Sp

.

8. Finite rank perturbations and necessary conditions. Unitary operators

In this sections we study the case of finite rank perturbations of unitary operators. We also ob-
tain some necessary conditions. In particular we show that the assumptions that rank(U −V ) = 1
and f ∈ Λα , 0 < α < 1, do not imply that f (U) − f (V ) ∈ S1/α .

Let us introduce the notion of Hankel operators. For ϕ ∈ L∞(T), the Hankel operator Hϕ

from the Hardy class H 2 to H 2−
def= L2 � H 2 is defined by

Hϕg = P−ϕg, g ∈ H 2,

where P− is the orthogonal projection from L2 onto H 2−. Note that the operator Hϕ has Hankel
matrix

Γϕ
def= {

ϕ̂(−j − k)
}
j�1, k�0

with respect to the orthonormal bases {zk}k�0 and {z̄j }j�1 of H 2 and H 2 .
−
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We need the following description of Hankel operators of class Sp that was obtained in [25]
for p � 1 and [26] and [35] for p < 1 (see also [30], Ch. 6):

Hϕ ∈ Sp ⇐⇒ P−ϕ ∈ B
1/p
p , 0 < p < ∞. (8.1)

The following result gives us a necessary condition on f for the assumption U − V ∈ S1 to
imply that f (U) − f (V ) ∈ S1/α .

Theorem 8.1. Suppose that 0 < p < ∞. Let f be a continuous function on T such that
f (U) − f (V ) ∈ Sp , whenever U and V are unitary operators with rank(U − V ) = 1. Then

f ∈ B
1/p
p .

Proof. Consider the operators U and V on the space L2(T) with respect to normalized Lebesgue
measure on T defined by

Uf = z̄f and Vf = z̄f − 2(f,1)z̄, f ∈ L2.

It is easy to see that both U and V are unitary operators and

rank(V − U) = 1.

It is also easy to verify that for n � 0,

V nzj =

⎧⎪⎨
⎪⎩

zj−n, j � n,

−zj−n, 0 � j < n,

zj−n, j < 0.

It follows that for f ∈ C(T), we have

((
f (V ) − f (U)

)
zj , zk

)
=
∑
n>0

f̂ (n)
((

V nzj , zk
)− (zj−n, zk

))+∑
n<0

f̂ (n)
((

V nzj , zk
)− (zj−n, zk

))

= −2

⎧⎪⎨
⎪⎩

f̂ (j − k), j � 0, k < 0,

f̂ (j − k), j < 0, k � 0,

0, otherwise.

If f (U) − f (V ) ∈ Sp , it follows that the operators on 	2 with Hankel matrices

{
f̂ (j + k)

}
j�0, k�1 and

{
f̂ (−j − k)

}
j�0, k�1

belong to Sp . It follows now from (8.1) that f ∈ B
1/p
p . �
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Remark. Recall that Theorem 6.2 says that under the assumptions U − V ∈ S1 and f ∈ Λα ,
0 < α < 1, the operator f (U) − f (V ) belongs to S 1

α
,∞. On the other hand, Theorem 6.3 shows

that the slightly stronger condition f ∈ Bα
∞1 implies that f (U) − f (V ) ∈ S1/α . However, the

above theorem tells us that even under the much stronger assumption rank(U − V ) = 1 the
condition f ∈ Λα does not imply that f (U) − f (V ) ∈ S1/α . Indeed, Λα �⊂ Bα

1/α . This follows
from the fact that ∑

k�0

akz
2k ∈ Λα ⇐⇒ {

2αkak

}
k�0 ∈ 	∞ (8.2)

and from the fact that ∑
k�0

akz
2k ∈ Bα

1/α ⇐⇒ {
2αkak

}
k�0 ∈ 	1/α. (8.3)

Both (8.2) and (8.3) follows easily from (2.2).

Note that the proof of Theorem 8.1 shows that if U and V are the unitary operators constructed
in the proof of Theorem 8.1 and I is a quasinormed ideal, then f (U) − f (V ) ∈ I if and only if
both Hf and Hf̄ belong to I.

The following result is closely related to Theorem 6.2, it shows that if we replace the assump-
tion U − V ∈ S1 with the stronger assumption rank(U − V ) < +∞, we can obtain the same
conclusion for all α > 0.

Theorem 8.2. Let 0 < α < ∞ and let U and V be unitary operators such that rank(U − V ) <

+∞. Then f (U) − f (V ) ∈ S 1
α
,∞ for every function f ∈ Λα(T).

Proof. Let m be a positive integer and let f ∈ Λα . By Bernstein’s theorem, we can represent
f in the form f = f1 + f2, where f1 is a trigonometric polynomial of degree at most m and
‖f2‖L∞ � constm−α (this can be deduced easily from (2.2)). It is easy to see that

Um − V m =
m−1∑
j=0

Uj (U − V )V m−1−j .

Hence,

Range
(
f1(U) − f1(V )

)⊂ m∑
j=1

(
Range

(
Uj (U − V )

)+ Range
(
U−j

(
U∗ − V ∗))),

and so

rank
(
f1(U) − f1(V )

)
� 2m rank(U − V ),

while ‖f2(U) − f2(V )‖ � 2‖f2‖L∞ � constm−α . It follows that

s2m rank(U−V )

(
f (U) − f (V )

)
� constm−α. �
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We can compare Theorem 8.2 with the following result obtained in [28]: if 0 < p � 1, and U

and V are unitary operators such that U − V ∈ Sp , then f (U) − f (V ) ∈ Sp for every f ∈ B
1/p∞p .

The following result allows us to estimate the singular values of Hankel operators with sym-
bols in Λα .

Lemma 8.3. Let 0 < α < ∞. Then there exists a positive number c such that for every f ∈
Λα(T), the following inequality holds:

sm(Hf ) � c‖f ‖Λα(1 + m)−α.

Proof. We can represent f in the form f = f1 +f2, where f1 is a trigonometrical polynomial of
degree at most m and ‖f2‖ � const(1+m)−α . Then rankHf1 � m and ‖Hf2‖ � const(1+m)−α

which implies the result. �
The following theorem shows that Theorems 8.2 and 6.2 cannot be improved.

Theorem 8.4. Let α > 0. There exist unitary operators U and V and a real function h in Λα

such that

rank(U − V ) = 1 and sm
(
h(U) − h(V )

)
� (1 + m)−α, m � 0.

