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Abstract

Checkpointing mechanism is used to tolerate the impact of transient faults by rollback operation. Recently, it has also been

used as a mechanism to enhance system’s lifetime by identifying and tolerating permanent fault 5,19,10,12. However, equidistant

checkpoint interval may cause task deadline violation in the system. Here, we propose an adaptive checkpoint interval placement

algorithm (ADeLiRACI) that meets all tasks deadline. The checkpoint intervals are adjusted to minimize the impact of stresses and

permanent faults on the running hosts. This novel mechanism allows greater applicability in real time systems with hard deadline

such as weather prediction, financial transactions etc. We compare the estimated completion time for increasing fault-rate in the

system against five existing algorithms. For all applications, ADeLiRACI is able to meet the hard deadline along with enhancing

lifetime reliability of the system.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

Transient and permanent fault manifested by technology scaling, operating environment, wear-out, stress effect,

etc. has become a major reason of shorter lifetime reliability on integrated circuit. Usually checkpointing mecha-

nisms1,3,8,20,14 are proposed to combat transient faults. In5,10,12, authors introduce checkpointing mechanisms that

not only recovers system from transient faults but also from permanent faults. Checkpointing mechanisms mostly

designed to take checkpoint in equally spaced time/cycle, referred as interval18,1,5,19. Authors in18 extends rollfor-

ward scheme proposed by1,3, through recording the state and performing self-detection. If it is confirmed to be in

no fault state, the system continues to the next interval. Whenever self-detection is unable to establish any fault, the

system performs comparison with its coupled host and compare their states. If the other host passed the self detection,

its state is then copied to the faulty host. Authors in5,19 proposed a checkpointing mechanism to not only tolerate

transient fault but also permanent fault. The checkpointing algorithm works by using an extra storage to store the
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last state it executed successfully; not only current and previous states. Authors in10,12 further extends this idea by

proposing a checkpointing mechanism with the objective of tolerating transient fault through rollback operation and

permanent fault through Mean-Time-To-Failure (MTTF) estimation and migration. This mechanism smartly uses two

checkpoints, Valid Checkpoint and Tentative Checkpoint located on the processor/host itself and three registers (for

each host) in the controller to store checkpoints and comparison results. However, distance between two checkpoints

or intervals, can be varied due to various objectives in real-time systems such as power, energy, deadline etc. Authors

in4 proposed a technique to determine checkpoint interval using a combination of interval formulation and Dynamic

Voltage Scaling (DVS). In14, authors extended this idea by identifying the appropriate number of checkpoints that

minimizes the worst-case response time and optimizes energy consumption. Authors in15 correlates parameters such

as time to checkpoint, recovery time, fault-rate, deadline and Quality-of-Service (QoS) to determine checkpoint inter-

val. Authors in16,13 uses combination of Dynamic Voltage Scaling (DVS), Compare-and-Store Checkpoint (CSCP)

and additional Store Checkpoint (SCP) to determine the checkpoint interval. In brief, the approach uses equidistant

CSCP by adopting popular checkpoint interval formulation4,7,6 and added more SCP in between those CSCP. Authors

in11,17 however uses multi speed processor model and energy left in the system as their determining parameters to ob-

tain the next checkpoint interval. Thus, voltage threshold value is calculated as the break-off point in their approach.

We define our contribution of this paper as follows:

1. Propose an adaptive checkpoint interval placement algorithm to complement Lifetime Reliability-Aware Check-

pointing Algorithm (LRAC)10,12. The proposed algorithm is not to be mistaken as checkpointing algorithm as it’s

main objective is to determine when is the ‘best’ time to take checkpoints instead of how does the checkpointing

algorithm works

2. Uses lifetime reliability (MTTF) of the system and task’s deadline as determining parameter to determine check-

point interval

3. Define conditions for task migration in LRAC mechanism10,12

The remainder of this paper is organized as follows. In Section 2, we outline the checkpoint interval and task deadline

formulation. In Section 3, we explain the system model and underline assumptions. Section 4 explain our proposed

algorithm. In Section 5, we compare it with existing algorithms. We conclude our paper in Section 6.

