Full Minimal Steiner Trees on Lattice Sets ${ }^{1}$

M. Brazil
Department of Electrical Engineering, University of Melbourne, Victoria 3052, Australia

J. H. Rubinstein
Department of Mathematics, University of Melbourne, Victoria 3052, Australia

D. A. Thomas

Department of Electrial Engineering, University of Melbourne, Victoria 3052, Australia

J. F. Weng and N. C. Wormald
Department of Mathematics, University of Melbourne, Victoria 3052, Australia

Received September 18, 1995; revised August 15, 1996

1. INTRODUCTION

Given a finite set of points P in the Euclidean plane, the Steiner problem asks us to constuct a shortest possible network interconnecting P. Such a network is known as a minimal Steiner tree. The Steiner problem is an intrinsically difficult one, having been shown to be $N P$-hard [7]; however, it often proves far more tractable if we restrict our attention to points in special geometric configurations. One such restriction which has generated considerable interest is that of finding minimal Steiner trees for nice sets of integer lattice points. The first significant result in this direction was that of Chung and Graham [4], which, in effect, precisely characterized the minimal Steiner trees for any horizontal $2 \times n$ array of integer lattice points. In 1989, Chung et al. [3] examined a related problem, which they described as the Checkerboard Problem. They asked how to find a minimal Steiner tree for an $n \times n$ square lattice, that is, a collection of $n \times n$ points arranged in a regular lattice of unit squares like the corners of the cells of

[^0]a checkerboard. Although their paper gave a series of conjectured solutions to this problem, not all of which turn out to be correct, they were unable to suggest a method for proving their claims. The case $n=2^{k}$ was recently solved in [1].

In this paper, we examine a more general situation, namely the nature of minimal Steiner trees for Steiner-closed lattice sets, which we define to be sets of integer lattice points satisfying two conditions, the first of which says that they have a spanning tree all of whose edges have length 1 , and the second of which is a technical condition which we believe to be redundant. These conditions, which ensure that the points are not sparsely scattered, are given in Section 2. Our analysis converts the largely geometric problem of constructing these trees to a somewhat simpler combinatorial one, which we study in the sequel to this paper [2].

Let T^{*} denote a minimal Steiner tree for a Steiner-closed lattice set. The key feature of the conjectured solutions of Chung et al. [3] for the cases where the Steiner-closed lattice set is an $n \times n$ square lattice is that they use as their principal building block for T^{*} the minimal Steiner tree for the corners of a unit square (shown in Fig. 1), which we will denote by X. A Steiner tree, such as X, is full if each of its terminals have degree 1 . The full components of T^{*} can be thought of as being the smallest irreducible 'blocks' from which the T^{*} is composed (by union at the terminals). When $n=2^{k}$, all the full components of T^{*} are $X \mathrm{~s}$. This is proved in [1] by showing that, per terminal, X is in some sense the most efficient possible component forming part of T^{*}. If $n \neq 2^{k}$ then T^{*} cannot be built up solely from $X \mathrm{~s}$, hence it becomes necessary to examine what other full trees can occur in checkerboards.

In Theorem 6.6 we completely classify all such full components. In particular, we show that all possible full components of T^{*} belong to a small number of easily understood classes. This classification greatly simplifies the problem of constructing minimal Steiner trees for specific Steiner-closed lattice sets. Our next paper [2] will demonstrate how the classification allows us to find a minimal Steiner tree for any rectangular array of integer lattice points using the concept of excess established in [1].

The strategy for achieving the classification is as follows. We first establish some preliminary definitions and general techniques in Section 2. The results in this section are not specific to Steiner trees on lattice sets, and

Fig. 1. The Steiner tree X
can be thought of as comprising a basic 'toolchest' of techniques for constructing minimal Steiner trees in a wide range of different contexts. We then consider a full subtree, T, of T^{*} and define $G\left(S_{T}\right)$ to be the graph on S_{T}, the collection of square cells and triangular half cells containing parts of T, with the obvious adjacency. In Section 3 it is shown that $G\left(S_{T}\right)$ is a tree and that there are precisely two Steiner points in each square of S_{T} and one Steiner point in each triangle of S_{T}. Section 4 introduces the concept of quasi-leaves of $G\left(S_{T}\right)$ which allow us to further investigate the structure of T, in Section 5, as we move inwards from leaves of $G\left(S_{T}\right)$. This results in a structure theorem for S_{T} which states that $G\left(S_{T}\right)$ has only two leaves and S_{T} has a restricted internal structure. In this case S_{T} is said to be a strip. Finally, in Section 6, we closely examine minimal steiner trees corresponding to strips to determine which ones can possibly occur as subtrees of T^{*}. This final classification is complete in the sense that it lists all full components that can occur in T^{*}, and every full component listed does occur for some choice of Steiner-closed lattice set.

2. PRELIMINARIES

A tree, T, in the Euclidean plane, consisting of vertices and straight-line edges connecting the points of P is called a Steiner tree if the angle between any two edges meeting at a vertex is greater than or equal to 120° and all vertices of T not in P have degree 3. Such vertices are called Steiner points, and it is clear that the edges meeting at a Steiner point make angles of precisely 120° with each other. Any minimal length network interconnecting P is a Steiner tree. A tree connecting the points of P without the addition of any new vertices is called a spanning tree, and the shortest such tree a minimal spanning tree.

The points in P are referred to as terminals. Throughout this paper we will denote the terminals by a, b, c, d, \ldots and indicate the terminals of a unit square by listing them counterclockwise from the top left-hand corner. Steiner points are usually denoted by s with subscripts.

After Cockayne [5], $(a b)$ denotes the third vertex of the equilateral triangle $a b(a b)$ where the vertices are listed in counterclockwise order. To differentiate between open and closed line segments, we will denote the line segment between points a and b by [ab] if it is closed (that is, includes a and b) or simply by $a b$ if it is open.

Consider an infinite square unit lattice on the Euclidean plane. A finite subset, P, of vertices of this lattice will be said to form a Steiner-closed lattice set if it satisfies the following conditions:
(i) there exists a spanning tree for P all of whose edges have length 1 ; and
(ii) given lattice points a and b such that $|a b|=1$, if a minimal Steiner tree for P intersects the interior of $a b$ then a and b are elements of P.

Note that if a set of lattice points P has the property that for any unit lattice edge meeting a lattice point not in P the interior of that edges lies entirely outside the convex hull of P, then P is Steiner-closed. It follows, for example, that an $n \times n$ square lattice forms a Steiner-closed lattice set. Indeed, we believe the following to be true:

Conjecture. Condition (ii) is redundant in the above definition of a Steiner-closed lattice set; that is, P is Steiner-closed if and only if there exists a spanning tree for P all of whose edges have length 1 .

We will use the word square to refer exclusively to a unit square of a Steiner-closed lattice set, and the word triangle to refer exclusively to an isoceles right triangle whose vertices belong to a Steiner-closed lattice set and whose orthogonal edges have length 1 . Hence, a triangle is half a square.

First we establish some simple facts.
Lemma 2.1. Suppose T is a minimal Steiner tree for a Steiner-closed lattice set.
(i) If p, q are two points (not necessarily vertices) in T and s and t are vertices of T, adjacent to each other and lying in the path between p and q, then $|p q| \geqslant|s t|$, and the inequality must be strict if s or t are Steiner points. Moreover, no edge of T has length greater than 1.
(ii) No edge of T intersects the interior of two orthogonal sides of a triangle or two opposite sides of a square.
(iii) No convex path in a full component of T intersects two parallel lines of distance two. Hence, the terminals at the ends of a convex path in a full component of T are the endpoints of either a side or a diagonal of a square.
(iv) If a path in T is convex with respect to a vertex of a right angle and crosses each of its two legs at exactly one point, then the path has only one Steiner point in the right angle and meets the legs at no more than 30°.
(v) No two parallel edges of T intersect the interior of a single side of a square.

Proof. Statement (i) follows immediately from the minimality of T and the fact that a Steiner-closed lattice set can be spanned by edges of length 1 .

In order to see (ii) we argue by contradiction. Let $a b c$ be a triangle with right angle at a, and assume a single edge of T intersects $a b$ and $a c$ at p
and q respectively. By definition, a is an element of the Steiner-closed lattice set, hence we can assume, without loss of generality, that there is a path in T from p to a not passing through q (otherwise swap the roles of p and q). But this implies T is not a minimal as we can replace the line segment $p q$ by the shorter line segment $q a$ to create a shorter tree. The second part of (ii) follows directly from (i).

The remaining statements have easy proofs. In particular, (iii) follows from (i); (iv) is a consequence of angle considerations and is independent of the minimality of T; and (v) is a corollary of (ii).

We use four well-known techniques, outlined in the following propositions, to help eliminate non-optimal Steiner trees.

Proposition 2.2 (The Simpson-Heinen Construction) (See [9]). Let abc be a triangle, all of whose angles are less than 120°. Let S be the minimal Steiner tree on a, b, c with Steiner points s (as in Fig. 2). Then (ac) lies on the extended line $b s$, and $|S|=|b(a c)|$.

This proposition provides a convenient way of refering to the topology of a given Steiner tree. For example, the Steiner tree T on terminals d, u, p, q and r has topology $(p(u d))(r q)$ only if it immediately follows, by repeated application of Proposition 2.2, that $|T|=|(p(u d))(r q)|$. This topology is illustrated by the tree in solid lines in Fig. 3. The repeated use of Proposition 2.2 to calculate the length of a Steiner tree with a given topology forms the basis of Melzak's algorithm [10]. The repeated use of this proposition also gives a practical method for constructing the Simpson line of a Steiner tree from any point on the tree.

Suppose $p_{1} p_{2} p_{3} p_{4}$ is a convex quadrilateral. Let $\phi\left(p_{1} p_{2}, p_{3} p_{4}\right)$ denote the angle at the intersection of the diagonals which faces $p_{1} p_{2}$.

Fig. 2. The Simpson-Heinen Construction.

Fig. 3. The tree in solid lines has topology $(p(u d))(r q)$ and is not minimal.
Proposition 2.3 (Pollak's Theorem) [11]. Suppose both full Steiner trees $\left(p_{1} p_{2}\right)\left(p_{3} p_{4}\right)$ and $\left(p_{4} p_{1}\right)\left(p_{2} p_{3}\right)$ exist, then $\left(p_{2} p_{1}\right)\left(p_{4} p_{3}\right)$ is minimal if $\phi\left(p_{1} p_{2}, p_{3} p_{4}\right) \leqslant 90^{\circ}$.

Note that Proposition 2.3 can be applied to more than four points. For example, if $v=(r q),|u d| \geqslant|u p|,|p v|>|d v|$ in Fig. 3, and if both trees $(p(u d))(r q)$ (in solid lines) and $(d(r q))(p u)$ (in broken lines) exist, then the former is longer than the latter, since $\phi(u p, v d)<90^{\circ}$.

Proposition 2.4 (The Variational Argument) [12]. Let T_{1} and T_{2} be two Steiner trees on the same set of terminals. We will consider $\left|T_{1}\right|$ and $\left|T_{2}\right|$ to be functions of x in the range $\left[x_{1}, x_{2}\right]$ measuring the lengths of the perturbed Steiner trees as we move the terminals from one position to another. Then $\left|T_{2}\left(x_{1}\right)\right| \leqslant\left|T_{1}\left(x_{1}\right)\right|$ if
(1) $\left|T_{2}\left(x_{2}\right)\right| \leqslant\left|T_{1}\left(x_{2}\right)\right|$ and
(2) $\frac{d\left|T_{2}\right|}{d x} \geqslant \frac{d\left|T_{1}\right|}{d x} \geqslant 0 \quad$ or $\quad \frac{d\left|T_{1}\right|}{d x} \leqslant \frac{d\left|T_{2}\right|}{d x} \leqslant 0$.

