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Abstract

An optimal linear arrangement of a finite simple graph G=(V,E) with vertex set V, edge set
E,and |V|=N, is a map f from V onto {1,2,...,N} that minimizes Z{M}EE |f(u) — f(v)|.
We determine optimal linear arrangements for m X n rectangular grids where V' ={1,2,...,m} x
{1,2,...,n} and E={{(i,)),(k,/)}: li—k|+|j—¢|=1}. When m>=n=35, they are disjoint from
bandwidth-minimizing arrangements for which /' minimizes the maximum | f(u)— f(v)| over E.
The different solutions to the bandwidth and linear arrangement problems for rectangular grids is
reminiscent of Harper’s result (J. Soc. Ind. Appl. Math. 12 (1964) 131-135; J. Combin. Theory
1 (1966) 385-393) of different bandwidth and linear arrangement solutions for the hypercube
graph with vertex set {0,1}" and edge set {{(x1,x2,....%,), (V1,y2....,ya)}: D, i — yi| =1}
(© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In this work, we report an optimal labeling (with integers 1,...,mn) of the vertices
of an m x n grid graph which minimizes the sum of the weights of the edges, where
the weight of an edge is the absolute difference in the labels of its incident vertices.
This problem on a general graph is commonly referred to as the linear arrangement
problem, and sometimes also as the wire-length problem. For an excellent overview of
results on this problem and other discrete isoperimetric problems, the reader is referred
to Bezrukov [1] and Chavez and Harper [2].

Since proving our results, we were informed by Sergej Bezrukov about the original
results of Muradjan and Piliposjan on the linear arrangement problem for the rect-
angular grid. It turns out that this work (see [5—7]) appears only in Russian (with
abstracts in Armenian), and due to space constraints with the volume where these re-
sults were published, the proofs are very sketchy; Muradjan apparently never published
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the complete version of his results. For this reason, we were encouraged by Bezrukov
to publish our results with proofs in detail. A brief summary of Muradjan’s results can
also be found in [1]. Larry Harper informed us of the work of Mitchison and Durbin
[4] (who were also seemingly unaware of Muradjan’s work) on the exact solution of
the linear arrangement problem on the (n X n) square grid.

Notation and terminology: Throughout, G,,, for m>n>2 is the graph with vertex
set Vi ={1,2,...,m} x {1,2,...,n} and edge set

Emn = {{(la.]): (k’/)} (l?])r (k?/) € an and |l - k‘ + |] - /| = 1}

We refer to a map f from V,, onto {1,2,...,mn} as an assignment and to the m x n
matrix [a;;] with a;; = f(i,j) as an assignment matrix. Rows are numbered 1,...,m
from bottom to top; columns 1,...,n from left to right.

An assignment f is doubly monotonic if f(i+1,j) > f(i,j) and f(i,j+1) > f(i,))
for all applicable (7, ;) and is complementary if

fGH+fm+1—in+1—j)=mn+1

for all (i,j) € V.

A few special definitions are needed before we state our main theorem.

Given ¢ € {1,2,...,|n/2]}, we consider a 3-part partition of the first # rows of an
assignment matrix (see Fig. 1).

The following definitions apply to a doubly monotonic f with assignment
matrix [a;]:

(I) Section 1 is an up staircase if, for each i € {1,...,t}, a;1,an,...,a; are consec-
utive with a;; = i2.

(IT) Section II is a vertical slats section if, for each j € {t+1,...,n—t}, aij,az),...,a;
are consecutive with aj; = (j — 1)+ 1.

(IIT) Section 11T is a down staircase if, for each i € {1,...,1}, @ip—it1,@in—it2s---»qin
are consecutive with a;,=nt—t(t+1)/2+i(i+1)/2, and, for each j € {n—t+1,...,n—1},
a1j,az), .. .,ay—;; are consecutive with aj; =a,_j41., — (n—j+ 1> + 1.

The first # rows of an assignment matrix for G, or V,, have pattern R,(m,n) if
(I), (II) and (IIT) hold for the given ¢. R4(m,11) is given in Fig. 2.

In addition, row i of [a;;] is a horizontal slat if a;1,ap,...,a;, are consecutive with
ajp=n(i—1)+1 and a;; = ni.
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Fig. 2.