2. Checkpoint Interval Computation

We considers two important parameters; instantaneous Mean-Time-To-Failure (MTTF) and task deadline. MTTF

is a measurement in years to represent the prediction of a failure to occur21,22. An instantaneous MTTF of a system is

the expected time for a permanent fault to occur with regards to current operating condition12. Deadline however is a

time constraint that is to be met by the system when running the task9. Our proposed algorithm’s checkpoint interval

computation takes hard deadline (Dhard) proposed in12 as the deadline parameter.

Dhard = Ttotal + (3 × (Dmin − Ttotal)) (1)

Ttotal is expected total execution time (best-case) for allocated task in the allocated system when executed without any checkpointing mechanism.

Dmin is a deadline parameter introduced in 8 to assess the deadline of the task (considering the current fault-rate of the system) when executed

together with normal rollback checkpointing algorithm.

Dmin ≥ Ttotal +

(
Ttotal√

2×C
λ

− 1

)
×C (2)

C is the checkpointing cost/overhead

(Note: We use λ = 10−3 as our threshold based on analysis done by 12.

Here, Dmin is a time parameter with the consideration of the fault-rate. Using the same concept and formulation,

substituting λ with 1
MTT Fcurrent

, we could obtain TwCP.
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MTT Fcurrent is the instantaneous MTTF value previously inspected.

TwCP is estimated total execution time when tasks are executed together with checkpointing algorithm (LRAC) using current/available

MTT Fcurrent .

TwCP = Ttotal +

(
Ttotal√

2×C
1

MTT Fcurrent

− 1

)
×C (3)

From here, checkpoint interval value is obtained using equation 4.

CPI =
Ttotal ×C

TwCP +C − Ttotal
(4)

(Note:Equation 4 is obtained from 4,8 which derived from 6,7)

For proposed adaptive algorithm, re-assessment of MTT Fcurrent is required. After re-assessment, latest completion

time of the task is estimated to compute a new checkpoint interval. All the formulations are the same as equation 3

and equation 4 with only difference of Tle f t and Tlatest substituting Ttotal and TwCP respectively.

Tle f t is expected execution time left for allocated task considering the amount of instruction counts that is already executed without any
checkpointing/fault tolerant mechanism (best-case scenario without fault tolerant mechanism)

Tlatest is newly estimated total execution time when tasks are executed together with checkpointing algorithm (LRAC) using Tle f t and current
MTTF inspected (MTT Fcurrent)

3. System Model and Assumptions

Figure 1 is the extended system model in10,12 for our proposed ADeLiRACI. This system model was developed for

Lifetime-Reliability-Aware Checkpointing (LRAC) where it consists of two components; Hosts and the controller. It

assumes a quasi-synchronous distributed system where each running host runs its tasks independently and synchro-

nization is perform at each checkpoint. Each host has the capability to perform self-test mechanism and have sufficient

stable storage to store two checkpoints (Valid Checkpoint and Tentative Checkpoint). The controller however consists

only three registers (for each running host) to store Current-Value Register (CR), Previous-Value Register (PR) and

Tentative-Value Register (TR). The controller is mainly used for storing and comparing states and results. Detailed

explanation on the system model can be obtained from10,12.

We added two extra registers that holds the value of instantaneous MTTF for each running hosts and another register

to hold MTT Fcurrent. MTTF values are the result of MTTF estimation done by individual hosts which is a routine

in Self-Test module. The details of the MTTF estimation technique is not explained here due to page limitation.

MTT Fcurrent however is the lowest MTTF value among the two running hosts compared by the controller. We also

added two extra communications between hosts and controller; sending of MTTF values from hosts to controller and

MTT Fcurrent from controller to hosts. All details are presented in Section 4 using state machine diagrams.

We assume the same conditions in10,12:

a. The controller together with the associated comparators are assumed to be fault-free

b. A spare host is assumed to be always available in the system. This means that an (identified) permanently

faulty/unfit host is being replaced by a good one by some external agent (outside the system)

c. We also assume that there is only one occurrence of fault (transient or permanent) between any two checkpoints.