Proof. Let U and V be the unitary operators defined in the proof of Theorem 8.1.
Consider the function g defined by

g(ζ )
def=

∞∑
n=1

4−αn
(
ζ 4n + ζ̄ 4n)

, ζ ∈ T. (8.4)

It follows easily from (2.2) that g ∈ Λα(T). By Lemma 8.3, sm(Hg) � const(1 + m)−α , m � 0.
Let us obtain a lower estimate for sm(Hg).

Consider the matrix Γg of the Hankel operator Hg with respect to the standard orthonormal
bases:

Γg = {ĝ(−j − k)
}
j�1, k�0 = {ĝ(j + k)

}
j�1, k�0.

Let n � 1. Define the 3 · 4n−1 × 3 · 4n−1 matrix Tn by

Tn = {ĝ(j + k + 4n−1 + 1
)}

0�j, k<3·4n−1 .

Clearly, 4αnTn is an orthogonal matrix. Hence, ‖Tn − R‖ � 4−αn for every 3 · 4n−1 × 3 · 4n−1

matrix with rankR < 3 · 4n−1. The matrix Tn can be considered as a submatrix of Γg . Hence
‖Γg − R‖ � 4−αn for every infinite matrix R with rankR < 3 · 4n−1. Thus, sj (Γg) � 4−αn for
j < 3 · 4n−1.

To complete the proof, it suffices to take h = cg for a sufficiently large number c. �
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In Section 6 we have obtained sufficient conditions on a function f on T for the condition
U − V ∈ Sp to imply that f (U) − f (V ) ∈ Sq for certain p and q . We are going to obtain here
necessary conditions and consider other values p and q .

We denote by U(Sp,Sq) the set of all continuous functions f on T such that
f (U) − f (V ) ∈ Sq , whenever U and V are unitary operators such that U − V ∈ Sp .

We also denote by Uc(Sp,Sq) the set of all continuous functions f on T such that
f (U) − f (V ) ∈ Sq , whenever U and V are commuting unitary operators such that U −V ∈ Sp .

Obviously, both U(Sp,Sq) and Uc(Sp,Sq) contain the set of constant functions. We say that
U(Sp,Sq) (or Uc(Sp,Sq)) is trivial if it contains no other functions.

Recall that the space Lip of Lipschitz functions on T is defined as the space of functions f

such that

‖f ‖Lip
def= sup

ζ �=τ

|f (ζ ) − f (τ)|
|ζ − τ | < ∞.

Theorem 8.5. Let 0 < p,q < +∞. Then

Uc(Sp,Sq) =
{

Λp/q, p < q,

Lip, p = q.

The space Uc(Sp,Sq) is trivial if p > q .

Proof. It is easy to see that f ∈ Uc(Sp,Sq) if and only if for every two sequences {ζn} and {τn}
in T,

∑
|ζn − τn|p < ∞ ⇒

∑∣∣f (ζn) − f (τn)
∣∣q < ∞. (8.5)

Clearly, the condition |f (ζ ) − f (ξ)| � const|ζ − ξ |p/q implies (8.5).
Consider the modulus of continuity ωf associated with f :

ωf (δ)
def= sup

{∣∣f (x) − f (y)
∣∣: |x − y| < δ

}
, δ > 0.

Condition (8.5) obviously implies that ωf (δ) < ∞ for some δ > 0, and so it is finite for all δ > 0.
We have to prove that (8.5) implies that ωf (δ) � const · δp/q . Assume the contrary. Then there
exist two sequences {ζn} and {τn} in T such that ζn �= τn for all n,

lim
n→∞|ζn − τn|p = 0 and lim

n→∞
|f (ζn) − f (τn)|q

|ζn − τn|p = ∞.

Now the result is a consequence of the following elementary fact:
If {αk} and {βk} are sequences of positive numbers such that limk→∞ βk = 0 and

limk→∞ αkβ
−1
k = +∞, then there exists a sequence {nk} of nonnegative integers such that∑

nkβk < +∞ and
∑

nkαk = +∞. �
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Corollary 8.6. Let 0 < p,q < +∞. Then

U(Sp,Sq) ⊂
{

Λp/q, p < q,

Lip, p = q.

The space U(Sp,Sq) is trivial if p > q .

It has been shown recently in [34] that if f is a Lipschitz function on R and 1 < p < ∞, then
‖f (A) − f (B)‖Sp � const‖A − B‖Sp , whenever A and B are self-adjoint operators such that
A − B ∈ Sp .

Remark 1. The Potapov–Sukochev theorem implies an analogous result for unitary operators: if
U and V are unitary operators such that U − V ∈ Sp , 1 < p < ∞, and f is a Lipschitz function
on T, then f (U) − f (V ) ∈ Sp and ‖f (U) − f (V )‖Sp � const‖U − V ‖Sp .

Indeed, it is easy to reduce the general case to the case when the support of f is contained in
an arc I with m(I ) = 1/4. Without loss of generality, we may assume that −I = Ī . Then

f (ζ ) + f (ζ̄ ) = 2g(ζ + ζ̄ ) and f (ζ ) − f (ζ̄ ) = 2(ζ − ζ̄ )h(ζ + ζ̄ ), ζ ∈ T,

for some functions g,h ∈ Lip(R) ∩ L∞(R). Hence

f (ζ ) = g(ζ + ζ̄ ) + ζh(ζ + ζ̄ ) − ζ̄ h(ζ + ζ̄ ).

It remains to apply the Potapov–Sukochev theorem to the self-adjoint operators U +U∗, V +V ∗,
and the functions g, h.

We are going to use this analog of the Potapov–Sukochev theorem for unitary operators in the
following result.

Theorem 8.7. Let 1 < q � p < +∞. Then

U(Sp,Sq) =
{

Λp/q, p < q,

Lip, p = q.

Proof. By Corollary 8.6, it suffices to show that Λp/q ⊂ U(Sp,Sq) for p < q and Lip ⊂
U(Sp,Sq) for p = q . The fact that Λp/q ⊂ U(Sp,Sq) for q < p is a consequence of The-
orem 6.7. The inclusion Lip ⊂ U(Sp,Sq) for q = p is the analog of the Potapov–Sukochev
theorem mentioned above. �
Remark 2. There exists a function f of class Lip such that f /∈ U(Sp,Sq) for any p > 0 and
q ∈ (0,1]. Indeed, if U and V are the unitary operators constructed in the proof of Theorem 8.1,
then rank(U −V ) = 1 and f (U)−f (V ) ∈ S1 if and only if f ∈ B1

1 . It suffices to take a Lipschitz
function f that does not belong to B1

1 .