Main Theorem. Suppose m>=n=2. Denote by F the set of all assignments from V,,,
onto {1,2,...,mn}, and for all f € F define L(f) by

L= >, If@— sl
{u,v} EEm
For each t € {1,2,...,|n/2]} denote by f© the member of F that is doubly mono-
tonic, complementary, has pattern R,(m,n) in the first t rows of its assignment matrix
with horizontal slats in rows t + 1 through m —t. Then

in L(f)=L(f")
min (f)=L )
=mn® +n—1)—n—t[2(t*)* — 6nt* + 3n* + 3n — 2]/3,

where t* denotes a value of t € {1,2,...,|n/2]} that maximizes 2t — 6nt* + (3n* +
30— 2)1.

When m=n=9, the unique maximizing ¢ is * =3, and the optimal linear arrangement
for Ggy according to the preceding theorem is as follows. The top three rows are
determined by complementarity and pattern R3(9,9) in the bottom three rows (see
Fig. 3).

An optimal arrangement for the 20 x 20 grid is given below in Fig. 4.

Section 2 notes that we need only consider doubly monotonic assignments in mini-
mizing L( f). Section 3 proves the main theorem when m = n, and Section 4 extends
the proof to m > n.

Remark. 1. The proof of the Main Theorem shows that every optimal assignment is
essentially of the form given, but there are several sources of technical non-uniqueness.
The construction in the lower left and right corners admits some small variation; there
are the obvious symmetries of the rectangle and square; and for some values of n there
are two maximizing values of ¢ (e.g. t* =1 or 2 at n =4).

2. As n— o0, t*/n—1—1/v/2=02928932... .

3. £V is a bandwidth-minimizing assignment (see e.g. [3]). For n>5, it follows
from our work that the m x n bandwidth and linear arrangement problems have no
common assignment.
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4. Let f be the optimal assignment given by the Main Theorem for the n x n grid.
We define a real function g, :[0,1]* — [0,1] as follows:

) = - f ([, Tm))

where [z] is the nearest integer to z. Then ¢, tends in measure to a monotonic,
measure-preserving function g : [0, 11> — [0, 1] which minimizes the value

1 1 1 1
/Og(x,l)dx—i—/o g(l,y)dy—/o g(x,O)dx—/0 9(0,1)dy.

The piecewise-quadratic layout of ¢ is given in Fig. 5 below, with =1 — 1/v/2.

2. Doubly monotonic assignments
Given Gy = (Vin, En) for m=n>=2, let F denote the set of all maps f from V,,,

onto {1,2,...,mn}, and define L on F by
LH= >, /- [l

{u,v} EEmm
We observe first that L is minimized by a doubly monotonic f.

Lemma 1. L(f) is minimized by a doubly monotonic f € F.

Proof. It is well known (see e.g. [8]) that if a; <a; < --- <ag and by <by < --- <bg
then Zle |ak — boiy| is minimized over permutations ¢ on {1,2,...,K} by the identity
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permutation. Moreover, it is obvious that if a; < a, < --- < ak then Zk —x |qoe+1) —
agty| 18 minimized by the identity permutation (or its inverse). Given any f € F with
f(i,j)=aj, define f* by first rearranging the a;; in each row i from smallest to largest
values and then rearranging each column j from smallest to largest values in the first
rearrangement. It is easily checked that f* is doubly monotonic and, by the preceding
observations, that L(f*)<L(f). Consequently, L(f) attains its minimum over F at

some doubly monotonic f. [J

We consider only doubly monotonic assignments henceforth and let F,,, denote the
set of doubly monotonic maps from V,, onto {l1,2,...,mn}. Given f € F,, with
a;; = f(i,j), it follows that L(f) is fully determined by the border values of the
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assignment:

m

L= (an—ain)+ Y _ (aw — ar))

i=1 j=1
m—1 n—1 m—1 n—1

= E ain + § Apj — E a1 — § ai; + 2(7}’17’1 - 1),
i=2 j=2 i=2 Jj=2

where 2(mn—1)=a,,, — a1 +au, —ai;. As a small convenience, we transpose 2(mn—1)
and define L*(f) as L(f) — 2(mn — 1), so

m—1 m—1

n—1 n—1
L= au+Y aw—» an—»  ay
i=2 2 i=2 Jj=2

Jj=

This puts our problem in an isoperimetric form. Subject to double monotonicity, we
seek assignments with relatively small values of a;, and a,,; (last column and top row)
and relatively large values of a;; and a;; (first column and bottom row). The corner
values, ay1(=1), ai, am, and a,,,(=mn), do not figure explicitly in L*(f").
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Fig. 6.
3. Square grids

We assume throughout this section that m =n and will prove the Main Theorem for
this square-grid case. Extensions to m > n are considered in the next section.