However, we do not assume any bound on the total number of faults/types of faults (permanent or transient) that

can occur in the system throughout its lifetime

d. The host’s speed/frequency are similar, including the spare and the speed remains the same throughout its

lifetime. However, frequency scaling can be use with the existence of proper synchronization technique. This

assumption is not a limitation, rather just to simplify the explanation in this paper
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Fig. 1: System Model

4. Proposed Adaptive Deadline and Lifetime Reliability-Aware Checkpoint Interval Algorithm (ADeLiRACI)

We present our algorithm using Finite State Machine (FSM) representation for both controller and hosts. Similarly

with system model presented above, state machine of host and controller are also designed based on10,12 as shown in

Figure 2(a) and 2(b) respectively. Our proposed algorithm shown by Algorithm 1 consists of three parts. The first part

(Line 1 to 10) is executed at the beginning of the system’s lifetime. The second part executed every time a new task is
being assigned to the hosts and the third part is executed during run-time whenever re-evaluation of MTTF is required

(Line 11 to 50). At the beginning of the system lifetime, MTTF estimation is invoke to obtain instantaneous MTTF

Fig. 2: State Machine Diagram for Host (a) and Controller (b)



825 Mohamad Imran bin Bandan et al.  /  Procedia Computer Science   70  ( 2015 )  821 – 828 

for each host. These values are send to the controller for further processing.

Algorithm 1 ADeLiRACI

1: while (Beginning of system’s lifetime) do
2: Estimate MTTF

3: if (MTTF ≤ MTT Fthreshold) then
4: Migrate task to another host (spare)

5: Go to Line 2 onwards

6: else
7: Compare both host’s MTTF

8: Establish MTT Fcurrent
9: end if

10: end while
11: while (Task assigned) do
12: Calculate Dhard
13: Estimate completion time

14: if (Estimated completion time > Dhard) then
15: Migrate Task to another host (spare)

16: Estimate MTTF

17: if (MTTF ≤ MTT Fthreshold) then
18: Go to Line 15 onwards

19: else
20: Compare both host’s MTTF

21: Establish MTT Fcurrent
22: Go to Line 13 onwards

23: end if
24: else
25: Define CP Interval

26: Execute Task (Normal Operation using LRAC as CP algo)

27: if (Total Elapsed Time ≥ MTT Fcurrent
2 ) then

28: Estimate MTTF

29: if (MTTF ≤ MTT Fthreshold) then
30: Migrate task to another host

31: Go to Line 28 onwards

32: else
33: Compare both host’s MTTF

34: Establish MTT Fcurrent
35: Estimate latest completion time

36: if (Latest comp. time> Dhard-task elapsed time) then
37: Go to line 30 onwards

38: else
39: Define new CP interval

40: Go to Line 26

41: end if
42: end if
43: else if (Recover from 2 MM) then
44: Go to Line 28 onwards

45: else if (Recover from permanent fault) then
46: Go to Line 28 onwards

47: else
48: Go to Line 26

49: end if
50: end if
51: end while

Higher fault-rate translates to higher probability of having fault during the interval, thus more rollback operation

may be required. This creates unnecessary overhead towards the task completion time. To avoid, shorter interval must

be used. Also, if the completion time is estimated too high or the MTTF is inspected below the allowed threshold, the

system performs task migration. MTT Fthreshold is an arbitrary predetermined value from the beginning of the system’s

lifetime. Whenever a new task is assigned, the system calculate Dhard for the task (instruction count) and MTT Fcurrent.

Then, estimated completion time is calculated and compare with Dhard. If it less than Dhard, the system proceed to



826   Mohamad Imran bin Bandan et al.  /  Procedia Computer Science   70  ( 2015 )  821 – 828 

defining the checkpoint interval and execute the task accordingly. Otherwise, the system informs the controller and

invokes task migration.