Remark 3. Let α > 0. There exists a function f in Λα such that f /∈ U(Sp,Sq) for any p > 0
and q ∈ (0,1/α]. Indeed, it suffices to consider the unitary operators U and V constructed in the
proof of Theorem 8.1 and take a function f ∈ Λα that does not belong to Bα .
1/α
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Theorem 8.8. Let 0 < p,q < +∞. Then Λp/q ⊂ U(Sp,Sq) if and only if 1 < p < q .

Proof. If 1 < p,q < +∞ or p > q , the result follows from Corollary 8.6 and Theorem 8.7. On
the other hand, if p � q and p � 1, then Λp/q �⊂ U(Sp,Sq) by Remark 2. �
Theorem 8.9. Let 0 < p,q < +∞. Then Lip ⊂ U(Sp,Sq) if and only if 1 < p � q or p � 1 < q .

Proof. As in the proof of Theorem 8.8, it suffices to consider the case p � 1. It was shown
in [22] that Lip ⊂ U(S1,Sq) ⊂ U(Sp,Sq) if p � 1 < q . It remains to apply Remark 1. �

Now we are going to obtain a quantitative refinement of Corollary 8.6. Let f ∈ C(T). Put

Ωf,p,q(δ)
def= sup

{∥∥f (U) − f (V )
∥∥

Sq
: ‖U − V ‖Sp � δ, U, V are unitary operators

}
.

Lemma 8.10. Let U1 and U2 be a unitary operators with U1 − U2 ∈ Sp . Then there exists a
unitary operator V such that

‖U1 − V ‖Sp �
π‖U1 − U2‖Sp

4
and ‖U2 − V ‖Sp �

π‖U1 − U2‖Sp

4
.

Proof. Clearly, there exists a self-adjoint operator A such that exp(iA) = U−1
1 U2 and ‖A‖ � π .

Note that π |eiθ − 1| � 2|θ | for |θ | � π . Hence, ‖A‖Sp � π
2 ‖U1 − U2‖Sp . It remains to put

V = U1 exp( i
2A). �

Corollary 8.11. Let 0 < q < +∞. Then there exists a positive number cq such that for every
p ∈ (0,∞),

Ωf,p,q(2δ) � cqΩf,p,q(δ), δ > 0.

Lemma 8.12. Let 0 < p,q < ∞ and let f ∈ U(Sp,Sq). Then

Ωf,p,q

(
n1/p δ

)
� n1/qΩf,p,q(δ)

for every positive integer n.

Proof. The result is trivial if Ωf,p,q(δ) = 0 or Ωf,p,q(δ) = ∞. Suppose now that
0 < Ωf,p,q(δ) < ∞. Fix ε ∈ (0,1). Let U and V be unitary operators such that ‖U − V ‖Sp � δ

and ‖f (U) − f (V )‖Sq � (1 − ε)Ωf,p,q(δ). Put U =⊕n
j=1 U and V =⊕n

j=1 V (the orthogonal

sum of n copies of U and V ). Clearly, ‖U − V ‖Sp � δn1/p , and

∥∥f (U ) − f (V )
∥∥

Sq
� (1 − ε)n1/qΩf,p,q(δ)

Hence, Ωf,p,q(n1/p δ) � (1 − ε)n1/qΩf,p,q(δ) for every ε ∈ (0,1). �
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Theorem 8.13. Let 0 < p,q < ∞ and let f ∈ U(Sp,Sq). Then Ωf,p,q(δ) < +∞ for all δ > 0
and

lim
δ→0

Ωf,p,q(δ)

δp/q
= inf

δ>0

Ωf,p,q(δ)

δp/q
� sup

δ>0

Ωf,p,q(δ)

δp/q
= lim

δ→∞
Ωf,p,q(δ)

δp/q
,

where both limits exist in [0,+∞]. In particular, if f is a nonconstant function, then Ωf,p,q(δ) �
c1 δp/q for every δ ∈ (0,1] and Ωf,p,q(δ) � c2δ

p/q for every δ ∈ [1,∞), where c1 and c2 are
positive numbers.

Proof. Since Ωf,p,q is nondecreasing, Corollary 8.11 implies that either Ωf,p,q(δ) is finite for
all δ > 0 or Ωf,p,q(δ) = ∞ for all δ > 0. The latter is impossible because we would be able to
find sequences of unitary operators {Uj } and {Vj } such that

⊕
j

(Uj − Vj ) ∈ Sp, but
⊕

j

(
f (Uj ) − f (Vj )

)
/∈ Sq .

Hence, Ωf,p,q(δ) < +∞ for all δ > 0. We can find a sequence {δj }∞j=1 of positive numbers such

that δj → 0 and limj→∞ δ
−p/q
j Ωf,p,q(δj ) = lim supδ→0 δ−p/qΩf,p,q(δ)

def= a. Fix ε ∈ (0,1).

Then there exists a positive integer N such that δ
−p/q
j Ωf,p,q(δj ) � (1 − ε)a for all j > N .

Lemma 8.12 implies Ωf,p,q(n1/p δj ) � (1 − ε)a(n1/p δj )
p/q for all j > N and n > 0. Hence,

Ωf,p,q(δ) � (1 − ε)aδp/q for all δ > 0 and ε ∈ (0,1). Thus Ωf,p,q(δ) � aδp/q for all δ > 0 and
limδ→0 δ−p/qΩf,p,q(δ) = a. In the same way we can prove that

sup
δ>0

Ωf,p,q(δ)

δp/q
= lim

δ→∞
Ωf,p,q(δ)

δp/q
. �

9. Finite rank perturbations and necessary conditions. Self-adjoint operators

We are going to obtain in this section analogs of the results of the previous section in
the case of self-adjoint operators. We obtain estimates for f (A) − f (B) in the case when
rank(A − B) < ∞. We also obtain some necessary conditions. In particular, we show that
f (A) − f (B) does not have to belong to S1/α under the assumptions rank(A − B) = 1 and
f ∈ Λα(R).