Theorem 1. Given m = n>2, define f© for t € {1,2,...,|n/2]} as the member of
F.. that has pattern R,(n,n) in the first t rows, has horizontal slats in rows t + 1
through n — t, and is complementary. Let t* be a value of t that maximizes

263 — 6nt* + (3n* +3n — 2)t over t € {1,2,..., |n/2]}.
Then ) minimizes L(f) over f € F,, with
L)Yy =n(n® +n—2) — *[2(:*) — 6nt* + 30> + 3n — 2]/3.

When n € {2,3,4}, t* = 1 maximizes 2> — 6nt> + (3n> + 3n — 2)t over t €
{1,2,...,|n/2]}, and in these cases one optimal assignment is composed entirely of
horizontal slats with

L(f M) = n(n* = 1).
Optimality for these cases is easily verified by inspection. When n=4, we have a joint
t-maximizer at t* =2. This gives the second of the following assignments; see Fig. 6.
For both, L* =30 and L=60. The second has pattern R,(4,4) in rows 1 and 2, and
rows 3 and 4 follow from these by the complementarity equation a;; + as_;s—; = 17.
We assume henceforth in this section that n>5. We then have * >2 in Theorem 1.
This is reflected in the following lemma. As before a;; = (i, /).

Lemma 2. Suppose m=n=5. If f € F,, minimizes L(f) then ay =4.

Proof. Assume without loss of generality that, a;; = 2. The lemma says that a mini-
mizing f must have

3 4
1 2

in the lower left corner of its assignment matrix. Suppose f € F,, does not have this
pattern. Then one of the following occurs in the lower left corner:
4
3 4

1 2 3 4 , , 3.
1 2 4 1 23 | 2
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By interchanging 3 and 4 in the third array, or by interchanging 2 and 3 followed by
matrix transposition in the fourth array, we obtain an f with the same L*(f) as the
second array. Hence it suffices to consider only the first two patterns.
Suppose row 1 begins 1 2 3 4. Then double monotonicity implies the following for
rows 1 and 2:
k+1 p
1 2 3 4 - K
We now move 3 and 4 into position (2,1) and (2,2), and put £ + 1 and p into the
first row, shifting other things in row 1 leftward to preserve monotonicity. The new
array is
3 4
1 2 -+ k k+1

and it is easily seen to be doubly monotonic. The changes remove 4 from the border
area with negative coefficients in L*(f), i.e., the left side and bottom row, but add at
least p > k + 1 > 4, so there is a net reduction in L*. Hence an optimal arrangement
cannot have 1 2 3 4 in row 1.

Suppose row 1 begins 1 2 4 with ay; = 3. Let ay; = p>=5. Increase entries 4,5, ...,
p—1 by 1 each, then enter 4 in position (2,2), so now ay; =4. The changes preserve
double monotonicity, increase the lower border by at least 1, do not decrease the left
border, and do not change the upper or right borders between the corners. Hence the
changes cause a net decrease in L*, so the array in the first sentence of this paragraph
cannot be part of an optimal arrangement. [

A4<k<n, k+1< p.

(k not in row 1 if k =4)

We now extend Lemma 2, beginning with ?2‘ in an optimal arrangement. Double

monotonicity requires a;3 =5 or a3; =5, and because m = n we assume, without loss
of generality, that a;3 =5 to obtain

34 p

1 25
If p > 6, we increase each of entries 6,7,..., p—1 by 1 and enter 6 in position (2,3).
This preserves double monotonicity and increases the lower and left border sum by
least 1. If a,n, < p, it will also increase the top border sum (between corners) by
exactly 1, but in this case monotonicity implies that a3; through a,_;; each increases
by 1 along the left border, and the net result in any case will be a reduction of L*.
Hence, when n>5, an optimal arrangement must have

346
1 25

given our choices of 2 and then 5 in row 1.