The basic principle, from [12], for computing the relative size of $d\left|T_{1}\right| / d x$ and $d\left|T_{2}\right| / d x$ is as follows. If each of the terminals, a_{i}, being moved is perturbed at a particular instant in the direction of a unit vector v_{i} then the contribution of an edge incident with a_{i} to the derivative is minus the cosine of the angle between v_{i} and the edge. The derivative is the sum of all such contributions.

The following lemma, which will prove useful in Sections 4 and 5, represents a typical example of an application of Proposition 2.4.

Lemma 2.5. The tree T_{1} in solid lines in Figure 4(a) cannot be part of a Steiner minimal tree for a Steiner-closed lattice set.

Proof. We will show that the tree T_{2}, drawn in broken lines in Fig. 4a, is shorter than T_{1}. Let p move to a along $d a$, and q to b along $c b$, and perturb the two trees appropriately. Clearly $-\cos \left(\angle s_{2} p a\right)>-\cos \left(\angle s_{1} p_{a}\right)>0$

Fig. 4. The tree in solid lines in (a) is not minimal.
and $-\cos \left(\angle s_{3} q b\right)>-\cos \left(\angle s_{1} q b\right)>0$. Hence, $d\left|T_{2}\right| / d x>d\left|T_{1}\right| / d x>0$, and in the end, the Steiner point of T_{1} adjacent to d degenerates into d and $\left|T_{1}\right|=\left|T_{2}\right|$ (Fig. 4b). Thus, the lemma holds by Proposition 2.4.

In applying the proposition in this section, it is useful to have the concept of a left-turn path. Let s be a terminal or Steiner point of the Steiner tree T and let s_{1} be an adjacent Steiner point. Consider a walk starting at s in the direction towards s_{1}, turning left at each Steiner point, and finishing at the first terminal reached, say t. We refer to the path traced by this walk as the left-turn path $s s_{1} \cdots$ (terminating at t). A right-turn path is defined similarly.

Proposition 2.6 (Non-minimal Paths) [13]. Let $p \cdots r q$ be a path in a Steiner tree T such that $p \cdots r q$ is a simple polygon and $\angle p r q \leqslant 60^{\circ}$. Let m be the point on the line through rq such that $\angle m p r=\angle p r q$ (Fig. 5). Suppose that every terminal that exists inside or on the boundary of the polygon $p \cdots r m$ is connected to q via r (and in particular that q is not a terminal if q lies on $[\mathrm{rm}]$). Then T is not a minimal Steiner tree.

The following useful lemma is a corollary of this result.

Fig. 5. The paths $p \cdots r q$ make T non-minimal if $\alpha \leqslant 60^{\circ}$.

Lemma 2.7. Suppose $p \cdots u v r q$ is a path in a minimal tree T so that $p \cdots u v r q$ is a simple polygon, v, r and q are Steiner points, and every terminal that exists inside the polygon $p \cdots u v r q$ is connected to q via v. If $|p u| \geqslant|u v|$ and $|p u| \geqslant|v r|$, then $\angle p u v>120^{\circ}$ (Fig. 6).

Proof. Assume, on the contrary, that $\angle p u v \leqslant 120^{\circ}$, and that, consequently, $\angle p v r \leqslant 120^{\circ}$. If $\angle p v r \leqslant 60^{\circ}$, then T is not minimal by applying Proposition 2.6 to $p \cdots v r$. Hence, $\angle u v p<60^{\circ}$. Since $|p u| \geqslant|u v|$, it follows by the geometry of the triangle $p u v$ that $\angle p u v \geqslant 60^{\circ}$. Furthermore, by the geometry of the quadrilateral puvr it is easy to see that $\angle p r v \geqslant 60^{\circ}$ since $|p u| \geqslant|v r|, \angle u v r=120^{\circ}$ and $\angle p u v \leqslant 120^{\circ}$. Hence, $\angle p r q \leqslant 60^{\circ}$ which again contradicts the minimality of T by applying Proposition 2.6 to $p \cdots r q$.

A weakness of Proposition 2.6 is that the condition that every terminal inside the polygon is connected to q via r is often difficult to check. The following theorem is, in a sense, a stronger version of the proposition which provides a method of overcoming this difficulty in many situations.

Theorem 2.8. Suppose s_{1} is a Steiner point in a Steiner tree T and s_{0}, s_{2} are two vertices adjacent to s_{1}. Let p be a point in T such that p lies on the same side of the line through $s_{0} s_{1}$ as s_{2}, s_{0} lies on the path connecting p and s_{1}, and $\angle p s_{0} s_{1} \leqslant 60^{\circ}$. Let c be the point on $s_{0} s_{1}$ or its extension such that $p c \| s_{1} s_{2}$, and let c^{\prime} be the point on $s_{1} s_{2}$ or its extension such that $p c^{\prime} \| s_{0} s_{1}$. Define the trap region of $p \cdots s_{0} s_{1}, R$, as follows:

Fig. 6. The path $p \cdots u v r q$ makes T non-minimal if $\beta \leqslant 120^{\circ}$.
(i) $R=p(c p) c(p c)$, if $\angle s_{0} s_{1} p \leqslant 120^{\circ}$ (Fig. 7);
(ii) $R=p\left(c^{\prime} p\right) c^{\prime}\left(p c^{\prime}\right)$, if $\angle s_{0} s_{1} p>120^{\circ}$ and $\angle p s_{2} s_{1} \leqslant 120^{\circ}$;
(iii) $R=\triangle s_{1}(p c)\left(c^{\prime} p\right) \cup p(c p) c(p c) \cup p\left(c^{\prime} p\right) c^{\prime}\left(p c^{\prime}\right)$ otherwise (Fig. 8). If there are no terminals in the interior of R, then T is not minimal.

Proof. Assume T is minimal. We consider three cases corresponding to the three possibilities for R.
(i) If ($p c$) lies on $s_{0} s_{1}$, then $|p(p c)| \leqslant\left|s_{0}(p c)\right|$ which contradicts the minimality of T. Hence we assume s_{1} lies on $c(p c)$. Let $s_{0} s_{1} s_{2} \cdots s_{k+1}$ be a path in T such that: $s_{i} s_{i+1} \| s_{1} s_{2}$ if i is odd; $s_{i} s_{i+1} \| p(p c)$ if i is even and s_{i} lies in $\triangle p c(p c) ; s_{i} s_{i+1} \| p(c p)$ if i is even and s_{i} lies in $\triangle c p(c p)$; and $s_{k} s_{k+1}$ intersects $p(c p)$ or $p(p c)$ at a point u (see Fig. 7). Let j be the largest integer less than k such that $s_{j} s_{j+1}$ intersects [$c p$], say at the point r. It immediately follows that $|p u| \leqslant\left|r s_{j+1}\right| \leqslant\left|s_{j} s_{j+1}\right|$, contradicting Lemma 2.1(i).
(ii) Clearly, this case is symmetric to Case (i).
(iii) Consider the path $s_{0} s_{1} s_{2} \cdots$ where $s_{i} s_{i+1} \| s_{0} s_{1}$ if i is even and $s_{i} s_{i+1} \| s_{1} s_{2}$ if i is odd (as in Fig. 8). Clearly this path intersects [$c p$] or [$c^{\prime} p$], say at u. Let $s_{j} s_{j+1}$ be the edge of T such that either $u=s_{j}$ or u lies in the interior of $s_{j} s_{j+1}$. Then $\angle p s_{j} s_{j+1} \leqslant 60^{\circ}$ and $\angle p s_{j+1} s_{j}<120^{\circ}$, hence we can apply the argument in Case (i), since the region $p(u p) u(p u)$ lies in R. This completes the proof.

Fig. 7. Theorem 2.8, Case (i).

Fig. 8. Theorem 2.8, Case (iii).

Given a line segment $p q$, the polygon $p((q p) p)(q p) q(p q)(p(p q))$, shown in Fig. 9, is referred to as the butterfly of $p q$ and q is referred to as its head.

Corollary 2.9. Suppose $p \cdots r s_{0}$ is a path in a Steiner tree T and s_{0} is a Steiner point. Let q be a point on $r s_{0}$ such that $\angle p q s_{0} \leqslant 60^{\circ}$. If there is no terminal in the interior of the butterfly of $p q$ with head q, then T, is not minimal.

Proof. Clearly, the trap region defined in Theorem 2.8 is completely covered by the butterfly of $p q$.

Fig. 9. The butterfly of $p q$.

Lemma 2.10. Let abcd be a square, and let T be a minimal Steiner tree for a Steiner-closed lattice set. Suppose there is an edge $s_{1} s_{2}$ of T intersecting ad at p such that s_{2} lies in abcd and $\angle s_{1} p d \leqslant 60^{\circ}$. Then s_{1} lies on the path from s_{2} to d (see Fig. 12).

Proof. The butterfly of $p d$ contains no terminals, hence the result follows by Corollary 2.9.

Finally, in Lemma 2.12, we give some very general local conditions which allow us to move a terminal of a Steiner tree T along a circle whose center lies on the Simpson line at that terminal without increasing the length of T. This will be used in the next section to show that there are strong restrictions on the way an edge of a minimal Steiner tree can cross a lattice edge. Lemma 2.12 is preceded by a necessary technical lemma.

Lemma 2.11. Let T be a Steiner tree containing a Steiner point sadjacent to a terminal p. If T is perturbed by moving p and fixing the other terminals of T, such that the topology of T remains unchanged, then the trajectory of s makes an angle of at least 60° to the edge of T incident with p.

Proof. Suppose p moves a very small distance to a point p^{\prime}, such that s moves to a different point s^{\prime}. Let q denote the other end of the Simpson line originating at p, and let r denote the other end of the Simpson line originating at s and on the same side of $p q$ as p^{\prime}. Let the point of intersection of $s r$ and $s^{\prime} q$ be O. Then angles $q s O$ and $r s^{\prime} O$ are both 60°, so the triangles $q s O$ and $r s^{\prime} O$ are similar. Furthermore, $|s q|>|s r|$, since $|s q|$ is the total length of two subtrees of T at s whilst $|s r|$ is the length of one of those subtrees. Thus $|s O|>\left|s^{\prime} O\right|$. For $\left|p p^{\prime}\right|$ arbitrarily small, angle $s O s^{\prime}$ is arbitrarily close to 60°, and the lemma follows.

Lemma 2.12. Let p be a terminal of a full Steiner tree T with terminal set $A \cup\{p\}$ and let q be the other end of the Simpson line from p. Choose points r, s and O such that s and O are on $p q$, and such that $|O p|=|O r|$, $\angle p s r \leqslant 60^{\circ}$, and no Steiner point lies in the interior of ps. Suppose further that if p^{\prime} is any point on the circle through p and r centred at O, and lying on the smaller of the two arcs, C, between p and r, then for any full Steiner tree with terminals p^{\prime} and a subset of A, the other end of the Simpson line from p^{\prime} does not lie inside the triangle Opr. Then there exists a tree with terminals $A \cup\{r\}$ which is no longer than T.

Proof. Perturb T by fixing all terminals in A and moving p along C towards r either to the first point where the topology of T is about to change or, if no such point exist, all the way to r. Denote the new position of p by p^{\prime}, denote the new tree by T^{\prime}, and denote the intersections of $p^{\prime} q$ with $O r$ and $s r$ by O^{\prime} and s^{\prime} respectively. Then q is at the other end of the

FIG. 10. Under the conditions of Lemma 2.12, p can travel along the circular arc about O to r without increasing the length of T.