However, there is a distinction between the case of unitary operators and the case of self-
adjoint operators. To describe the class of functions f on R, for which f (A) − f (B) ∈ Sq ,
whenever A − B ∈ Sp , we have to introduce the space Λα of functions on R that satisfy the
Hölder condition of order α uniformly on all intervals of length 1.

We are going to deal in this section with Hankel operators on the Hardy class H 2(C+) of
functions analytic in the upper half-plane C+. Recall that the space L2(R) can be represented
as L2(R) = H 2(C+) ⊕ H 2(C−), where H 2(C−) is the Hardy class of functions analytic in the
lower half-plane C−. We denote by P + and P − the orthogonal projections onto H 2(C+) and
H 2(C−). For a function ϕ in L∞(R), the Hankel operator Hϕ : H 2(C+) → H 2(C−) is defined
by

Hϕg
def= P −ϕg, g ∈ H 2(C+).
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As in the case of Hankel operators on the Hardy class H 2 of functions analytic in D, the Hankel
operators Hϕ of class Sp can be described in terms of Besov spaces:

Hϕ ∈ Sp ⇐⇒ P−ϕ ∈ B
1/p
p (R), 0 < p < ∞, (9.1)

where the operator P− on L∞(R) is defined by

P−ϕ
def= (

P−(ϕ ◦ ω)
) ◦ ω−1, ϕ ∈ L∞(R),

and ω(ζ )
def= i(1 + ζ )(1 − ζ )−1, ζ ∈ T. This was proved in [25] for p � 1, and in [27] and [35]

for 0 < p < 1, see also [30], Ch. 6.
Note also that by Kronecker’s theorem, Hϕ has finite rank if and only if P−ϕ is a rational

function (see [30], Ch. 1).
Recall that the Hilbert transform H is defined on L2(R) by Hg = −ig+ + ig−, where we use

the notation g+
def= P +g and g−

def= P −g.

Theorem 9.1. Let A and B be bounded self-adjoint operators on Hilbert space such that
rank(A − B) < ∞ and let α > 0. Then f (A) − f (B) ∈ S 1

α
,∞ for every function f in Λα(R).

Proof. Consider the Cayley transforms of A and B:

U = (A − iI )(A + iI )−1 and V = (B − iI )(B + iI )−1.

It is well known that U and V are unitary operators. Moreover, it is easy to see that
rank(U − V ) < ∞. Indeed,

(A − iI )(A + iI )−1 − (B − iI )(B + iI )−1 = 2i
(
(B + iI )−1 − (A + iI )−1)

= 2i(A + iI )−1(A − B)(B + iI )−1,

and so rank(U − V ) � rank(A − B).
Without loss of generality, we may assume that f has compact support. Otherwise, we

can multiply f by an infinitely smooth function with compact support that is equal to 1 on
an interval containing the spectra of A and B . Consider the function h on T defined by
h(ζ ) = f (−i(ζ + i)(ζ − i)−1). Obviously, h ∈ Λα .

By Theorem 8.2, h(U)−h(V ) ∈ S1/α,∞. It remains to observe that h(U) = f (A) and h(V ) =
f (B). �

In Section 5 we have proved Theorem 5.2 that says that the condition f ∈ Λα(R), 0 < α < 1,
implies that f (A) − f (B) ∈ S1/α,∞, whenever A − B ∈ S1. On the other hand, by Theorem 5.3,
the stronger condition f ∈ Bα

∞1(R), 0 < α < 1, implies that f (A) − f (B) ∈ S1/α , whenever
A−B ∈ S1. The following result gives a necessary condition on f for the assumption A−B ∈ S1
to imply that f (A) − f (B) ∈ S1/α . It shows that the condition f ∈ Λα(R) does not ensure that
f (A) − f (B) ∈ S1/α even under the much stronger assumption that A − B has finite rank.
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Theorem 9.2. Let f be a continuous function on R and let p > 0. Suppose that
f (A) − f (B) ∈ Sp , whenever A and B are bounded self-adjoint operators such that

rank(A − B) < ∞. Then f ◦ h ∈ B
1/p
p (R) for every rational function h that is real on R and has

no pole at ∞.

Proof. Let ϕ ∈ L∞(R) and let Mϕ denote multiplication by ϕ. For g ∈ L2(R), we have

Mϕg − H−1MϕHg = ϕg + H
(
ϕ(Hg)

)
= ϕ − (ϕg+)+ + (ϕg−)+ + (ϕg+)− − (ϕg−)−

= ϕ(g+ + g−) − (ϕg+)+ + (ϕg−)+ + (ϕg+)− − (ϕg−)−

= 2(ϕg+)− + 2(ϕg−)+ = 2Hϕg+ + 2H∗
ϕg−. (9.2)

Hence, by (9.1), Mϕ − H−1MϕH ∈ Sp if and only if ϕ ∈ B
1/p
p (R). Moreover, by Kronecker’s

theorem, rank(Mϕ − H−1H ϕH) < +∞ if and only if ϕ is a rational function.
Suppose now that h is a rational function that takes real values on R and has no pole at ∞.

Define the bounded self-adjoint operators A and B by

A
def= Mh, and B

def= H−1MhH .

By (9.2), rank(A − B) < ∞. Again, by (9.2) with ϕ = f ◦ h, the

f (A) − f (B) = Mf ◦h − H−1Mf ◦hH

belongs to Sp if and only if f ◦ h ∈ B
1/p
p (R). �

Note that the conclusion of Theorem 9.2 implies that f belongs to B
1/p
p (R) locally, i.e., the

restriction of f to an arbitrary finite interval can be extended to a function of class B
1/p
p (R).

Now we are going to show that Theorem 5.2 cannot be improved even under the assumption
that rank(A − B) = 1.

Denote by L2
e(R) the set of even functions in L2(R) and by L2

o(R) the set of odd functions in
L2(R). Clearly, L2(R) = L2

e(R)⊕L2
o(R). Let ϕ be an even function in L∞(R). Then L2

e(R) and
L2

o(R) are invariant subspaces of the operators Mϕ and H−1MϕH . The orthogonal projections
Pe and Pe onto L2

e(R) and L2
o(R) are given by

(Peg)(x) = 1

2

(
g(x) + g(−x)

)
and (Pog)(x) = 1

2

(
g(x) − g(−x)

)
.