Define P;(k) as the ¢ x (¢ 4+ k) matrix whose first ¢ X ¢ section is an up staircase and
whose next k columns are vertical slats with a;; =(j —1)t+1 for j=¢t+1,...,t+ k.
When t<n/2 and k =n — 2t, we obtain R,(n,n) by adjoining a ¢ x ¢ down staircase to
the right end of P;(n — 2t).

with p>6.
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Fig. 7.

Lemma 3. Suppose n=r>=5 and assume, without loss of generality that, if f € F,,
has a t X t up staircase in its lower left corner with 1<t <vr then f(1,t +1)=
t* + 1. Then every f € F,, that minimizes L(f) includes one of the P,(r — 2t) for
t=2,3,...,|r/2].

Proof. We prove the lemma by induction on ». Lemma 2 and the paragraph that
follows its proof verify Lemma 3 for » =5 : P,(1) is

3 406
1 2 5°

Assume that the conclusion of Lemma 3 holds for an arbitrary »>5. As we consider
cases for » + 1, we repeatedly use the argument noted above for p > 6. Its general
form is: ‘If p > ¢, increase each of entries c,c+1,..., p—1 by 1 and enter ¢ into the
position previously occupied by p. This preserves double monotonicity and produces
a net reduction in L*.” We abbreviate the statement in quotes by: replace p by c. In
each such instance the second sentence of the quote is easily seen to be true and we
often omit details.

Our induction hypothesis assumes that an optimal f for n>r includes P,(r — 2t)
for some ¢ € {2,...,|r/2]}. Suppose in fact that n>=r + 1, we are to show that f also
includes P,(r + 1 — 2¢) for some ¢ € {2,...,|(r + 1)/2]}. We divide the hypothesis’
cases into r — 2t =0, »r — 2t =1 and r — 2¢>2. Given that an optimal f includes
P,(r—2t), and n=r 4 1, we prove that

r—2t=0= f includes P,(1),
r—2t=1= f includes P,;(0) or P,(2),

r—2t=k>=2= f includes P,(k + 1).

Suppose f includes the ¢ x ¢ up staircase P,(0) with » = 2¢. By convention,
ar1 = f(1,t+1)=1¢>+1. Let ¢3,¢3,...,¢; denote the next ¢ — 1 entries in column
t+ 1 of f’s assignment matrix (see Fig. 7).

If ¢co >1* + 2, replace ¢; by 1> +2; if ¢3 > 1> + 3, replace c3 by > + 3;...; if
¢, > t* +t, replace ¢; by t* +t. Each replacement decreases L*, so our assumption of
optimality for f implies that its £+ 1st column begins #>+ 1,2 +2,...,1>+¢, hence that
f includes P,(1). To check for decreasing L* in the final step, suppose ¢,_; =t>+¢—1
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Fig. 8.
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4 2+2 o
1 241 24+t+1
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Fig. 9.

and ¢, > > + t. Then, by double monotonicity, either a,,1; = ¢> + ¢ (left border) or
ayr42 =1t>+1 (bottom border), and this entry increases to > +¢+ 1 in the replacement
of ¢; by 2+t If t >2 and a,; <c¢;, for i € {2,3,...,t}, so that all of a,, through
ay; increase by 1 in the replacement, then all of @,y through a,_;; in column 1 also
increase by 1; there are n — ¢ — 1 of the latter, and i — 1<t — 1 positions in the top
row, and because n—t—1 >t —1, i.e., n > 2t =r, there is a net reduction in L* in the
upper left part of the assignment matrix. If # > 2 and ay, < ¢;, so that ap, increases
by 1 in the replacement, all of a; ,., through a; ,—; in row 1 also increase by 1; there
are n —t — 2 of the latter, and ¢# — 2 positions in column # strictly between rows 1 and
t, so because n —t — 2 >t — 2 there is a net reduction in L* in the lower right part of
the matrix.

Suppose next that f includes P,(1) with » =2¢+ 1. P,(1) is the ¢ X ¢ up staircase
followed by a vertical slat of height ¢ in column 741 with a; ;41 = 2+ 1. We consider
two cases according to whether @,y or aj ;i is 2 +1t+1 (see Figs. 8 and 9).