Simpson line of T^{\prime} at p^{\prime}, and using Lemma 2.11 the assumptions of the lemma are satisfied with t, p, O and s replaced by $t^{\prime}, p^{\prime}, O^{\prime}$ and s^{\prime} (see Fig. 10). There are two possible reasons that the tree topology must change. One is that a Steiner vertex is about to collide with a terminal. In this case we can replace T^{\prime} by the full component containing p^{\prime} of the tree which results at the collison. The other possible reason is that two Steiner vertices collide. In this case the tree can be cut into two Steiner trees with two crossing edges, and p^{\prime} is a terminal in one of them. In both cases the conditions of the lemma are still satisfied (since the terminals of the new tree contain p^{\prime} and a subset of A) and so the process can be continued. However, if in the continuation, an edge of the tree crosses a terminal of one of the trees which have been cut off, that edge needs to be cut short at that terminal in order to ensure that the present tree, together with all the trees cut off, form a connected network. After a finite number of stages, we must have $p^{\prime}=r$. At all stages of the process, the movement of p is about a circle centred on a point lying on the Simpson line from p, and so the length of the tree is not increased, as required.

3. $G\left(S_{T}\right)$ IS A TREE

Throughout the remainder of this paper, let T be a full subtree of a minimal Steiner tree T^{*} for a Steiner-closed lattice set P. Let S_{T}^{\prime} be the set of all squares in the lattice whose interiors contain parts of T. Define S_{T} from
S_{T}^{\prime} as follows: for each square $a b c d$ of S_{T}, if there is a triangle in the lattice such that the part of T contained in the interior of $a b c d$ is completely contained in that triangle then replace $a b c d$ by that triangle. So, for example, if T is a unit lattice edge then S_{T} is empty, whereas if T is the Steiner tree in Fig. 11 then S_{T} contains two squares and two triangles, as shown in the figure. A square or triangle is said to be adjacent to another square or triangle if they share a side. Let $G\left(S_{T}\right)$ be the graph on S_{T} with the adjacency as defined above. Note that $G\left(S_{T}\right)$ is a connected graph (since T is full), and that all vertices of the squares and triangles of S_{T} are elements of P.

The word component will be used to refer to a connected component of the intersection of T with the interior of a given square or triangle.

Lemma 3.1. There is only one component in a square or a triangle of S_{T}.
Proof. We prove the lemma only for squares since the proof is similar and easier for triangles. Suppose, on the contrary, there are two components in the square $a b c d$. By Lemma 2.1(ii) each component has at least one Steiner point. Let P_{1} and P_{2} be convex paths in separate components, each reaching from one edge of $a b c d$ to another, such that no part of T lies between them. It is clear from Lemma 2.1 that P_{1} and P_{2} cannot both join the interiors of opposite sides of the square without forming a loop. Hence we can assume P_{1} is part of the left-turn path $s_{1} s_{2} s_{3} \cdots$ where $s_{1} s_{2}$ meets [ad], s_{2} is in the interior of the square $a b c d$ and $s_{2} s_{3}$ meets [ab]. It follows from Lemmas 2.1(iv) and 2.10, that s_{1}, s_{2} and s_{3} lie on the path in T^{*} from d to b (see Fig. 12). Similarly, assume P_{2} is part of the left-turn path $s_{1}^{\prime} s_{2}^{\prime} s_{3}^{\prime} \cdots$ where s_{2}^{\prime} lies in the interior of $a b c d$. By symmetry we can assume that s_{1} does not lie on the path in T^{*} joining s_{2} and s_{2}^{\prime}. This immediately tells us that P_{2} cannot meet [ad]. Furthermore, it is clear that P_{2} does not join $a b$ to $b c$ by angle considerations, and does not join $b c$ to $c d$ by Lemma 2.10 (since otherwise s_{1} lies on the path joining s_{2} and s_{2}^{\prime}). Hence P_{2} must join $a b$ to $c d$ with $s_{3}=s_{1}^{\prime}$ and $s_{1}^{\prime} s_{2}^{\prime}$ meeting $a b$, as shown in Fig. 12.

Now let iadh and dcef be squares adjacent to abcd. By Lemma 2.1(iii) the left-turn Steiner path $s_{1}^{\prime} s_{2}^{\prime} s_{3}^{\prime} \cdots$ cannot reach the line through ef; it must terminate at h or i. Applying Lemma 2.7 to $d \cdots s_{1}^{\prime} s_{2}^{\prime} s_{3}^{\prime} s_{4}^{\prime}$ we conclude that T is not minimal.

A useful consequence of this lemma is the following corollary.

Fig. 11. Here, S_{T} contains two squares and two triangles.

Fig. 12. There cannot be two components in abcd.

Corollary 3.2. The interior of any edge of a square intersects at most one edge of T and no Steiner points of T.

We now wish to show that there are at most two Steiner points in each square of S_{T}. The key to this lies in the following lemma.

Lemma 3.3. Let abcd be a square of the Steiner-closed lattice set P. Suppose that $s_{1} s_{2}$ is an edge of T^{*} between Steiner vertices s_{1} and s_{2} crossing bc at q such that s_{1} lies above bc and the extensions of other edges of T^{*} at s_{1} do not intersect the interior of the inverval qc. Then the interval $[c(a d)]$ does not intersect the extension of $q s_{1}$.

Proof. Arguing by contradiction, assume the extension of $q s_{1}$ intersects the interval $[c(a d)]$. First, consider the subtree T_{0} of T^{*} containing s_{1} obtained by cutting T^{*} at q. Suppose c is in T_{0}, or in other words s_{1} lies on the path in T^{*} from c to s_{2}, and apply Theorem 2.8(i). Since $\angle s_{1} s_{2} c<120^{\circ}$ and the extension of $q s_{1}$ intersects [$c(a d)$], it easily follows (by considering extreme cases) that the trap region of $c \cdots s_{1} s_{2}$ contains no terminals, contradicting the minimality of T^{*}. Hence c is not a terminal of T_{0}. Let O denote the point of intersection of the Simpson line of T_{0} at q and $(a d) c$. Note that $\angle(a d) c q=75^{\circ}$. We now consider two separate cases.

Assume, in the first case, that angle $s_{1} q c<75^{\circ}$. Observe that $|O q|>|O c|$, and also that $\left|O s_{1}\right|<|O c|$, since $\angle c s_{1} O \geqslant 120^{\circ}$. Hence there exists a point q_{0} on the interval $s_{1} q$ such that $\left|O q_{0}\right|=|O c|$. Since T_{0} does not contain c, the hypotheses of Lemma 2.12 are satisfied with $s=s_{1}, r=c, p=q_{0}$ and $T=T_{0}-q q_{0}$. Thus T_{0} can be replaced by a shorter tree connecting the terminals of T^{*} in T_{0} to c, contradicting the minimality of T^{*}.

So assume, on the other hand, that $\angle s_{1} q c \geqslant 75^{\circ}$. Applying Lemma 2.12, as in the previous case, we conclude that there exists a tree, containing c and all the terminals of T^{*} in T_{0}, whose length is at most $\left|T_{0}\right|+\left|q q_{0}\right|$. We complete the contradiction by finding a tree containing all terminals of T^{*} not in T_{0} whose length is less than $\left|T^{*}-T_{0}\right|-\left|q q_{0}\right|$. If q_{0} lies on $q s_{2}$ then the contradiction immediately follows, so we may assume $\left|q q_{0}\right| \geqslant\left|q s_{2}\right|$.

First, note that the maximum value of $\left|q q_{0}\right|$ occurs when $O=(a d)$ and $\left|(a d) q_{0}\right|=|(a d) c|$. Thus $\left|q s_{2}\right| \leqslant \sqrt{2+\sqrt{3}}-(1+\sqrt{3} / 2)<0.0658$. Now let s_{3} and s_{4} denote the two Steiner vertices adjacent to and below s_{2}, and let w denote the distance between the parallel edges of T^{*} below them (see Fig. 13). Consider the hexagon $s_{2} s_{3} r_{1} r_{2} r_{3} s_{4}$, where all angles of the hexagon are 120° and $\left|s_{3} r_{1}\right|=\left|s_{4} r_{3}\right|=w$. Since the convex path in T^{*} containing s_{3}, s_{2} and s_{4} reaches two distinct terminals, it follows, by the minimality of T^{*}, that there must be a terminal on or inside this hexagon. In particular, some terminal must be within distance $w+2 w \tan 30^{\circ}$ below s_{2}. Hence $0.0658+w+2 w / \sqrt{3}>1$, so $w>0.433$.

Now consider cutting T^{*} apart at s_{2}, and let T_{3} and T_{4} be the two subtrees containing s_{3} and s_{4} respectively. Note that $\left|T_{3}\right|>1$ and $\left|T_{4}\right|>1$, since each subtree contains at least two terminals of T^{*}. Consider joining T_{3} and T_{4} directly to f instead of through s_{2}, where f is the point of intersection of the extensions of the third edges at s_{3} and s_{4} as shown in Fig. 13. For each $i \in\{3,4\}$ let O_{i} be the point on the Simpson line for T_{i} at s_{2} such that $\left|O_{i} s_{2}\right|=1$. It is clear that we can apply Lemma 2.12 to each subtree ensuring that r is the point f, and O is the point O_{i} in each case. Hence it follows from Lemma 2.12 that the total decrease in length of T_{3} and T_{4} when they are joined directly at f is at least $\left(\left|O_{3} s_{2}\right|-\left|O_{3} f\right|\right)+$ $\left(\left|O_{4} s_{2}\right|-\left|O_{4} f\right|\right)=2-\left(\left|O_{3} f\right|+\left|O_{4} f\right|\right)$. Observe that f lies on a line segment from $O_{3} s_{2}$ to $O_{4} s_{2}$ parallel to $O_{3} O_{4}$ and of length $2 w$. In particular,

Fig. 13. The hexagon $s_{2} s_{3} r_{1} r_{2} r_{3} s_{4}$ must contain a terminal of T^{*}.
this line segment depends only on w and is otherwise independent of the positions of s_{3} and s_{4}. Hence the minimum decrease in the sum of lengths of T_{3} and T_{4} occurs when f is, say, on the line $O_{4} s_{2}$, in which case $\left|s_{2} f\right|=w / \sin 60^{\circ},|O f|^{2}=\left(\sqrt{w \tan 30^{\circ}}+1\right)^{2}+w^{2}$ and the decrease is at least $\left|s_{2} f\right|+1-|O f|>0.177>0.0658$, as required.

Lemma 3.4. There are at least two Steiner points in a square of S_{T}.

Proof. Suppose, on the contrary, there is only one Steiner point s_{1} in the square of $S_{T}, a b c d$. Consider three rays radiating from s_{1} in the opposite directions to the edges themselves. Since there are three 120° angles formed by these rays, at least two corners of $a b c d$, say b and c, lie in the same 120° angle. Let the edge of $T, s_{1} s_{2}$, lying in this angle intersect the boundary of $a b c d$ at p. Without loss of generality, we may assume that either p lies on $a b$ or $p=b$ or p lies on $b c$.

Firstly, suppose that p lies on $a b$ or $p=b$. Let the other two edges incident with s_{1} intersect the boundary of $a b c d$ at q and r (reading counterclockwise around the square from p). Then, by geometry and the fact that abcd is a square of S_{T}, it follows that q lies on $c d, r$ lies on [ad] and $r \neq d$. The extension of $p s_{1}$ must meet $a d$; otherwise we are done by applying Lemma 3.3 to r. Hence the point ($b a$) must lie above the extension of $q s_{1}$; otherwise we are done by Lemma 3.3 applied to q. But now the variation which moves r towards a and p towards b, with q fixed, rotates the edge $q s_{1}$ downwards, and so ($b a$) must remain above the extension of $q s_{1}$. This contradicts the fact that it lies on the extension of $q s_{1}$ when $p=b$ and $r=a$.