Lemma 9.3. Let ϕ(x) = (x2 + 1)−1, x ∈ R. Then (Hϕ)(x) = x(x2 + 1)−1 and

Mϕf − H−1MϕHf = 1
(f,ϕ)ϕ − 1

(f,Hϕ)Hϕ.

π π
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In particular,

Mϕf − H−1MϕHf =
{

1
π
(f,ϕ)ϕ, f is even,

− 1
π
(f,Hϕ)Hϕ, f is odd.

Proof. It is easy to see that ϕ+(x) = i
2(x+i) , ϕ−(x) = − i

2(x−i) , and (Hϕ)(x) = x(x2 + 1)−1,
x ∈ R. Hence,

Mϕf − H−1MϕHf = ϕf + HϕHf = 2(ϕf+)− + 2(ϕf−)+
= 2(ϕ−f+)− + 2(ϕ+f−)+

= −i

(
f+

x − i

)
−

+ i

(
f−

x + i

)
+

= −i
f+(i)

x − i
+ i

f−(−i)

x + i

= − 1

2π

(
f,

1

x + i

)
1

x − i
− 1

2π

(
f,

1

x − i

)
1

x + i

= 2

π
(f,ϕ+)ϕ− + 2

π
(f,ϕ−)ϕ+

= 1

2π
(f,ϕ + iHϕ)(ϕ − iHϕ) + 1

2π
(f,ϕ − iHϕ)(ϕ + iHϕ)

= 1

π
(f,ϕ)ϕ − 1

π
(f,Hϕ)Hϕ. �

Corollary 9.4. Let ϕ(x) = (x2 + 1)−1, x ∈ R. Then rank(Mϕ − H−1MϕH ) = 2,
rank(Pe(Mϕ − H−1MϕH )Pe) = 1 and rank(Po(Mϕ − H−1MϕH )Po) = 1.

Lemma 9.5. Let ϕ be an even function in L∞(R). Then

sn
((

Mϕ − H−1MϕH
)
Pe
)
�

√
2sn(Hϕ)

and

sn
((

Mϕ − H−1MϕH
)
Po
)
�

√
2sn(Hϕ).

Proof. Note that P −(Mϕ − H−1MϕH )|H 2(C+) = 2Hϕ . It remains to observe that
√

2P + acts
isometrically from L2

e(R) onto H 2(C+) and from L2
o(R) onto H 2(C+). �

Lemma 9.6. There exists a function ρ ∈ C∞(T) such that ρ(ζ )+ρ(iζ ) = 1, ρ(ζ ) = ρ(ζ̄ ) for all
ζ ∈ T, and ρ vanishes in a neighborhood of the set {−1,1}.

Proof. Fix a function ψ ∈ C∞(T) such that ψ vanishes in a neighborhood of the set {−1,1},
ψ � 0, and ψ(ζ ) + ψ(iζ ) > 0 for all ζ ∈ T. Put

ρ0(ζ ) = ψ(ζ ) + ψ(−ζ )
.

ψ(ζ ) + ψ(iζ ) + ψ(−ζ ) + ψ(−iζ )
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Clearly, ρ0 vanishes in a neighborhood of the set {−1,1}, ρ0 � 0, and ρ0(ζ ) + ρ0(iζ ) = 1 for all
ζ ∈ T. It remains to put ρ(ζ ) = 1

2 (ρ0(ζ ) + ρ0(ζ̄ )). �
In what follows we fix such a function ρ.

Lemma 9.7. Let g be a function in Λα such that g(iζ ) = g(ζ ) for all ζ ∈ T. Suppose that
infn�0(n + 1)αsn(Hg) > 0. Then infn�0(n + 1)αsn(Hρg) > 0.

Proof. Fix a positive p such that αp < 1. Clearly, there exists a positive number c1 such that
‖Hg‖p

Sn
p

� c1n
1−αp for all n � 0. Note that ‖Hρ(z)g(z)‖Sn

p
= ‖Hρ(iz)g(z)‖Sn

p
. Hence, ‖Hρg‖p

Sn
p

�
1
2c1n

1−αp for all n � 0. By Lemma 8.3, there exists a positive number c2 such that ‖Hρg‖p

Sn
p

�
c2n

1−αp for all n � 1. Hence, there exists an integer M such that ‖Hρg‖p

SMn
p

−‖Hρg‖p

Sn
p

� n1−αp

for all n � 1. Note that

‖Hρg‖p

SMn
p

− ‖Hρg‖p

Sn
p

� (M − 1)n
(
sn(Hρg)

)p
.

Thus (sn(Hρg))
p � 1

M−1n−αp for all n � 1. �
Lemma 9.8. There exists a real function g0 ∈ Λα that vanishes in a neighborhood of the set
{−1,1} and such that g0(ζ ) = g0(ζ̄ ), ζ ∈ T, and sn(Hg0) � (n + 1)−α for all n � 0.

Proof. Let g is the function given by (8.4). We can put g0
def= Cρg for a sufficiently large num-

ber C. �
Theorem 9.9. Let α > 0. Let ϕ(x) = (x2 + 1)−1. Consider the operators A and B on L2

e(R)

defined by Ag = H−1MϕHg and Bg = ϕg. Then

(i) rank(A − B) = 1,
(ii) there exists a real bounded function f ∈ Λα(R) such that

sn
(
f (A) − f (B)

)
� (n + 1)−α, n � 0.

Proof. The equality rank(A − B) = 1 is a consequence of Corollary 9.4. Let g0 be the function
obtained in Lemma 9.8. It is easy to see that there exists a real bounded function f ∈ Λα(R) such
that f (ϕ(x)) = g0(

x−i
x+i ). It is well known (see [30], Ch. 1, Section 8) that Hf ◦ϕ can be obtained

from Hg0 by multiplying on the left and on the right by unitary operators. Hence, by Lemma 9.5,

sn
(
f (B) − f (A)

)
�

√
2sn(Hf ◦ϕ) = √

2sn(Hg0) �
√

2(n + 1)−α. �
Remark. The same result holds if we consider operators A and B on L2

o(R) defined in the same
way.