Suppose a;11,1 = +t+1.If by > P +1+42, replace b, by PAt+2;if by > 2 +1+3,
replace b3 by 2 +t+3;...; if by > 2+t +(t+1)=(t+ 1) replace b1 by (t+1)%.
This produces the (¢ + 1) x (¢+ 1) up staircase P, 1(0). Suppose a,» =1>+t+ 1. If
cy > 1> +t+2, replace ¢; by 2 +t+2;...; if ¢; > t* + 2t, replace ¢; by > + 2¢. This
produces P;(2). It follows that f includes either P;,1(0) or P;(2).

Finally, suppose f includes P,(k) with k=r —2¢>2. Then, by double monotonicity,
either ay i py1 =2> +kt+1 or a1 =1> +kt + 1. Suppose aj 451 =1> +kt + 1; see
Fig. 10.
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2 2+t t2 + kt c
4 2 +2 2+ (k—-1)t+2 2
1 2+1 2+ (k-1Dt+1 | 2+kt+1
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Fig. 10.
t+1 | 2+kt+1 by --- b besr besk
t 2| 2+t t2 + kt
2 4 2 +2 2+ (k—1)t+2
1 1 241 2+ (k- 1)t+1
Fig. 11.

If ¢ > 1> + kt + 2, replace ¢, by > +kt +2;...; if ¢, > > + (k + 1)¢, replace ¢, by
t2 + (k + 1)t. This produces P,(k + 1). Suppose a,11 = t> + kt + 1; see Fig. 11.

If by > > +kt+2, replace by by 12 +kt+2;...; if byyy > > +kt+(t+k), replace b,
by > + kt + (¢ + k). Despite the fact that these replacements reduce L*, the resulting
(t+1)x (¢t+k) array is not a P array and cannot be part of an optimal f. To verify
suboptimality, observe that the resulting array has precisely the same dimensions as
P, 1(k— 1) and contains the same entries, namely 1 through (z 4+ 1)(¢ + k). However,
its left and bottom border sum is less than the similar sum for P, ;(k — 1), so its L*
contribution is greater than that of P, (k — 1). Specifically, the difference of the left
and bottom border sums of P, (k — 1) and the preceding array is

k—1
{(t2+t+l)+(t2+1)+Z[(t+1)2+(i—1)t+1)}

i=1

k
—{(t2+kt+1)+2[t2+(i— 1)t—|—1]} k-1
i=1

Hence, if optimal f includes P,(k) with k = r — 2¢>2, then it also includes
P(k+1) O

We now conclude the proof of Theorem 1 for n>5. Assume that f € F,,, minimizes
L(f). Set r=n in Lemma 3. Then f’s assignment matrix includes one of the P,(n—2t)
for t=2,3,...,|n/2]. In doing this we have assumed, without loss of generality, that
for £ > 0 in P;(k), the k slats which follow the 7 x ¢ up staircase extend rightward
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A B C
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t{| tx(n—1t) | M tx(n—t) | M L Mg
et t<s s<t
Fig. 12.

along the bottom rather than upward along the left side: they are height-¢ vertical slats
rather than width-# horizontal slats.

A symmetric conclusion holds for the upper right section of the matrix. If we define
bij by bij = 41— aij, so b,, =1, the b;; increase monotonically away from the
upper right corner and all signs in L* are reversed when its a;; are replaced by the
bij. However, we can no longer assume for £ > 0 in the upper right counterpart of
P,(k) that the slat section adjacent to the upper right ¢ x ¢ section extends leftward
along the top rather than downward along the right side. The sum of the top row and
right column border values within the rectangular sections will be identical, but they
fit differently with the P,(n — 2¢) lower-left rectangle of the preceding paragraph.

To evaluate the possibilities, assume that a doubly monotonic assignment matrix
has the ¢ x (n — ¢) submatrix P,(n — 2¢) in the lower left and either an s x (n — s)
or an (n —s) x s submatrix counterpart of Pi(n — 2s) in the upper right, with s,¢ €
{2,3,...,|n/2]}. Each submatrix has n — 2 border entries excluding the corner entry.
Fig. 12 outlines the possibilities.