Apart from the early of the system’s lifetime, there are three more conditions that require MTTF estimation; a)

recovery from two consecutive mismatch (no permanent fault), b) after migration process is carried out (including

recovery from permanent fault), and c) whenever total elapsed time is greater or equal to half of previously obtained

MTT Fcurrent. Whenever any of these conditions occurs, the system bypasses Dhard estimation state and moves directly

to estimate latest completion time. The system compares it with (Dhard−taskelapsedtime). If latest completion time is

less than (Dhard−taskelapsedtime), a new checkpoint interval is calculated. Subsequent tasks uses this new checkpoint

interval until any of the three conditions re-appear again. Otherwise, the system informs the controller of this situation

and starts migration process.

As for the controller, there are two states in the FSM diagram. Whenever the host is passing its MTTF value, the

controller stores this value in its allocated registers. It also compares against MTT Fthreshold. If the MTTF value is

greater than the threshold value, the controller initiates Compare(2) state, where both MTTF values are compared to

establish the lowest value and stores it as MTT Fcurrent and informs the running hosts. Both MTTF values are also

stored respectively until a new value is obtained. If MTTF value is less or equal to the threshold value, controller

performs initiation of the spare and a new host is added to the system to replace the faulty/unfit host. Similar steps are

carried out to obtain MTTF value of the new host which results in a new checkpoint interval. This new checkpoint

interval remains unaltered until it is again re-computed similarly. The complete details can be found in Algorithm 1.

5. Result and Discussion

We compare ADeLiRACI with LRAC to five existing approaches a) An Optimal Adaptive Checkpoint Strategy

for DMR with Energy-Aware (CSCP with SCP)16,13, b) Adaptive Checkpoint Placement in Energy Harvesting Real-

Time System (ADPTCPEH)11,17, c) An Efficient Forward Recovery Checkpoint Scheme in Dissimilar Redundancy

Computer System (TDCS)18, d) Checkpoint Management with DMR Based on the Probability of Task Completion

(CPMDMR)5,19, e) Equidistant Lifetime Reliability Aware Checkpointing (LRAC)10,12. This comparison is based on

Table 1. Table 1 shows the characteristics of the host and programs inspected, based on SPEC95 benchmark programs

where subsequent cycle per instruction (CPI) and instruction counts are obtained. The speed of the hosts are varied

by two different speeds, to show how does it fared with different host’s speed. We assume that both running host’s

frequency/speed are similar in this analysis. Although, variable speed (of the hosts) and usage of Dynamic Frequency

Scaling (DVS) can also be considered with the existence of synchronisation technique. The instruction counts for

all programs are multiplied by 1010 to make sure ample amount of checkpoints are inserted during the program’s

execution. We design a scenario where consecutive mismatch occur after 50% of the total task are executed. Initial

Table 1: Applications and host’s characteristics

Set Program/Application Speed
(Ghz)

Instruction Count (IC)
×1010

Cycle Per Instruction
(CPI)

1 compress95.ss 1.2 3135520 0.5846

2 compress95.ss 1.5 3135520 0.5846

3 ijpeg.ss 1.2 22714 0.9716

4 ijpeg.ss 1.5 22714 0.9716

5 m88ksim.ss 1.2 99214 0.7995

6 m88ksim.ss 1.5 99214 0.7995

7 tomcatv.ss 1.2 14344 1.5049

8 tomcatv.ss 1.5 14344 1.5049

9 vortex.ss 1.2 41982 1.1566

10 vortex.ss 1.5 41982 1.1566

1
MTT Fcurrent

is observed at 10−5. Upon recovery, 1
MTT Fcurrent

is inspected at 10−3. 10−3 12 is the break-off point for

migration used for this analysis. Once migration is performed, 1
MTT Fcurrent

is inspected to be 10−4. Figure 3 shows

the performance ratio of all mechanisms/algorithms (based on described scenario) compared to Dhard value. To meet

the deadline, all algorithms must complete the task/programs assigned between the ratio of 0 to 1. With proposed

ADeLiRACI, LRAC execution time is lower compared to equidistant LRAC. This can be seen by lower ratio value
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Fig. 3: Ratio to Dhard for all analysed algorithms