In Section 5 we have obtained sufficient conditions on a function f on R for the condition
A − B ∈ Sp to imply that f (A) − f (B) ∈ Sq for certain p and q . We are going to obtain here
necessary conditions and consider other values p and q .
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As in the case of functions on T, we consider the space Lip(R) of Lipschitz functions on R

such that

‖f ‖Lip(R)
def= sup

{ |f (x) − f (y)|
|x − y| : x, y ∈ R, x �= y

}
< +∞.

For α ∈ (0,1], we denote by Λα the set of all functions defined on R and satisfying the Hölder
condition of the order α uniformly on all intervals of a fixed length:

‖f ‖Λα

def= sup

{ |f (x) − f (y)|
|x − y|α : x, y ∈ R, x �= y, |x − y| � 1

}
< +∞.

Clearly, f ∈ Λα if and only if ωf (δ) � const δα for δ ∈ (0,1]. Note that

Λ1 = Lip(R).

Lemma 9.10. Let 0 < α < 1. Then Λα = Λα(R) + Lip(R).

Proof. The inclusion Λα(R) + Lip(R) ⊂ Λα is evident. Let f ∈ Λα . We can consider the piece-
wise linear function f0 such that f0(n) = f (n) and f0|[n,n + 1] is linear for all n ∈ Z. Clearly,
f0 ∈ Lip(R) and f − f0 ∈ Λα(R). �

Denote by SA(Sp,Sq) the set of all continuous functions f on R such that f (B)−f (A) ∈ Sq ,
whenever A and B are self-adjoint operators such that B − A ∈ Sp .

We also denote by SAc(Sp,Sq) the set of all continuous functions f on R such that
f (B) − f (A) ∈ Sq , whenever A and B are commuting self-adjoint operators such that
B − A ∈ Sp .

As in the case of unitary operators we say that the class SA(Sp,Sq) (or SAc(Sp,Sq)) is trivial
if it contains only constant functions.

Theorem 9.11. Let 0 < p,q < +∞. Then SAc(Sp,Sq) = Λp/q for p � q and the space
SAc(Sp,Sq) is trivial for p > q .

Proof. To prove the inclusion Λp/q ⊂ SAc(Sp,Sq), it suffices to observe that f ∈ SAc(Sp,Sq)

if and only if for every two sequences {xn} and {yn} in R

∑
|xn − yn|p < +∞ ⇒

∑∣∣f (xn) − f (yn)
∣∣q < +∞. (9.3)

Condition (9.3) easily implies that ωf (δ) < +∞ for some δ > 0, and so for all δ > 0. To complete
the proof, we have to prove that (9.3) implies that ωf (δ) � Cδp/q for δ ∈ (0,1]. This can be done
in exactly the same way as in the case of unitary operators, see the proof of Theorem 8.5. �

The following result is an immediate consequence of Theorem 9.11.

Theorem 9.12. Let 0 < p,q < +∞. Then SA(Sp,Sq) ⊂ Λp/q for p � q and SA(Sp,Sq) is
trivial for p > q .
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Theorem 9.13. Let 1 < p � q < +∞. Then SA(Sp,Sq) = Λp/q .

Proof. In view of Theorem 9.12, we have to prove that Λp/q ⊂ SA(Sp,Sq). In the case p = q

this was proved by Potapov and Sukochev [34]. Suppose now that p < q . By Lemma 9.10,
it is sufficient to verify that Lip(R) ⊂ SA(Sp,Sq) and Λp/q(R) ⊂ SA(Sp,Sq). The first
inclusion follows from the results of [34] as well as from the results of [22]. Indeed,
Lip(R) ⊂ SA(Sp,Sp) ⊂ SA(Sp,Sq). The inclusion Λp/q(R) ⊂ SA(Sp,Sq) follows from The-
orem 5.8. �
Theorem 9.14. If 0 < p,q � 1, then Lip(R) �⊂ SA(Sp,Sq). If 0 < α < 1, 0 < p � 1, and 0 <

q � 1/α, then Λα(R) �⊂ SA(Sp,Sq).

Proof. The result follows from Theorem 9.2. Indeed, there exists a function in Lip(R) which
does not belong to B1

1 (R) locally, and for each α ∈ (0,1) there exists a function in Λα(R) that
does not belong to Bα

1/a(R) locally. �
Theorem 9.15. Let 0 < q,p < +∞. Then Λp/q(R) ⊂ SA(Sp,Sq) if and only if 1 < p < q .

Proof. If 1 < q,p < +∞ or q < p, the result follows from Theorems 9.13 and 9.12. If p � q

and p � 1, then Λp/q(R) �⊂ SA(Sp,Sq) by Theorem 9.14. �
Theorem 9.16. Let 0 < p,q < +∞. Then Lip(R) ⊂ SA(Sp,Sq) if and only if 1 < p � q or
p � 1 < q .

Proof. In the same way as in the proof of Theorem 9.15, we see that it suffices to consider the
case p � 1. From the results of [22] or the results of [34] it follows that Lip(R) ⊂ SA(S1,Sq) ⊂
SA(Sp,Sq) if p � 1 < q . The converse follows from Theorem 9.14. �

Now we are going to obtain a quantitative refinement of Theorem 9.12. Let f ∈ C(R). Put

Ωf,p,q(δ)
def= sup

{∥∥f (A) − f (B)
∥∥

Sq
: ‖A − B‖Sp � δ, A, B are self-adjoint operators

}
.

It is easy to see that given q > 0, there exists a positive number cq such that Ωf,p,q(2δ) �
cq Ωf,p,q(δ).

Theorem 9.17. Let 0 < p,q < ∞ and let f ∈ SA(Sp,Sq). Then Ωf,p,q(δ) < +∞ for all δ > 0
and

lim
δ→0

Ωf,p,q(δ)

δp/q
= inf

δ>0

Ωf,p,q(δ)

δp/q
� sup

δ>0

Ωf,p,q(δ)

δp/q
= lim

δ→+∞
Ωf,p,q(δ)

δp/q
,

(both limits exist and take values in [0,∞]). In particular, if f is a nonconstant function, then
Ωf,p,q(δ) � c1 δp/q for every δ ∈ (0,1] and Ωf,p,q(δ) � c2 δp/q for every δ ∈ [1,+∞), where
c1 and c2 are positive numbers.

The proof of Theorem 9.17 is the same as that of Theorem 8.13.
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Theorem 9.18. Let f ∈ C(R) and p ∈ [1,+∞). Then either Ωf,p,p(δ) = +∞ for all δ > 0 or
Ωf,p,p is a linear function.