In each of A, B and C, M| and M; are square submatrices. For example, M, is
t xtin A and B, and (n — ¢) x (n — ¢) in C. Submatrix M; is (n —s —¢t) X n
in A, (s—1¢)xnin B, and n x (¢ —s) in C. By construction, the smallest inte-
gers in {1,2,...,n*} are in the ¢ x (n — t) submatrix, and the largest are in the
s X (n—s) or (n—s)x s submatrix. Given those arrays, L* is minimized in each
case by down staircases in the lower right square submatrices (M, for A and B,
M; for C), down staircase counterparts in the upper left square submatrices (M;
for A and B, M; for C), and width-n horizontal slats (A, B) or height-n verti-
cal slats (C) in M,. We can do no better under double monotonicity, which re-
quires aj, — al,n,j+1>j2 — 1 in the lower right corner, a,; — @u—j+11 =2~ 1 in
the upper left corner, and aj, — a;;=n — 1 and a,; — a;;=n — 1 for width-n and
height-n rows and columns. To allow the down staircases and full-length slats in
minimization of L* while preserving double monotonicity, all integers assigned to
M, are less than those assigned to M,, which in turn are less than those assigned
to Ms.
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The contributions to L* from the border entries of M, M, and M3, excluding the
extreme corners, are

L= =D+ @ =D+n—1)n—s—1),

=2 i=2

L[B]=) (- 1)+i(i2— D+ (n—1)s—1t),

i=2 i=2
s n—t
LCI=) (@ =1+ > (= 1)+ n— 1)t —s)
i=2 i=2
It suffices to compare L*[A4] and L*[B], assuming ¢ <s. Clearly, L*[A]=L*[B] if s=n/2.
Otherwise L*[A] < L*[B]:

L*[B] — L*[A] = [2n® — (65 + 3)n* + (65* + 65 + 1)n — s(4s* + 2)]/6

and calculus shows that the right-hand side is positive if s < n/2. Hence, for fixed s
and ¢, L* is minimized by A. We proceed with A. Computation gives

L(A with s and ) = n(n* + n — 2) — s[2s* — 6ns + 3n> + 3n — 2]/6
—t[2¢* — 6nt + 3n* + 3n — 2]/6.

Consequently, L(f) for f € F,, is minimized when s = ¢ =k, where k is a value in
{2,3,...,|n/2]|} that maximizes 2k* — 6nk® + (3n*> +3n —2)k. We denoted such a k in
Theorem 1 by ¢*. By the construction for A, the corresponding f has pattern R;(n,n)
in the first #* rows, horizontal slats in rows ¢* + 1 through n—¢*, and can be presumed
to be complementary by using the complementary counterpart of R,«(n,n) in the top
t* Trows.

4. Nonsquare grids

We assume throughout this section that m > n and consider the Main Theorem for
this case. The result mentioned earlier, that one optimal f € F,, for n<4 consists
entirely of horizontal slats, applies also to f* € F),, for n<<4. This is obvious for n=2
and nearly so for n =3, but requires a little effort to verify it for n =4. We omit the
n=4 proof, which can be patterned after the ensuing proof of Theorem 2, and assume
henceforth that n>5.

Theorem 2. Given m > n>=5, f € F,, minimizes L(f) if it has pattern R;(m,n)
in the first t* rows, has horizontal slats in rows t* + 1 through m — t*, and is
complementary, where t* is a value of t that maximizes 2t> — 6nt*> + (3n> 4+ 3n — 2)t
over t € {2,3,...,|n/2|}. The minimum of L(f) for f € Fy, is

m(n* +n—1)—n—t*[2(t*) — 6nt* + 3n* + 3n — 2]/3.
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We begin the proof with an extension of Lemmas 2 and 3. To account for the
asymmetry of m > n, we refer to the ¢ x (¢ + k) lower left matrix P,(k) as defined
in the preceding section as a horizontal P,(k). A vertical P,(k) can be defined as
the (¢ + k) x t transpose of a horizontal P,(k), or as the lower left (¢t + k) x ¢
matrix which consists of a ¢ x ¢ up staircase directly beneath & width-# horizontal
slats with a;; = (j — 1)t + 1 for j =1t + 1,...,t + k. These two versions of a
vertical P,(k) are not identical (in the initial ¢# x ¢ part), but they have identical border
sums.

For the upper right section of an m X n assignment matrix, we define a horizontal
P,(k) as the ¢ x (¢ + k) matrix that is the complementary counterpart of a horizontal
Pi(k). That is, fori=m—t+1,...,mand j=n—t—k+1,...,n, a; for 13,(k) equals
mn~+1—apq1—iny1—;, where the latter a comes from P, (k). Similarly, a vertical 13,(k)
is the (¢ 4+ k) x t complementary counterpart in the upper right section of a vertical
P.(k).