So finally suppose that p lies on $b c$. We can assume by symmetry that (ad) lies on or to the left of the extension of $p s_{1}$. Then we are done by Lemma 3.3.

Suppose there are m_{1} squares and m_{2} triangles in S_{T}. By a simple induction argument the number of terminals of T is less than or equal to $2+2 m_{2}+m_{1}$, with equality occuring only if $G\left(S_{T}\right)$ is a tree. Since T is full, the number of Steiner points of T is less than or equal to $2 m_{2}+m_{1}$. But clearly each triangle must contain at least one Steiner point, and by Lemma 3.4 each square contains at least two Steiner points. Hence, the above inequalities are forced to be equalities. This immediately implies the following two lemmas:

Lemma 3.5. There are precisely two Steiner points in each square of S_{T} and one Steiner point in each triangle of S_{T}.

Lemma 3.6. $G\left(S_{T}\right)$ is a tree.

4. LEAVES AND QUASI-LEAVES OF $G\left(S_{T}\right)$

Before introducing the concept of a quasi-leaf we require three lemmas. The first is an elementary observation, the second is a technical result which will prove useful in this and the following section, and the third gives us valuable information about the structure of the part of T inside triangles of S_{T}.

Lemma 4.1. Let abcd be a square in the Steiner-closed lattice set. Let $s_{1} s_{2}$ be an edge of T such that $s_{1} s_{2}$ intersects ab, say at p, and s_{2} lies in the interior of abcd. If $60^{\circ} \leqslant \angle a p s_{1} \leqslant 120^{\circ}$ then abcd is a square of S_{T}.

Lemma 4.2. Let abcd and dcef be adjacent squares in the Steiner-closed lattice set. Let u, t, q be points on the line segments [bc], [ad] and [ef] respectively, let p lie on ce, and let r be a point on either $[d f]$ or $q f$ (Fig. 14). Let T_{1} be a full Steiner tree on d, u, t, p, q and r with topology $((u d) p)(r q)$ if $t=d$, or topology $((u(t d)) p)(r q)$ if $t \neq d$ (as in the figure). Let s^{\prime} be the Steiner point in abcd adjacent to u, and suppose $\angle s^{\prime} u c \leqslant 30^{\circ}$. Then
(i) T_{1} exists only if r lies on $[d f]$, and
(ii) T_{1} is not a subtree of T.

Proof. Let T_{1} be a subtree of T. If $t \neq d$, let t^{\prime} be the point where the line through the two Steiner points in abcd intersects $a d$; otherwise let $t^{\prime}=d$. Let T_{1}^{\prime} be the full Steiner tree on t^{\prime}, u, p, q and r with topology $\left(\left(u t^{\prime}\right) p\right)(r q)$. We first show that T_{1}^{\prime} exists only if r lies on $[d f]$, from which (i) immediately follows.

Suppose, on the contrary, that r lies on the interior of $q f$ and T_{1}^{\prime} exists. First note, by Corollary 3.2, that $q=e$. By Proposition 2.2, $\angle\left(u t^{\prime}\right) p(r q)<$ 120°. We will show this cannot occur. Observe that $\angle(b d) c(f e)=120^{\circ}$. It is clear that $\angle\left(u t^{\prime}\right) c b \leqslant \angle(b d) c b$ and $\angle(r q) c e \leqslant \angle(f e) c e$; hence $\angle\left(u t^{\prime}\right) c(q r) \geqslant 120^{\circ}$. If we let p move along the line segment $c e$ from c to e, then $\angle\left(u t^{\prime}\right) p(q r)$ increases at first, since $\angle\left(u t^{\prime}\right) c b>\angle(r q) c e$, then decreases again as p approaches e. However $\angle\left(u t^{\prime}\right) e(q r)>120^{\circ}$, hence it follows that $\angle\left(u t^{\prime}\right) p(q r)>120^{\circ}$ for any point p on $c e$, giving the desired contradiction.

Thus r lies on [df] and either q lies on $e f$ or $q=e$ (Fig. 14). Define s_{1} to be the Steiner point in dcef adjacent to r and q, and s_{2} to be the Steiner point adjacent to s_{1} and p. Note, by Lemma 2.10, that q lies on the path from s_{1} to e. Let $b b^{\prime} c^{\prime} c$ and $c c^{\prime} e^{\prime} e$ be the squares below $a b c d$ and $d c e f$ respectively, and let the next vertices in the left-turn path $s_{1} s_{2} \ldots$ be s_{3}, s_{4} and s_{5}. Clearly s_{3} lies in the intrior of $c c^{\prime} e^{\prime} e$. If the right-turn Steiner path $u \cdots s_{2} s_{3} \cdots$ intersects the interior of $c c^{\prime}$ then, by Lemma 4.1, $b b^{\prime} c^{\prime} c$ is a
square of S_{T}, contradicting Lemma 3.6. Hence the right-turn path $u \cdots s_{2} s_{3} \cdots$ terminates at c or c^{\prime}. Assume, in the first case, that the path ends at c (Fig. 14a). By angle considerations, there must be a single Steiner point, say s_{6}, between s_{3} and c. Hence $s_{3} s_{4}$ intersects $e e^{\prime}$ since it is parallel to $c s_{6}$ and $L c_{6} c e<45^{\circ}$. Let L_{1} be the line through e parallel to $s_{1} s_{2}$. Let θ be the acute angle between L_{1} and $c e$. Note that $15^{\circ}<\theta \leqslant 30^{\circ}$. We first show that s_{3} lies above L_{1}. Suppose, on the contrary, that $\left[s_{2}, s_{3}\right.$] intersects L_{1}. Then $\left[c s_{6}\right]$ intersects L_{1}, say at x, and $\left|c s_{6}\right| \geqslant|c x|=2 \sin (\theta) / \sqrt{3}$. Let y be the point where T intersects $c d$ and let y^{\prime} be the point where the line through $(b d)$ parallel to $c s_{6}$ intersects $c d$. By Proposition 2.2, $|c y| \leqslant\left|c y^{\prime}\right|$, and a simple calculation shows that $\left|c y^{\prime}\right|=1-\sqrt{2} \sin (45-\theta) /$ $\sin (30+\theta)$. It can now be checked that, over the domain $15^{\circ}<\theta \leqslant 30^{\circ}$,

$$
1-\frac{\sqrt{2} \sin (45-\theta)}{\sin (30+\theta)} \leqslant \frac{2 \sin (\theta)}{\sqrt{3}}
$$

with equality when $\theta=30^{\circ}$. It follows that T is not minimal, since we can replace $c s_{6}$ by $c y$ to form a shorter tree. Hence s_{3} lies above L_{1} and $L e s_{3} s_{4}<60^{\circ}$. Let z be the point on $s_{3} s_{4}$ such that $e z \| s_{2} s_{3}$. Clearly there are no terminals in the region $e(z e) z(e z)$, so T is not minimal by Theorem 2.8.

If, on the other hand, the right-turn path $u \cdots s_{2} s_{3} \cdots$ ends at c^{\prime} (Fig. 14b) then s_{4} lies in $c c^{\prime} e^{\prime} e$ and it is clear, by another easy angle argument, that $s_{4} s_{5}$ intersects $e e^{\prime}$. Note that $\angle e s_{4} s_{5}<60^{\circ}$. Let z be the point on $s_{4} s_{5}$ such that $e z \| s_{2} s_{3}$. Again, since there are no terminals in $e(z e) z(e z)$, T is not minimal by Theorem 2.8.

Lemma 4.3. The Steiner point in a triangle of S_{T} is adjacent to the terminal at the right angle.

Proof. Let $b c d$ be a triangle of S_{T} with right angle at c. By Lemma 3.5, this triangle contains a unique Steiner point, s_{1}. By Corollary 3.2, s_{1} is adjacent to at least one vertex of $\triangle b c d$. Suppose, contrary to the lemma, that s_{1} is not adjacent to c, but is adjacent to d. Without loss of generality, let the second edge incident with s_{1} meet [bc] at u, and the third edge incident with s_{1} intersect the interior of $d c$. If $\triangle b c d$ shares $d c$ with another triangle $\triangle d c e$ then there are two possible cases: either both right angles occur at c (Fig. 15a) or one occurs at c and the other at d (Fig. 15b). In the first case an edge must cross $d e$, since $\triangle d c e$ contains exactly one Steiner point; in the second case the part of T in the two triangles is clearly non-minimal by Pollak's Theorem (Proposition 2.3). Thus, in each case there is a contradiction. Consequently, we may assume that $b c d$ is adjacent to a square of S_{T}, dcef. Let the right-turn Steiner path starting with $u s_{1}$ be $u s_{1} s_{2} s_{3}$. We consider two cases.

Fig. 14. The Steiner tree T_{1} and two possibilities for a neighbouring square.

Fig. 15. Trees in two adjacent triangles.
(i) Assume $s_{2} s_{3}$ meets $[c e]$ at p. If $p \neq c$ then T is not optimal, by Lemma 4.2. So it follows that $p=c$ (Fig. 16). Let $v=(r q)$ and note that the tree $(c u)(d v)$, shown in broken lines in the figure, does exist. Consequently, by Proposition 2.3 and the remark following it, we have a contradiction to the minimality of T.
(ii) Assume s_{3} is also in dcef (Fig. 17a). By Corollary 3.2 it follows that s_{3} is adjacent to c and its third edge intersects $c e$, say at p. Another edge incident with s_{2} meets $d f$ or $e f$, say at q. Let T_{1} be this Steiner tree on u, c, p, q and d; let T_{2} be uc plus the tree $(d q)(p c)$ (shown in broken lines in Fig. 17a). We now argue by variation (Proposition 2.4). Let p move along $e c$ to c and let q move along $q e$ to e. The resulting trees are shown in Fig. 17b. This process decreases the length of T_{1} at a greater rate than the length of T_{2}, but the length of the tree resulting from T_{2} is clearly less than or equal to the length of the tree resulting from T_{1}. So T_{1} is not minimal, and consequently neither is T.

We define the direction of the edges of T to range from -15° to 165° from the horizontal. Of the three directions of edges in T, one must be either in the range
$\left(-15^{\circ}, 0^{\circ}\right)$, and called negative horizontal, or
$\left(0^{\circ}, 15^{\circ}\right]$, and called positive horizontal, or
$\left(75^{\circ}, 90^{\circ}\right]$, and called positive vertical, or
$\left(90^{\circ}, 105^{\circ}\right]$, and called negative vertical.

Note that these directions, referred to as main directions, are exclusive. That is, T cannot have two directions which are both main directions.

If a leaf of $G\left(S_{T}\right)$ is a triangle then, by Lemma 4.3, precisely one edge of T in triangle is incident with one of the acute angles of the triangle, and clearly lies in the main direction (Fig. 18a). If a leaf is a square, the it is as shown in Figure 18b. (The other possible Steiner tree, is not minimal by Proposition 2.3, as shown in [1].) The edge joining two Steiner points s_{1} and s_{2} is in the main direction.

Fig. 16. The tree in solid lines is not minimal.