Proof. If f /∈ SA(Sp,Sp), then Ωf,p,p(δ) = +∞ for all δ > 0.
Suppose now that f ∈ SA(Sp,Sp). By the analog of Lemma 8.12 for self-adjoint operators

(it is easy to see that it holds for self-adjoint operators), Ωf,p,p(nδ) � nΩf,p,p(δ) for all positive
integer n. On the other hand, clearly, Ωf,p,p(nδ) � nΩf,p,p(δ) for all positive integer n. Hence,
Ωf,p,p is a linear function. �
10. Spectral shift function for second order differences

In this section we obtain trace formulae for second order differences in the case of self-adjoint
operators and unitary operators.

By Theorem 5.11, if A is a self-adjoint operator, K is a self-adjoint operator of class S2 and
f ∈ B2∞1(R), then f (A + K) − 2f (A) + f (A − K) ∈ S1. We are going to obtain a formula for
the trace of this operator.

In this section m denotes Lebesgue measure on the real line.

Theorem 10.1. Let A be a self-adjoint operator and K a self-adjoint operator of class S2. Then
there exists a unique function ς ∈ L1(R) such that for every f ∈ B2∞1(R),

trace
(
f (A + K) − 2f (A) + f (A − K)

)= ∫
R

f ′′(x)ς(x) dm(x). (10.1)

Moreover, ς(x) � 0, x ∈ R.

Definition. The function ς satisfying (10.1) is called the second order spectral shift function
associated with the pair (A,K).

We are going to use the spectral shift function of Koplienko. Koplienko proved in [15] that
with each pair of a self-adjoint operator A and a self-adjoint operator K of class S2, there exists
a function η ∈ L1(R) such that η � 0 and for every rational function f with poles off R, the
following trace formula holds

trace

(
f (A + K) − f (A) − d

dt
f (A + tK)

∣∣∣
t=0

)
=
∫
R

f ′′(x)η(x) dm(x). (10.2)

The function η is called the Koplienko spectral shift function associated with the pair (A,K).
Note that later in [31] it was proved that trace formula (10.2) holds for f ∈ B2∞1(R). Note that
the derivative

d
f (A + tK)

∣∣∣

dt t=0
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exists under the condition f ∈ B1∞1(R) (see [29] and [32]) and does not have to exist under the
condition f ∈ B2∞1(R). However, in the case f ∈ B2∞1(R), by

f (A + K) − f (A) − d

dt
f (A + tK)

∣∣∣
t=0

we can understand

∑
n∈Z

(
fn(A + K) − fn(A) − d

dt
fn(A + tK)

∣∣∣
t=0

)
,

and the series converges absolutely, see [31]. Here, as usual, fn
def= f ∗ Wn + f ∗ W

�
n .

Proof of Theorem 10.1. Let η1 be the spectral shift function associated with the pair (A,K)

and let η2 be the spectral shift function associated with the pair (A,−K). We have

trace

(
f (A + K) − f (A) − d

dt
f (A + tK)

∣∣∣
t=0

)
=
∫
R

f ′′(x)η1(x) dm(x)

and

trace

(
f (A − K) − f (A) − d

dt
f (A − tK)

∣∣∣
t=0

)
=
∫
R

f ′′(x)η2(x) dm(x)

for f ∈ B2∞1(R). Taking the sum, we obtain

trace
(
f (A + K) − 2f (A) + f (A − K)

)=
∫
R

f ′′(x)
(
η1(x) + η2(x)

)
dm(x).

It remains to put ς
def= η1 + η2.

Uniqueness is obvious. �
We proceed now to the case of unitary operators. Suppose that U is a unitary operator and V

is a unitary operator such that I − V ∈ S2. It follows from Theorem 6.11 that if f ∈ B2∞1, then
f (V U) − 2f (U) + 2(V ∗U) ∈ S1. We are going to obtain a trace formula for this operator.

Theorem 10.2. Let U be a unitary operator and let V be a unitary operator such that I −V ∈ S2.
Then there exists an integrable function ς on T such that

trace
(
f (V U) − 2f (U) + 2

(
V ∗U

))= ∫
T

f ′′ς dm. (10.3)
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It is easy to see that ς is determined by (10.3) modulo a constant. It is called a second order
spectral shift function associated with the pair (U,V ).

We are going to use a trace formula of Neidhardt [21], which is an analog of the Koplienko
trace formula for unitary operators.

Suppose that U and V be unitary operators such that U −V ∈ S2. Then V can be represented
as V = eiAU , where A is a self-adjoint operator of class S2 whose spectrum σ(A) is a subset of
(−π,π]. It was shown in [21] that one can associate with the pair (U,V ) a function η in L1(T)

(a Neidhardt spectral shift function) such that if the second derivative f ′′ of a function f has
absolutely converging Fourier series, then

trace

(
f (V ) − f (U) − d

ds

(
f
(
eisAU

))∣∣∣
s=0

)
=
∫
T

f ′′η dm. (10.4)

Later it was shown in [31] that formula (10.4) holds for an arbitrary function f in B2∞1.

Proof of Theorem 10.2. We can represent V as V = eiA, where A is a self-adjoint operator of

class S2 such that the spectrum σ(A) of A is a subset of (−π,π]. Let V1
def= V U . Clearly, V1 is a

unitary operator and U − V1 ∈ S2. We have V1 = eiAU . Let V2
def= V ∗U . Then U − V2 ∈ S2 and

V2 = e−iAU .
Let η1 be the Neidhardt spectral shift function associated with (U,V1) and let η2 be the

Neidhardt spectral shift function associated with (U,V2). We have

trace

(
f (V1) − f (U) − d

ds

(
f
(
eisAU

))∣∣∣
s=0

)
=
∫
T

f ′′η1 dm

and

trace

(
f (V2) − f (U) − d

ds

(
f
(
e−isAU

))∣∣∣
s=0

)
=
∫
T

f ′′η2 dm

for f ∈ B2∞1. Taking the sum, we obtain

trace
(
f (V U) − 2f (U) + 2

(
V ∗U

))= trace
(
f (V1) − 2f (U) + f (V2)

)
=
∫
T

f ′′(η1 + η2) dm.