Lemma 4. Every f € F,, that minimizes L(f) includes a horizontal or vertical
Pi(n—2t) for some t € {2,3,...,|n/2|}, and includes a horizontal or vertical P,(n—2t)
for some t € {2,3,...,|n/2|}, subject to variations in t X t lower left and upper right
matrices that do not change border sums.

Proof. All operations in the proofs of Lemmas 2 and 3 remain valid (including ‘replace
p by ¢’) when m > n excepting those based on the symmetry created by m = n. Joint
consideration of horizontal and vertical P;(k) accounts for the asymmetry introduced
by m > n. The joint extension of Lemma 3 for m > n>=r>5 under the relaxation for
t x t noted at the end of Lemma 4 yields the P;(n — 2¢) part of Lemma 4 when we
set # =n, and the P,(n — 2t) part follows from the P,(n — 2t) part by complementarity
when b;; is defined by b =mn +1—a;;. U

We complete the proof of Theorem 2 in a manner similar to that for Theorem 1
with n>5 based on Fig. 12. Fig. 13 illustrates four situations of Lemma 4. We use
P,(n — 2t) in the lower left and P,(n — 2s) in the upper right.

M, M, and M3 for A, B and C are assigned integers in the manner described for
A and B in Fig. 12 with minimum border contributions to L* as follows:

L*[A]:Z(i2—1)+2(i27 D+ (m—1)(m—s—1t),

i=2 i=2

L*[B]:Z(iz— 1)+i(z‘2— D+m—1)(m—n+s—1t),

i=2 i=2

n—t n—s

LCI=) (@ =D+ ) =D+ = 1)m—2n+s+1).

i=2 i=2
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A B
M; | sx(n—ys) M; | (n—s)xs
M, h M,
tx(n—t) | M tx (n—1t) ’ M,
horizontal P horizontal P,
horizontal P, vertical P,
C D
M, (n—s)xs (n—s)xs
T e Rl
et M, e
vertical P, vertical overlap

vertical P,

Fig. 13.

We presume in the B and C cases that there is no vertical overlap, i.e., that 2>0.
This requires m>=n —s+¢ for B and m>2n —s — ¢ for C. We return to overlap cases
shortly.

Comparisons of the preceding L* sums show in all cases that L*[A4] has minimum
value. For example,

3[L*[C]—L*[A]]=2n° —=3(s+t+ )n® + (3s* + 35+ 32 + 3t + 1)n
—s(2s* + 1) —1(2s* + 1)

and this is positive when s,7<n/2 unless s =t = n/2, in which case L*[C] = L*[A4].
Hence A will minimize L(f) for f € F,, with best choices of s and ¢, which are
identical to those for the square grid case as stated in Theorems 1 and 2. The additional
height of m —n simply means that this many new horizontal slats are inserted into the
midsection of an optimal assignment of Theorem 1 to produce an optimal assignment
for Theorem 2. The minimum of L(f) at the conclusion of Theorem 2 is given by
straightforward calculation.

Because m > n, vertical overlap cases like D in Fig. 14 require somewhat different
treatment. We consider the situation shown by D in more detail: see Fig. 14.

Contributions to L*[D] from sections (a) and (c) must be as great as those given by
down staircase patterns, and the contribution from (b) must be at least A(m—1+m—n)
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(a)
(m=—n+t) :
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t h
Fig. 14.
by double monotonicity. Therefore,
m—n-+t m—n-+1
L'D]-L4]> Y @ -D+ Y @ -D+2n—(m+s+0]2m—n—1)
i=2 i=2

> @E-D=) - —(n—1)(m—s—1).
=2 =2
With p =m — n, we have
6[L*[D] — L*[A]] = 4p° + p*[3(2t + 1)+ 3(2s + 1)]

4+ plQ2t + 1) 4+ 26(t 4+ 1) + (25 + 1)* + 2s(s + 1)]

—12p(p+s+1).

Because s,¢>2, 3(2¢t + 1) + 3(2s + 1)>30 and (2¢ + 1)> + 2£(t + 1) > 12¢, so the
—12 p(p+s+t) term is more than offset by positive terms. Hence L*[4] < L*[D]. Other
vertical overlaps, in which one of P, and }SS is horizontal, have the same conclusion.
We omit their details.
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