Fig. 17. By the variational argument, the tree in solid lines in (a) is not minimal.
We will call the sides of a square whose interiors intersect T shared sides. Suppose V_{m} is a vertex of degree two in $G\left(S_{T}\right) . V_{m}$ is called a quasi-leaf if there is a sequence of adjacent vertices $V V_{1} V_{2} \cdots V_{m}$ in $G\left(S_{T}\right)$ such that
(1) V is a leaf,
(2) $V_{i}, 1 \leqslant i<m$, are quasi-leaves,
(3) V_{m} is either a triangle or square of degree 2 in $G\left(S_{T}\right)$, and in the latter case its shared sides are opposite.

If a quasi-leaf is a triangle, one of the edges intersecting its sides is in a main direction (Fig. 19a). It is quasi-leaf $a b c d$ is a square with two Steiner points s_{1} and s_{2}, then $s_{1} s_{2}$ is in a main direction. The square is referred to as normal if s_{1}, s_{2} are adjacent to the endpoints of an unshared side (Fig. 19b). Otherwise s_{1}, s_{2} are adjacent to the endpoints of a diagonal ac or $b d$, and the square is referred to as abnormal (Fig. 19c). Note that whether a square is normal or abnormal depends on the topology of T. In all cases we will classify a leaf or quasi-leaf by its main direction, for example as positive horizontal if that is its main direction. Similarly, we can classify T by its main direction.

We conclude this section with a few useful lemmas on quasi-leaves, beginning with a simple observation. This is a stronger version of Lemma 4.1.

Fig. 18. The two possible topologies in leaves of $G\left(S_{T}\right)$.

Fig. 19. The three possible topologies in quasi-leaves of $G\left(S_{T}\right)$.
Lemma 4.4. (i) If an edge of T intersects the interior of a side of a triangle of S_{T}, then the angle between them is in $\left(0,30^{\circ}\right)$.
(ii) If an edge of T intersects a shared side of a square leaf or square quasi-leaf, then the angle between them is in $\left(15^{\circ}, 45^{\circ}\right)$.

Note that this result tells us that if an edge of T intersects a shared side of a leaf or quasi-leaf then the angle between them is less than 45°.

Lemma 4.5. In any sequence of adjacent square quasi-leaves in $G\left(S_{T}\right)$ at most one square is abnormal.

Proof. Let $V_{i} V_{i+1} \cdots V_{i+m}$ be a sequence of adjacent square quasi-leaves in $G\left(S_{T}\right)$. Suppose, contrary to the lemma, that V_{i} and V_{i+m} are both abnormal quasi-leaves with no abnormal quasi-leaves lying between them. Note, by angle considerations, that m must be odd. Let $V_{i}=a b c d$ and $V_{i+m}=a^{\prime} b^{\prime} c^{\prime} d^{\prime}$ and let T intersect $a b$ at p, and $c^{\prime} d^{\prime}$ at q. Let T_{1} be the subtree of T in these $m+1$ squares (Fig. 20). Let T_{2} be the Steiner tree on p, q and the terminals of T_{1} whose topology in each square is the same as that of a normal quasi-leaf (Fig. 19b), as shown in broken lines in the figure. As p moves along $a b$ towards a and q moves along $c^{\prime} d^{\prime}$ towards c^{\prime} it is clear that $d\left|T_{2}\right| / d x>d\left|T_{1}\right| / d x>0$, and eventually $\left|T_{1}\right|=\left|T_{2}\right|$ when p coincides with a and q with c^{\prime}. Hence, by Proposition 2.4, we have a contradiction to the minimality of T.

Lemma 4.6. Let abcd be a square of S_{T} and let V_{1} be an adjacent vertex of $G\left(S_{T}\right)$ lying to the right of abcd. Suppose V_{1} is either a leaf or quasi-leaf.
(i) If abcd has degree two in $G\left(S_{T}\right)$ then T is horizontal.
(ii) If abcd is adjacent to another vertex of $G\left(S_{T}\right)$ which is a leaf or quasi-leaf, then T is horizontal.

Proof. Suppose V_{1} lies to the right of $a b c d$, but is not horizontal. By symmetry, we may assume without loss of generality that V_{1} is negative

Fig. 20. The tree in solid lines is not minimal.
vertical. V_{1} is not a square, by our previous descriptions of leaves and quasi-leaves; hence V_{1} is a triangle, with Steiner point s_{1}. Let s_{2} be the Steiner point in abcd adjacent to s_{1}, and let s_{3} be the other Steiner point in $a b c d$. Clearly, s_{3} must lie on the left-turn path $c s_{1} s_{2} s_{3}$ (as in Fig. 21), otherwise abcd would not be a square of S_{T}. Since V_{1} is negative vertical, the extension of $s_{2} s_{3}$ intersects $a d$. Hence, one edge incident with s_{3} intersects $a d$. By Corollary 3.2, s_{2} has to be adjacent to d. Since $\angle s_{2} d c>45^{\circ}$, the third edge incident with s_{3} cannot end at b, but rather intersects the interior of $a b$. This implies that $a b c d$ has degree three in $G\left(S_{T}\right)$, proving (i).

The vertex of $G\left(S_{T}\right)$ above $a b c d$ cannot be a leaf or quasi-leaf by Lemma 4.4 since $a d$ meets an edge incident with s_{3} at more than 60°. Furthermore, the vertex to the left of $a b c d$ is not a leaf or quasi-leaf since $a b$ meets an edge incident with s_{3} at more than 45°. Hence, by contradiction, (ii) is also true.

Lemma 4.7. Let $V_{1} V_{2} \cdots V_{m}$ be a sequence of adjacent vertices of $G\left(S_{T}\right)$ so that V_{1} is a leaf and the others are quasi-leaves. Let $V_{m+1}=a b c d$ be a square of $G\left(S_{T}\right)$ adjacent to V_{m} along the side $c d$. Suppose the component of T in abcd has Steiner points s_{1} and s_{2} so that s_{1} is adjacent to b, s_{2} is adjacent to d and one of the edges incident with s_{1} intersects ad at p (Fig. 22). Then T is positive horizontal.

Fig. 21. The part of T in $a b c d$, for T vertical.

Fig. 22. In each case, the tree in solid lines is not minimal.
Proof. By Lemma 4.6, T is horizontal. Assume, contrary to the lemma, that the main direction is negative horizontal. If V_{m} is a triangle, then the part of T in V_{m} and V_{m+1} fails to be minimal by Lemma 2.5. Hence V_{m} must be a square and is clearly normal since the main direction is negative horizontal. Let j be the largest element of $\{1, \ldots, m-1\}$ such that V_{j} is either
(i) a triangle (Fig. 22a), or
(ii) a square leaf or abnormal quasi-leaf (Fig. 22b).

If V_{j} is an abnormal quasi-leaf, let q be the point where T intersects the edge shared by V_{j} and V_{j-1} and let d^{\prime} be the terminal on V_{j} adjacent to a Steiner point in V_{j-1} (as in the figure). Note that in Case (i) $m-j$ is necessarily even, while in Case (ii) $m-j$ is odd. Let T_{1} be the part of T in $V_{j} V_{j+1} \cdots V_{m+1}$.

The lemma now follows from a variational argument similar to that used in Lemma 2.5. Observe that the orientation of a leaf, triangle or abnormal quasi-leaf determines whether the main direction is positively or negatively nearly horizontal. Hence, as we move p to a and (in the case of V_{j} being an abnormal quasi-leaf) q to d^{\prime}, the main direction of T_{1} cannot change from negative horizontal to positive horizontal. This forces T_{1} to degenerate into an alernating series of $X \mathrm{~s}$ and edges when p coincides with a (and q with d^{\prime}). In each case, let T_{2} be the Steiner tree shown in broken lines in Fig. 22. Clearly, as p moves to a (and q to d^{\prime}), T_{2} is perturbed to
the same alternating series of $X \mathrm{~s}$ and edges, except that the X in V_{m+1} is differently oriented; but T_{2} increases in length faster than T_{1}. Hence, by Proposition 2.4, T_{1} is not minimal.

5. THE STRUCTURE OF $G\left(S_{T}\right)$

The aim of this section is to establish a structure theorem for S_{T}. In essence, we show that all vertices of $G\left(S_{T}\right)$ are leaves or quasi-leaves, and consequently that there can be no branching in $G\left(S_{T}\right)$. This theorem follows from Corollary 5.2, Lemma 5.4, and Lemma 5.5, which systematically demonstrate that certain vertices which are neither leaves nor quasileaves do not occur in $G\left(S_{T}\right)$. Moreover, using simple angle arguments we are able to further restrict the structure of S_{T} to a form we describe as a strip.

The first lemma follows directly from Lemma 4.6 and the fact that the main direction is exclusive.

Lemma 5.1. Suppose a square of S_{T}, abcd, is adjacent to two vertices of $G\left(S_{T}\right), V_{1}$ and V_{2}, each of which is either a leaf or quasi-leaf.
(i) If V_{1} lies to the right or left of abcd, then V_{1} is horizontal; if V_{1} lies above or below abcd, it is vertical.
(ii) V_{1} and V_{2} lie on opposite sides of abcd.

An immediate consequence of this lemma is the following result.
Corollary 5.2. $G\left(S_{T}\right)$ has no vertex of degree four adjacent to three vertices, each of which is a leaf or quasi-leaf.

Before proving our next main result, we need a small technical lemma.
Lemma 5.3. None of the trees T_{1}, drawn in solid lines in Fig. 23, can be subtrees of T.

Proof. We will show that in each case the tree T_{2}, drawn in broken lines in Fig. 23, is shorter than T_{1}, using Proposition 2.4. In Fig. 23a and 23 b , let p, q, u, v move to the corners i, b, c, h respectively. Clearly, we always have $d\left|T_{2}\right| / d x>d\left|T_{1}\right| / d x>0$. In the end, $\left|T_{1}\right|=\sqrt{11+6 \sqrt{3}}$, while $\left|T_{2}\right|=2+\sqrt{5+2 \sqrt{3}}$ in Fig. 23a and $\left|T_{2}\right|=3+\sqrt{3}$ in Fig. 23b. In both cases, $\left|T_{1}\right| \geqslant\left|T_{2}\right|$. Hence, by Proposition 2.4, T_{1} is not minimal. In Fig. 23c, let q, u, v move to b, d, i respectively. It then follows that $d\left|T_{2}\right| / d x>d\left|T_{1}\right| / d x>0$ for q, v, and $d\left|T_{1}\right| / d x \leqslant d\left|T_{2}\right| / d x<0$ for u. In the end, $\left|T_{1}\right|=\left|T_{2}\right|$. So, again in this case T_{1} is not minimal.

Fig. 23. The Steiner trees in solid lines are not minimal.
Lemma 5.4. $G\left(S_{T}\right)$ has no vertex of degree three which is adjacent to two vertices, V_{1} and V_{2}, each of which is either a leaf or quasi-leaf.

Proof. Assume $a b c d$ is such a vertex of $G\left(S_{T}\right)$, and that V_{1} lies on its left side and V_{2} on its right side. Also assume V_{1} and V_{2} are positive horizontal and the third vertex is above abcd. By Lemma 5.1 all these assumptions can be made without any loss of generality. Let s_{2} and s_{3} be the Steiner points in $a b c d$ such that s_{2} is adjacent to a Steiner point, s_{1}, in V_{1}. Since V_{1} is a leaf or quasi-leaf, the edge incident with s_{2} in the main direction cannot meet [$a b$] or c by angle considerations, or intersect $c d$ by Lemma 4.4. Also, it cannot meet $a d$, since in that case s_{1} being adjacent to a would force one of the edges adjacent to s_{3} to intersect $a b$ (Fig. 24) whereas s_{1} being adjacent to b would clearly force $a b d$ to be a triangle of S_{T}. Hence, the edge in the main direction is $s_{2} s_{3}$. Moreover, since $a b c d$ is a vertex of degree three in $G\left(S_{T}\right)$, exactly one of the corners of $a b c d$ is adjacent to s_{2} or s_{3}. Since $a b c d$ is positive horizontal and the third vertex in $G\left(S_{T}\right)$ is above $a b c d$, this corner cannot be c. This leaves three cases to be eliminated. In each case, the nearby vertices of the checkerboard are labelled as indicated in the figures.
(i) Assume s_{2} is adjacent to b (Fig. 25).