It remains to put ς
def= η1 + η2. �

11. Commutators and quasicommutators

In this section we obtain estimates for the norm of quasicommutators f (A)R − Rf (B) in
terms of ‖AR − RB‖ for self-adjoint operators A and B and a bounded operator R. We assume
for simplicity that A and B are bounded. However, we obtain estimates that do not depend on
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the norms of A and B . In [3] we will consider the case of not necessarily bounded operators A

and B . Note that in the special case A = B , this problem turns into the problem of estimating
the norm of commutators f (A)R − Rf (A) in terms of ‖AR − RA‖. On the other hand, in the
special case R = I the problem turns into the problem of estimating ‖f (A) − f (B)‖ in terms
‖A − B‖.

Similar results can be obtained for unitary operators and for contractions.
Birman and Solomyak (see [11]) discovered the following formula

f (A)R − Rf (B) =
∫ ∫

f (x) − f (y)

x − y
dEA(x) (AR − RB)dEB(y), (11.1)

whenever f is a function, for which Df is a Schur multiplier of class M(EA,EB) (see Sec-
tion 4).

Theorem 11.1. Let 0 < α < 1. There exists a positive number c > 0 such that for every l � 0,
p ∈ [1,∞), f ∈ Λα(R), for arbitrary bounded self-adjoint operators A and B and an arbitrary
bounded operator R, the following inequality holds:

sj
(
f (A)R − Rf (B)

)
� c‖f ‖Λα(R)(1 + j)−α/p‖R‖1−α‖AR − RB‖α

Sl
p

for every j � l.

Proof. Clearly, we may assume that R �= 0. As usual, fn = f ∗ Wn + f ∗ W
�
n , n ∈ Z. Fix an

integer N . We have by (11.1) and (4.9),

∥∥∥∥∥
N∑

n=−∞

(
fn(A)R − Rfn(B)

)∥∥∥∥∥
Sl

p

�
N∑

n=−∞

∥∥fn(A)R − Rfn(B)
∥∥

Sl
p

� const
N∑

n=−∞
2n‖fn‖L∞‖AR − RB‖Sl

p

� const 2N(1−α)‖f ‖Λα(R)‖AR − RB‖Sl
p
.

On the other hand,

∥∥∥∥∥∑
n>N

(
fn(A)R − Rfn(B)

)∥∥∥∥∥� 2‖R‖
∑
n>N

‖fn‖L∞

� const‖f ‖Λα(R)‖R‖
∑
n>N

2−nα

� const 2−Nα‖f ‖Λα(R)‖R‖.
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Put

XN
def=

N∑
n=−∞

(
fn(A)R − Rfn(B)

)
and YN

def=
∑
n>N

(
fn(A)R − Rfn(B)

)
.

Clearly, for j � l,

sj
(
f (A)R − Rf (B)

)
� sj (XN) + ‖YN‖ � (1 + j)

− 1
p ‖AR − RB‖Sl

p
+ ‖YN‖

� const‖f ‖Λα(R)

(
(1 + j)

− 1
p 2N(1−α)‖AR − RB‖Sl

p
+ 2−Nα‖R‖).

To obtain the desired estimate, it suffices to choose the number N so that

2−N < (1 + j)−1/p‖AR − RB‖Sl
p
‖R‖−1 � 2−N+1. �

The proofs of the remaining results of this section are the same as those of the results of
Section 5 for first order differences.

Theorem 11.2. Let 0 < α < 1. There exists a positive number c > 0 such that for every
f ∈ Λα(R), for arbitrary bounded self-adjoint operators A and B with AR − RB ∈ S1 and
an arbitrary bounded operator R, the operator f (A)R − Rf (B) belongs to S1/α,∞ and the
following inequality holds:

∥∥f (A)R − Rf (B)
∥∥

S1/α,∞ � c‖f ‖Λα(R)‖R‖1−α‖AR − RB‖α
S1

.

Theorem 11.3. Let 0 < α � 1. There exists a positive number c > 0 such that for every f ∈
Bα

∞1(R), for arbitrary bounded self-adjoint operators A and B with AR − RB ∈ S1 and an
arbitrary bounded operator R, the operator f (A)R − Rf (B) belongs to S1/α and the following
inequality holds:

∥∥f (A)R − Rf (B)
∥∥

S1/α
� c‖f ‖Bα∞1(R)‖R‖1−α‖AR − RB‖α

S1
.

Theorem 11.4. Let 0 < α < 1. There exists a positive number c > 0 such that for every f ∈
Λα(R), for arbitrary bounded self-adjoint operators A and B and an arbitrary bounded operator
R on Hilbert space, the following inequality holds:

sj
(∣∣f (A)R − Rf (B)

∣∣1/α)� c‖f ‖1/α

Λα(R)
‖R‖ 1−α

α σj (AR − RB), j � 0.

Theorem 11.5. Let 0 < α < 1. There exists a positive number c > 0 such that for every f ∈
Λα(R), for an arbitrary quasinormed ideal I with βI < 1, for arbitrary bounded self-adjoint
operators A and B with AR − RB ∈ I, the operator |f (A)R − Rf (B)|1/α belongs to I and the
following inequality holds:

∥∥∣∣f (A)R − Rf (B)
∣∣1/α∥∥

I
� cCI‖f ‖1/α

Λα(R)
‖R‖ 1−α

α ‖AR − RB‖I.
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Theorem 11.6. Let 0 < α < 1 and 1 < p < ∞. There exists a positive number c such that for
every f ∈ Λα(R), every l ∈ Z+, for arbitrary bounded self-adjoint operators A and B and an
arbitrary bounded operator R, the following inequality holds:

l∑
j=0

(
sj
(∣∣f (A)R − Rf (B)

∣∣1/α))p � c‖f ‖p/α

Λα(R)
‖R‖p 1−α

α

l∑
j=0

(
sj (AR − RB)

)p
.

Theorem 11.7. Let 0 < α < 1 and 1 < p < ∞. There exists a positive number c such that for
every f ∈ Λα(R), for arbitrary bounded self-adjoint operators A and B , and for an arbitrary
bounded operator R, the operator f (A)R−Rf (B) belongs to Sp/α and the following inequality
holds:

∥∥f (A)R − Rf (B)
∥∥

Sp/α
� c‖f ‖Λα(R)‖R‖1−α‖AR − RB‖α

Sp
.
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