Table 2: Reliability metrics for interval before task executed and after recovery from consecutive mismatch

Set
Equidistant

LRAC
LRAC

with ADeLiRACI
CSCP with

SCP ADPTCPEH CPMDMR TDCS

Interval 1 Interval 2 Interval 1 Interval 2 Interval 1 Interval 2 Interval 1 Interval 2 Interval 1 Interval 2 Interval 1 Interval 2
1 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.8895 0.0000 0.9996 0.9995 0.9937 0.8888

2 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.9008 0.0000 0.9996 0.9995 0.9937 0.8888

3 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.9875 0.5292 0.9996 0.9995 0.9937 0.8888

4 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.9888 0.6177 0.9996 0.9995 0.9937 0.8888

5 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.9763 0.0429 0.9996 0.9995 0.9937 0.8888

6 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.9788 0.0923 0.9996 0.9995 0.9937 0.8888

7 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.9877 0.5385 0.9996 0.9995 0.9937 0.8888

8 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.9890 0.6259 0.9996 0.9995 0.9937 0.8888

9 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.9815 0.1818 0.9996 0.9995 0.9937 0.8888

10 0.9902 0.7077 0.9902 0.9892 0.9993 0.9989 0.9834 0.2754 0.9996 0.9995 0.9937 0.8888

in LRAC with ADeLiRACI (0.934) compared to equidistant LRAC (0.947). Also, it is the fastest running algorithm

observed in this simulation. Secondly, CPMDMR’s ratio is 1.000. CPMDMR uses deadline as one of its main

parameter to determine the number of equidistant checkpoints. Since there is no deadline calculation mechanism

explained, we use our Dhard formulation to do so thus results in ratio of 1. Lastly, ADPTCPEH is observed as

violating the deadline imposed. ADPTCPEH’s objective is to make sure the energy is enough to execute tasks. Under

this approach, checkpoint interval is rather long thus the rollback overhead is also longer. For this simulation. we

assume the energy left is not an issue hence high execution time.

R(ta2mm) = e−(2(λPT ))β · e−(2λT T ) (5)

where R(ta2mm) is the reliability of the system for the interval after recovering from consecutive mismatch,

λP is the permanent fault-rate,

λT is the transient fault-rate,

β is the shape parameter,

T = interval + time taken to checkpoint

For reliability analysis, we assume λT is constant and λP is according to 1
MTT Fcurrent

. The shape parameter is set to

2.5 and this is based on work in2. We analytically inspect the reliability metric using equation 5 at the first interval

after recovery from the consecutive mismatch. For comparison, we inspect the reliability at the time when the task is

assigned. The results are shown in Table 2. When compared to equidistant LRAC, LRAC with ADeLiRACI is able

to maintain the reliability of 0.9XX compared to 0.7XX when executed using equidistant LRAC. Reduction of 0.28

is experienced when tasks are executed with equidistant LRAC compared to only 0.01 with LRAC with ADeLiRACI

under described scenario. Secondly, although reliability of the system is maintained with LRAC with ADeLiRACI, it
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is not the highest reliability inspected. LRAC with ADeLiRACI is observed to be below CSCP with SCP (0.9989) and

CPMDMR (0.9995). It is because CSCP with SCP and CPMDMR uses very short interval (33.88 and 18.13 seconds

respectively) compared to 154.92 seconds by LRAC with ADeLiRACI. Shorter intervals means greater reliability but

at the expense of execution time.

6. Conclusions

Checkpointing has been widely used to tolerate fault and increase reliability of the system. However, the checkpoint

intervals must be adjusted appropriately to avoid unnecessary overhead. Equidistant checkpoint interval is widely used

because of its simplicity. However, adaptive checkpoint interval is needed to adapt the system to changes in operating

environment. We proposed a new adaptive checkpoint interval algorithm that takes task deadline and the host’s

lifetime reliability as main parameters. We compare our algorithm with five existing algorithms16,13,11,17,18,5,19,10,12.

For all applications, ADeLiRACI is able to meet the hard deadline along with enhancing lifetime reliability of the

system.
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