Both V_{1} and V_{2} are squares by Lemma 4.4. Let s_{4} and s_{5} be the next vertices on the left-turn path $s_{2} s_{3} s_{4} s_{5}$. Since $G\left(S_{T}\right)$ is a tree, $j k a i$ is not a square of S_{T}, which means T enters this square only if jai is a triangle of S_{T}. So, by Lemma 4.4, the path $s_{2} s_{3} s_{4} s_{5} \cdots$ cannot intersect ai. Hence, s_{6},

Fig. 24. T is not minimal if $s_{2} s_{3}$ is not in the main direction.
the next Steiner point on the right-turn path $s_{3} s_{4} s_{6}$ lies in iadh by Lemma 3.5. Since $h d f g$ is not a square of S_{T}, s_{6} must be adjacent to d. Now if the third edge of s_{6} meets [hi], Proposition 2.3 is contradicted, and if it meets $d h, T$ is not minimal by Lemma 2.5 .
(ii) Assume s_{2} is adjacent to a (Fig. 26).

Let s_{4}, s_{5} and s_{6} be vertices of T as defined above. If V_{1} is a square or $s_{4} s_{5}$ meets [ih] then the minimality of T is again contradicted by the argument in (i). Hence, V_{1} is a triangle and $s_{4} s_{5}$ intersects $a i$. As before, s_{6} must be adjacent to d since V_{2} is clearly a square. If the third edge incident with s_{6} meets $d h$ (Fig. 26a), T is not minimal by Lemma 5.3, Fig. 23a. If the thrid edge incident with s_{6} meets [ih] (Fig. 26b), T is not minimal by Lemma 5.3, Fig. 23b.
(iii) Assume s_{3} is adjacent to d (Fig. 27).

Again V_{2} is a square by Lemma 4.4. Let s_{4} and s_{5} be the next Steiner points on the right-turn path $s_{3} s_{2} s_{4} s_{5}$ and let the third edge incident with

Fig. 25. The case where s_{2} is adjacent to b.

Fig. 26. The case where s_{2} is adjacent to a.
s_{4} end at the vertex s_{6}. We will assume, in the first case, that s_{6} does not lie in the interior of the square $i a d h$ (Fig. 27a). This implies that s_{5} lies in iadh. If s_{7} is the next vertex on the right-turn path $s_{3} s_{2} s_{4} s_{5} s_{7}$ then $s_{5} s_{7}$ must meet [ih] since $h d f g$ is not a square of S_{T} (by Lemma 3.6). It is now easily seen that the left-turn path $s_{4} s_{5} \cdots$ cannot intersect the interior of ai. It immediately follows from Lemma $4.2(\mathrm{i})$ that s_{5} is adjacent to h (replace $a b c d$ in the statement of that lemma with dabc here). If s_{6} lies in the interior of $j k a i$ then, by Lemma 4.2(ii), T is not minimal. If, on the other hand, $s_{6}=a$ then T is not minimal by Lemma 5.3, Fig. 23c.

Thus s_{6} must lie in iadh (Fig. 27b). In this case, s_{6} lies on the path connecting i and s_{4} by Lemma 2.10. Note that $s_{2} s_{4}$ intersects $a d$ at less than

Fig. 27. The case where s_{3} is adjacent to d.
60°. Hence, the line through $s_{2} s_{4}$ intersects $d c$ or $a i$, from which it follows that either $\angle s_{3} s_{2} c>60^{\circ}$ or $\angle s_{6} s_{4} i>60^{\circ}$. If the first of these possibilities holds then the left-turn path $c \cdots s_{3} s_{2} s_{1}$ shows that T is not minimal by Proposition 2.6. If the second holds then the left-turn path $i \cdots s_{6} s_{4} s_{5}$ shows that T is not minimal, again by Proposition 2.6. This completes the proof of the lemma.

Lemma 5.5. Every vertex of degree two in $G\left(S_{T}\right)$ adjacent to a leaf or quasi-leaf is itself a quasi-leaf.

Proof. Much of this proof parallels that of the previous lemma. Assume abcd is a vertex of $G\left(S_{T}\right)$ which is not a quasi-leaf, but is adjacent to a leaf
or quasi-leaf, V. By Lemma 4.6, if V lies to the right of $a b c d$ then T is not vertical. By symmetry, we can now assume, without loss of generality, that V lies to the right of $a b c d, T$ is horizontal and the second vertex in $G\left(S_{T}\right)$ adjacent to $a b c d$ lies above $a b c d$. Let s_{2} and s_{3} be the Steiner points in $a b c d$, such that s_{3} is adjacent to a Steiner point in V. It is clear that $s_{2} s_{3}$ is in the main direction. Since $a b c d$ is a vertex of degree two, two corners of $a b c d$ are adjacent to s_{2} or s_{3}. This results in three cases to eliminate.
(i) Assume s_{2} is adjacent to both a and b.

In this case $s_{2} s_{3}$ must be positive horizontal. The possibilities for T correspond to those in Figure 26, where s_{1} now coincides with b. It follows that T is not minimal by the argument used in the proof of Lemma 5.4, Case (ii).
(ii) Assume s_{2} is adjacent to b and s_{3} is adjacent to d.

There are two subcases. If $s_{2} s_{3}$ is negative horizontal (as in Fig. 22), then T is not minimal by Lemma 4.7. If $s_{2} s_{3}$ is positive horizontal, then here the possibilities for T correspond to those in Figure 27, where s_{1} now coincides with b. Again it follows that T is not minimal by the argument used in the proof of Lemma 5.4, Case (iii).
(iii) Assume s_{2} is adjacent to b and s_{3} is adjacent to c (Fig. 28).

Here $s_{2} s_{3}$ is negative horizontal. Let s_{4} and s_{5} be the next Steiner points on the right-turn path $d \cdots s_{3} s_{2} s_{4} s_{5}$ which intersects $c d$ at q, and intersects $a d$ at p. Let s_{6} be the next Steiner point on the left-turn path $s_{2} s_{4} s_{6}$. Since

Fig. 28. Case (iii).
the right-turn path $s_{3} s_{2} s_{4} s_{5} \cdots$ cannot intersect $d h, s_{6}$ lies in iadh. By Lemma 2.10, s_{6} is on the path connecting i and s_{4}. Let α be the absolute value of the slope of the main direction. If, for a fixed p, we wish to maximise α, we should choose dcef to be an abnormal quasi-leaf. In this case, $f e f^{\prime}$ cannot be a triangle, by Lemma 4.1, nor can $f e e^{\prime} f^{\prime}$ be an abnormal quasi-leaf, by Lemma 4.5. It follows that α is maximised if $f e e^{\prime} f^{\prime}$ is a square leaf. Now construct the full Steiner tree, T^{\prime} on $i, a, b, c, d, e, f, e^{\prime}, f^{\prime}$ shown in broken lines in Figure 28, where $f e e^{\prime} f^{\prime}$ is a square leaf, $d c e f$ is an abnormal quasi-leaf, and the part of T^{\prime} inside $a b c d$ is similar in topology to the part of T inside $a b c d$, as shown. Suppose T^{\prime} intersects $a d$ at p^{\prime}. It is easy to calculate that $\left|a p^{\prime}\right|=1 / 3$ and the main direction of T^{\prime} is -11.565°. If p lies on $\left[a p^{\prime}\right]$, then it immediately follows from the construction that $\alpha \leqslant 11.565^{\circ}$, and hence that $\angle i s_{4} s_{5} \leqslant 60^{\circ}$. Applying Theorem 2.8 to $i \cdots s_{4} s_{5}$, we conclude that T is not minimal. Similarly, if p lies on $p^{\prime} d$ and the line through $s_{2} s_{4}$ intersects [ia] then again T is not minimal. But if, on the other hand, p lies on $p^{\prime} d$ and the line through $s_{2} s_{4}$ intersects $i h$, then a simple calculation (using the fact that $\left|s_{4} s_{5}\right|<1$) shows that the subtree $\left(b s_{4}\right)(q c)$ is not minimal by Proposition 2.3, again contradicting the minimality of T.

Before stating the main theorem of this section we require some definitions. Given an infinite unit square lattice in the Euclidean plane, we define a ladder to be a finite sequence of adjacent squares all lying in the one row or column. A ladder is said to be horizontal if the squares all lie in the same row, and vertical if they all lie in the same column. We define a staircase to be a finite sequence of adjacent triangles in the square lattice with the property that they are adjacent along unit edges and all the hypotenuses of the triangles are parallel. A staircase is said to be ascending if the hypotenuses lie at an angle of 45° from the horizontal and descending if they lie at an angle of 135° from the horizontal.

Let S be a finite alternate sequence of adjacent ladders and staircases, with the adjacencies occurring at the ends of the ladders and staircases. A staircase in S is said to be internal if it is adjacent to two ladders, and external if it is adjacent to precisely one ladder. We say that S is a strip if it satisfies the following conditions:
(i) Either all ladders in S are horizontal, or all ladders in S are vertical. Likewise, all staircases in S are ascending, or all are descending.
(ii) If S contains no ladders, then S contains exactly one or an even number of triangles. If S contains one or more ladders, then all internal staircases of S contain an even number of triangles, and all external staircases of S contain an odd number of triangles.

THEOREM 5.6. $\quad S_{T}$ is a strip.

Proof. Let S^{*} be the subset of all elements of S_{T} which are not leaves or quasi-leaves of $G\left(S_{T}\right)$. If S^{*} is non-empty then $G\left(S^{*}\right)$ is clearly a tree. Let L be a leaf of $G\left(S^{*}\right)$. Clearly L has degree 4,3 or 2 in $G\left(S_{T}\right)$. However, these possibilities contradict, respectively, Corollary 5.2, Lemma 5.4 and Lemma 5.5. It follows that two vertices in $G\left(S_{T}\right)$ are leaves and all other vertices are quasi-leaves. Hence, S_{T} consists of a sequence of adjacent ladders and staircases. Moreover, condition (i) follows easily from the fact that the main direction of T is exclusive. For example, if S_{T} has both kinds of ladders, horizontal and vertical, then there are two directions, resulting in a contradiction. The fact that condition (ii) is satisfied follows from condition (i).

Recall that a tree is called a caterpillar if the subtree obtained by removing all leaves forms a path (i.e., a caterpillar is a tree which is a path in Autumn). From the description of T in leaves and quasi-leaves of $G\left(S_{T}\right)$ we have the following result.

Corollary 5.7. T is a caterpillar.

6. CLASSIFYING THE FULL COMPONENTS OF T^{*}

In the previous section we showed that S_{T} is a strip. The aim of this final section is to completely classify those strips whose vertices can be spanned by a full minimal Steiner tree. This will provide us with a list of all possible full components T for any T^{*}, and their lengths. The key to this classification is the following geometric construction for computing lengths and main directions of such trees, which is based on a more general result for caterpillars to appear in [14]. Throughout this section, let T be a positive horizontal full minimal Steiner tree for a Steiner-closed lattice set.

Assume S_{T} contains more than ione square or triangle. Let $V_{1}, V_{2}, \ldots, V_{k}$ be the sequence of adjacent squares and triangles in S_{T} ordered from left to right. Assume the set $\left\{V_{j}, V_{j+1}, \ldots, V_{k}\right\}$ contains no abnormal squares. Later in this section we will show that abnormal squares in fact never occur in S_{T}. Let s_{1}, s_{2} be adjacent Steiner points in T such that s_{2} is to the right of s_{1}, and s_{1} lies in V_{j-1} (see Fig. 29). Since T is a caterpillar, all the Steiner points to the right of s_{1} lie on a path $s_{1} s_{2} \cdots s_{m}$. Let x be the terminal in T adjacent to s_{2}. Let $p_{2}=x$; let q be the terminal of T such that q is adjacent to s_{3} and $\left|p_{2} q\right|=1$; and let p_{1} be the terminal of T such that $p_{1} p_{2}$ is a unit edge of V_{j-1} and $\angle p_{1} p_{2} q=90^{\circ}$ (in particular, if V_{j-1} is not an abnormal square then p_{1} is adjacent to s_{1}). Let s_{m+1} be the terminal of T adjacent to s_{m} such that $s_{m-1} s_{m} s_{m+1}$ is a left-turn path if V_{k} is a square or a right-turn path if V_{k} is a triangle. We now construct a path

Fig. 29. Illustration of the inductive step in the proof of Lemma 6.1.
$p_{1} p_{2} \cdots p_{m+1}$, denoted M_{x}, and defined as follows: $\left|p_{i} p_{i+1}\right|=1$ for all $1 \leqslant i \leqslant m ;<p_{i} p_{i+1} p_{i+2}=150^{\circ}$ for all $1 \leqslant i \leqslant m-1$; and if we walk along the path from p_{1} to p_{m+1} we turn left at p_{i} if $s_{i-1} s_{i} s_{i+1}$ is part of a left-turn path and right at p_{i} if $s_{i-1} s_{i} s_{i+1}$ is part of a right-turn path. Note that T is divided into three subtrees by s_{1}. Let T_{2} be the subtree containing s_{2}. A simple inductive argument, using the methods of Melzak, shows that p_{m+1} lies on the line through $s_{1} s_{2}$ and $\left|s_{1} p_{m+1}\right|=\left|T_{2}\right|$. (This is illustrated in Fig. 29. By the inductive hypothesis, the end of the constructed path beginning $p_{2} q$ coincides with the end of the Simpson line from s_{3} shown in the figure. By the Simpson-Heinen construction, if we swing this path around p_{2} by 60° then $\angle p_{1} p_{2} p_{3}=150^{\circ}$ and p_{m+1} coincides with the end of the Simpson line from s_{2}.)

If S_{T} contains no abnormal squares, we can extend the construction of M_{x} to a construction for all of T as follows. Let s_{2} be the left-most Steiner point of T, let s_{3} be the Steiner point of T adjacent to s_{2}, let s_{1} be the terminal of T adjacent to s_{2} such that $s_{1} s_{2} s_{3} \cdots$ is a right-turn path if V_{1} is a square or a left-turn path if V_{1} is a triangle, and let x be the other terminal adjacent to s_{2}. Then we define the path $M_{x}=p_{1} p_{2} \cdots p_{m+1}$ as in the previous paragraph, and we define M_{T} to be M_{x} orientated by rotation so that p_{1} is the leftmost point of M_{T} and $p_{i} p_{i+1}$ is horizontal whenever $s_{i} s_{i+1}$ is in the main direction. It follows, again by the methods of Melzak, that the line through p_{1} and p_{m+1} is in the main direction of T and $|T|=\left|p_{1} p_{m+1}\right|$.

These results are summarized in the following lemma.

Lemma 6.1. Let $T, s_{1}, s_{2}, T_{2}, M_{x}$ and M_{T} be defined as above.
(i) If $M_{x}=p_{1} p_{2} \cdots p_{m+1}$ then the line through $s_{1} s_{2}$ passes through p_{m+1} and $\left|s_{1} p_{m+1}\right|=\left|T_{2}\right|$.
(ii) If $M_{T}=p_{1} p_{2} \cdots p_{m+1}$ then the line through p_{1} and p_{m+1} is in the main direction of T and $\left|p_{1} p_{m+1}\right|=|T|$.

The above definition for M_{T} can be extended to negative horizontal Steiner trees. Let \widetilde{T} be a horizontal full minimal Steiner tree for a strip containing no abnormal squares. If \tilde{T} is negative horizontal, let T be the reflection of \widetilde{T} about a vertical line. In this case we define the path $M_{\tilde{T}}=$ $p_{1} p_{2} \cdots p_{m+1}$ to be the reflection of M_{T} about a vertical line.

We can also define the following useful quantities on \widetilde{T}. Define $D_{H}\left(M_{\widetilde{T}}\right)$ to be the horizontal distance between p_{1} and p_{m+1}, that is, the distance between the vertical lines through p_{1} and p_{m+1}. Similarly, define $D_{V}\left(M_{\tilde{T}}\right)$ to be the vertical distance between p_{1} and p_{m+1}. Note that $D_{H}\left(M_{\tilde{T}}\right)^{2}+$ $D_{V}\left(M_{\widetilde{T}}\right)^{2}=|\widetilde{T}|^{2}$.

The next lemma shows that the condition that there are no abnormal squares in S_{T} holds for all T.

Lemma 6.2. S_{T} contains no abnormal squares.

Proof. Let V_{1}, \ldots, V_{k} be a sequence of adjacent squares forming a ladder of S_{T}, and assume, contrary to the lemma, that the square $a b c d=V_{j}$ is abnormal for some $1<j<k$. By Lemma 4.5 there are no other abnormal squares in this ladder, and it immediately follows by an easy angle argument that k is odd and j is even. Let $L_{a d}$ be the line through $a d$ and let $L_{b c}$ be the line through $b c$. Let T^{\prime} be the part of T lying between $L_{a d}$ and $L_{b c}$. Furthermore, let p be the rightmost point of T^{\prime} lying $L_{a d}$, and let e be the rightmost terminal of T^{\prime} lying on $L_{a d}$. Similarly, let q be the leftmost point of T^{\prime} lying on $L_{b c}$, and let f be the leftmost terminal of T^{\prime} lying on $L_{b c}$ (as in Fig. 30). Let s_{1} and s_{2} be the two Steiner points of T^{\prime} lying in abcd. Applying Melzak's construction to T^{\prime} we obtain the Simpson line $p^{*} q^{*}$ for T^{\prime} passing through $s_{1} s_{2}$. By the proof of Lemma 6.1, and noting that j is even, it follows that p^{*} lies on $L_{a d}$ and q^{*} lies on $L_{b c}$. We can construct an alternative Steiner tree, $T^{\prime \prime}$, on p, q and the terminals of T^{\prime} by placing an X in each V_{i} for i odd, and connecting the tree with unit edges and

Fig. 30. The subtree T^{\prime}.
the edges $e p$ and $f q$. Again using the proof of Lemma 6.1, we conclude $\left|T^{\prime \prime}\right|=\left|q^{*} b\right|+\left|a p^{*}\right|<\left|q^{*} p^{*}\right|=\left|T^{\prime}\right|$. Hence T^{\prime} is not minimal, giving the desired contraction.

Note that, since every square of $G\left(S_{T}\right)$ is a leaf or normal quasi-leaf, it follows that the topology of T is completely determined up to reflection or rotation by S_{T}.

We say that a full Steiner tree \bar{T} on the vertices of a strip is locally minimal if its topology (up to rotation or reflection) in leaves of $G\left(S_{\bar{T}}\right)$ is as in Fig. 18 and in quasi-leaves of $G\left(S_{\bar{T}}\right)$ is as in Figs. 19a and 19b. In view of Lemma 6.2 it follows that every full minimal tree for a strip is locally minimal. Let $A_{2 k}$ be the locally minimal positive horizontal full Steiner tree for a $2 k$-ladder, that is, for a ladder containing $2 k$ adjacent squares (An example is illustrated in Fig. 31). Let $B_{2 k+1}$ be the locally minimal positive horizontal full Steiner tree for a $2 k$-ladder with a triangle attached to one end, and let $C_{2 k+2}$ be the locally minimal positive horizontal full Steiner tree for a $2 k$-ladder with a triangle attached to each end such that the two hypotenuses are parallel (as in Fig. 31). A simple argument shows that $A_{2 k}$, $B_{2 k+1}$ and $C_{2 k+2}$ exist as full Steiner trees for all k. Define $Q(\bar{T})$ to be the main direction of \bar{T}. It follows from the proof of Lemma 6.1 that

$$
Q\left(A_{2 k}\right)>Q\left(B_{2 k+1}\right)>Q\left(C_{2 k+2}\right)>Q\left(A_{2 k+2}\right) .
$$

These definitions and inequalities are used in the proof of the following lemma.

Lemma 6.3. Let Z be a strip which is not a square, and which contains at least one ladder. Suppose there exists a full minimal Steiner tree on the lattice points of Z. Then the following statements hold:
(i) every ladder in Z contains an even number of squares;
(ii) each external staircase of Z contains precisely one triangle and each internal staircase of Z contains precisely two triangles;

FIG. 31. The Steiner trees A_{2}, B_{3}, and C_{4}.
(iii) all ladders in Z contain the same number of squares; and
(iv) if Z contains more than one ladder then Z contains either zero or two external staircases.

Proof. We can assume the full minimal Steiner tree on the lattice points of Z is positive horizontal. Let $Z=S_{T}$. We prove each of the four statements in turn. Statement (i) follows directly from Lemma 6.2.

Now consider the full Steiner tree for the strip consisting of two triangles sharing a vertical edge (Fig. 32). The main direction of this strip is $\arctan (1 /(4+\sqrt{3}))>9.896^{\circ}$. Hence, if Z contains two triangles sharing a vertical edge, then $Q(T)>9.896^{\circ}$. But the main direction of the full Steiner tree for the strip consisting of two squares sharing a vertical edge is $\arctan (1 /(4+3 \sqrt{3}))<6.206^{\circ}$. So, if Z contains a ladder then $Q(T)<6.206^{\circ}$, and consequently Z does not contain two triangles sharing a vertical edge. This immediately implies Statement (ii), noting that external staircases have an odd number of triangles.

To see Statements (iii) and (iv), we divide T into component subtrees by cutting T at each of the points where an edge of T in an internal staircase intersects the interior of a horizontal unit edge of the lattice. Note that the parts of T contained in each ladder of Z lie in separate components. Suppose, contrary to Statement (iii), that the ladders corresponding to two component subtrees T_{1} and T_{2} contain $2 k_{1}$ and $2 k_{2}$ squares respectively, where $k_{1}<k_{2}$. Then,

$$
Q\left(T_{1}\right)>Q\left(C_{2 k_{1}+2}\right)>Q\left(A_{2 k_{1}+2}\right) \geqslant Q\left(A_{2 k_{2}}\right)>Q\left(T_{2}\right),
$$

contradicting the uniqueness of the main direction of T (where $Q\left(T_{1}\right)$ and $Q\left(T_{2}\right)$ are defined in the obvious way).

Finally, to prove Statement (iv), assume Z contains exactly one external staircase. Let each of the ladders of Z contain $2 k$ squares. Then it is clear, by the construction of M_{T} in Lemma 6.1, that the main direction of T is equal to $Q\left(B_{2 k+1}\right)$ and consequently that each of the component subtrees is a full subtree on a subset of the vertices of Z. If Z contains more than one ladder this contradicts the fact that T is full.

Lemma 6.4. If Z is a staircase, or if Z is a strip containing at least one ladder and satisfying Statements (i), (ii), (iii), and (iv) in Lemma 6.3, then all minimal Steiner trees on the lattice points of Z are full.

Proof. We can assume that Z is orientated so that its ladders are horizontal and its staircases are ascending. We will first show that if Z satisfies the hypotheses of the lemma then there exists a full locally minimal

Steiner tree \bar{T} such that $S_{\bar{T}}=Z$. To complete the proof, we then prove that \bar{T} is strictly shorther than any Steiner tree for Z containing more than one full component.

Consider a horizontal $2 k$-ladder. Let L_{1} be the horizontal line passing through the top vertices of this ladder and L_{0} the horizontal line passing through its bottom vertices. Let e be the rightmost vertex of the ladder lying on L_{1} and let f be the leftmost vertex of the ladder lying on L_{0}. Let p be a point on L_{1} lying on or to the right of e and let q be a point on L_{0} lying on or to the left of f. By the construction for Lemma 6.1 it follows that there exists a full Steiner tree on p, q and the vertices of the ladder which is locally minimal in the squares of the ladder and whose main direction is

Now let Z be a strip satisfying the hypotheses of the lemma and containing $l 2 k$-ladders labelled (from left to right) $Z_{1}, Z_{2}, \ldots, Z_{l}$. If $l=1$ then the construction above clearly gives a suitable full locally minimal Steiner tree \bar{T}, where p and q are respectively the top rightmost and bottom leftmost vertices of Z. So suppose $l>1$ and, moreover, Z has no external staircases. For $1 \leqslant i \leqslant l-1$ let L_{i} be the horizontal line passing through the top vertices of Z_{i}, let e_{i} be the rightmost vertex of Z_{i} lying on L_{i}, and let p_{i} be the point on L_{i} lying to the right of e_{i} such that $\left|e_{i} p_{i}\right|=(l-i) / l$. Finally, let p_{0} be the bottom leftmost vertex of Z and let p_{l} be the top rightmost vertex of Z. As above, for each i we can construct a full Steiner tree T_{i} on p_{i-1}, p_{i} and the vertices of Z_{i} whose main direction is

Since each of the $T_{i} \mathrm{~s}$ has the same main direction, their union forms a full Steiner tree, \bar{T}, for all Z. It immediately follows from the construction that

Fig. 32. The full Steiner tree for a 2 -staircase.
\bar{T} is locally minimal. If, on the other hand, Z contains two external staircases then we can use exactly the same argument to construct a suitable \bar{T} by choosing the points p_{i} such that $\left|e_{i} p_{i}\right|=i / l$. Similarly, we can use this argument to construct a suitable \bar{T} for the case where Z is a $2 k$-staircase by viewing the staircase as a collection of $k 0$-ladders separated by internal 2 -staircases.

Now suppose, contrary to the lemma, there exists a minimal Steiner tree T^{\prime} on the vertices of Z such that T^{\prime} is not full. Let $\left\{T_{i}^{\prime}\right\}$ be the set of full components of T^{\prime}. It is clear, by an easy angle argument, that T^{\prime} contains no vertical unit edges. Hence, we can assume that all full components of T^{\prime} are horizontal. Furthermore, there is no square abcd in the strip such that $a d$ and $b c$ are both unit edges of T^{\prime} (as two such unit edges can always be replaced by a suitably oriented minimal Steiner tree for a triangle to form a shorter tree). It immediately follows, by a simple induction argument for example, that $\sum_{i} D_{H}\left(M_{T_{i}^{\prime}}\right) \geqslant D_{H}\left(M_{\bar{T}}\right)$.

We next show that $\sum_{i} D_{V}\left(M_{T_{i}^{\prime}}\right) \geqslant D_{V}\left(M_{\bar{T}}\right)$. This follows from the fact that, for almost any horizontal strip S with full minimal Steiner tree T, $D_{V}\left(M_{T}\right)=k / 2$, where k is the number of ladders in S and where, as previously, a $2 k$-staircase is considered to contain $k 0$-ladders. The sole exception to this is the case where S is a single square, $T=X$ and $D_{V}\left(M_{T}\right)=0$. However, it is clear that for any ladder of Z there is no minimal Steiner tree on the vertices of that ladder consisting only of $X \mathrm{~s}$ and unit edges (since the ladder contains an even number of squares). The inequality above now easily follows.

Using a standard inequality, we deduce that

$$
\begin{aligned}
\left|T^{\prime}\right| & =\sum_{i}\left|T_{i}^{\prime}\right| \\
& =\sum_{i}\left(D_{H}\left(M_{T_{i}^{\prime}}\right)^{2}+D_{V}\left(M_{T_{i}^{\prime}}\right)^{2}\right)^{1 / 2} \\
& >\left(\left(\sum_{i} D_{H}\left(M_{T_{i}^{\prime}}\right)\right)^{2}+\left(\sum_{i} D_{V}\left(M_{T_{i}^{\prime}}\right)\right)^{2}\right)^{1 / 2} \\
& \geqslant\left(D_{H}\left(M_{\bar{T}}\right)^{2}+D_{V}\left(M_{\bar{T}}\right)^{2}\right)^{1 / 2} \\
& =|\bar{T}| .
\end{aligned}
$$

This contradict the minimality of T^{\prime}.

Note that the tree \bar{T} constructed in the above proof is indeed a minimal Steiner tree for Z since, up to rotation and reflection, any full locally minimal Steiner tree on Z is unique.

The next lemma tells us that any minimal Steiner tree on the vertices of a strip occurs as a subtree of a minimal Steiner tree of some Steiner-closed lattice set, since the vertices of the strip are themselves Steiner-closed.

Lemma 6.5. Let Z be a strip. The set of lattice points corresponding to the vertices of Z forms a Steiner-closed lattice set.

Proof. Suppose, contrary to the proposition, there exists a minimal Steiner tree, T^{\prime}, on the vertices of Z, such that T^{\prime} contains an edge $s_{1} s_{2}$ crossing a lattice edge not contained in Z. Clearly s_{1} and s_{2} are both Steiner points at least one of which lies outside Z. If both s_{1} and s_{2} lie outside Z, then an easy exercise shows that the four distinct terminals of the two convex paths through $s_{1} s_{2}$ cannot all be verties of Z, giving a contradiction. If, on the other hand, s_{1} lies in Z and s_{2} lies outside Z, then the four distinct terminals of the two convex paths through $s_{1} s_{2}$ can only lie in Z if there exists another edge of T^{\prime} between two Steiner points both of which lie outside Z. So again, by the previous argument, we obtain a contradiction to the existence of T^{\prime}.

In order to complete our classification of full components of T^{*} we need to introduce some new notation for some special kinds of strips. A [$2 k, l]-$ strip is defined to be a strip consisting of $l 2 k$-ladders separated by $l-1$ internal 2 -staircases. Similarly, a $\langle 2 k, l]$-strip is a $[2 k, l]$-strip with an external 1-staircase (that is, a single triangle) on one end, while a $\langle 2 k, l\rangle$ strip is a [2k,l]-strip with external 1 -staircases on both ends. Since the topology of T is completely determined up to reflection or rotation by S_{T}, we can also use this notation to describe T. Finally, let Y denote the full Steiner tree for a triangle.

The following classification now follows from Lemma 6.3, 6.4 and 6.5.
Theorem 6.6. Let T be a full component of T^{*}, containing at least one Steiner point. Up to reflection or rotation, S_{T} is either
(i) a triangle;
(ii) a square;
(iii) a $2 k$-staircase;
(iv) $a<2 k, 1]$-strip;
(v) $a[2 k, l]$-strip; or
(vi) $a\langle 2 k, l\rangle$-strip.

In each case the main direction and length of T are as shown in Table 1.

TABLE 1
Complete Classification of All Possible Full Components T of T^{*}

T	Main direction of T	$\|T\|$
Unit edge	0°	1
Y	15°	$\sqrt{2+\sqrt{3}}$
X	0°	$1+\sqrt{3}$
$2 k$-staircase	$\arctan \left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}+\frac{k+1}{k}}\right)$	$k \sqrt{\frac{1}{4}+\left(\frac{\sqrt{3}}{2}+\frac{k+1}{k}\right)^{2}}$
$\langle 2 k, 1]$-strip	$\arctan \left(\frac{\frac{1}{2}}{k(2 k+\sqrt{3})+\frac{\sqrt{3}}{2}+1}\right)$	$\sqrt{\frac{1}{4}+\left(k(2+\sqrt{3})+\frac{\sqrt{3}}{2}+1\right)^{2}}$
[2k, l]-strip	$\arctan \left(\frac{\frac{1}{2}}{k(2+\sqrt{3})+\frac{\sqrt{3}}{2}+\frac{l-1}{l}}\right)$	$l \sqrt{\frac{1}{4}+\left(k(2+\sqrt{3})+\frac{\sqrt{3}}{2}+\frac{l-1}{l}\right)^{2}}$
$\langle 2 k, l\rangle$-strip	$\arctan \left(\frac{\frac{1}{2}}{k(2+\sqrt{3})+\frac{\sqrt{3}}{2}+\frac{l+1}{l}}\right)$	$l \sqrt{\frac{1}{4}+\left(k(2+\sqrt{3})+\frac{\sqrt{3}}{2}+\frac{l+1}{l}\right)^{2}}$

Furthermore, with k and l ranging over all positive integers this gives a complete irredundant classification of possible full components of T^{*}.

REFERENCES

1. M. Brazil, T. Cole, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald, Minimal Steiner trees for $2^{k} \times 2^{k}$ square lattices, J. Combin. Theory Ser. A 73 (1996), 91-110.
2. M. Brazil, J. H. Rubinstein, D. A. Thomas, J. F. Weng, and N. C. Wormald, Minimal Steiner trees for rectangular arrays of lattice points, J. Combin. Theory Ser. A, to appear.
3. F. R. K. Chung, M. Gardner, and R. L. Graham, Steiner trees on a checkerboard, Math. Magazine 62 (1989), 83-96.
4. F. R. K. Chung and R. L. Graham, Steiner trees for ladders, Ann. Distcrete Math. 2 (1978), 173-200.
5. E. J. Cockayne, On the efficiency of the algorithm for Steiner minimal trees, SIAM J. Appl. Math. 18 (1970), 150-159.
6. D. Z. Du, F. K. Hwang, G. D. Song, and G. Y. Ting, Steiner minimal trees on sets of four points, Discrete Comput. Geom. 2 (1987), 401-414.
7. M. R. Garey, R. L. Graham, and D. S. Johnson, The complexity of computing Stiener minimal trees, SIAM J. Appl. Math. 32 (1977), 835-859.
8. E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16 (1968), 1-29.
9. F. W. Kuhn, Steiner's problem revisited, in "Studies in Optimization" (G. B. Dantzig and B. C. Eaves, Eds.), Studies in Mathematics 10, pp. 53-70, Math. Assoc. Amer., Washington, DC, 1975.
10. Z. A. Melzak, On the problem of Steiner, Can. Math. Bull. 4 (1961), 143-148.
11. H. O. Pollak, Some remarks on the Steiner Problem, J. Combin. Theor. Ser. A 24 (1978), 278-295.
12. J. H. Rubinstein and D. A. Thomas, A variational approach to the Steiner network problem, Ann. Oper. Res. 33 (1991), 481-499.
13. J. F. Weng, Linear Steiner trees for polygonal spirals, preprint.
14. J. F. Weng, Expansions of linear Steiner trees, preprint.

[^0]: ${ }^{1}$ Supported in part by a grant from the Australian Research Council.

