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Abstract 

We characterize the proof-theoretic strength of systems of explicit mathematics with a general 

principle (MID) asserting the existence of least fixed points for monotone inductive definitions, 
in terms of certain systems of analysis and set theory. In the case of analysis, these are systems 
which contain the C&axiom of choice and @-comprehension for formulas without set param- 
eters. In the case of set theory, these are systems containing the Kripke-Platek axioms for a 
recursively inaccessible universe together with the existence of a stable ordinal. In all cases, the 
exact strength depends on what forms of induction are admitted in the respective systems. 
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1. Introduction 

Explicit mathematics has been devised by Feferman in [6, 71 as a framework in 
which to develop mathematics based on constructive grounds. Furthermore, systems 
of explicit mathematics have been used in proof-theoretic reductions of subsystems of 
second-order arithmetic and set theory. 

Systems of explicit mathematics are theories of operations and classifications in 
which the latter are members of the universe of discourse and hence may be taken as 
arguments and/or values of operations. They are explicit in the sense that functions and 
classes are regarded as explicitly represented entities in the universe of discourse, hence 
the theories are intensional in that respect. They are constructive in the sense that all 
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operations may be interpreted as partial recursive functions, even if the underlying logic 

is taken to be classical. More importantly, the degree to which they are constructively 

justified hinges on the construction principles for classifications they contain. In that 

respect, the systems we consider are somewhat on the verge of constructivity, since 

they postulate least fixed points of very general operations. This requires at least a 

somewhat broadened understanding of what a constructive process should be. 

Systems of explicit mathematics may be considered in either classical or intuitionistic 

logic; in this paper they are treated within classical logic only. It is an open question 

whether the systems we deal with retain the same proof-theoretical strength if used with 

intuitionistic logic instead. If not, that would be a radically different situation from what 

was met before with the system To of explicit mathematics and its subsystems. 

Proof-theoretic reductions using these systems are of two-fold use: on the one hand 

they illuminate the principles of the “constructive” theories of explicit mathematics and 

the extent to which they allow the development of constructive mathematics. On the 

other hand, they provide a constructive justification for prima facie non-constructive 

subsystems of second-order arithmetic and set theory in the sense of reductive proof 

theory. 

The object of investigation from the first of these viewpoints is the constructive 

theory in its own right, its principles are explained in terms of more familiar, but in 

general non-constructive systems. This approach has been predominant in the investiga- 

tions of proper subsystems of To, cf. e.g. [6, 7, 9, 2, 12, 131. Here one usually obtains 

a conservation result of a theory of explicit mathematics over a system of second-order 

arithmetic or inductive definitions which is more or less obviously contained in it. 

In contrast to this, the object of study in reductive proof theory is the non-constructive 

system. The goals of this approach are of a foundational rather than a technical nature. 

Using explicit mathematics as the constructive framework, the most prominent example 

of this is the proof theoretic reduction of Ci-AC+(BI) (or KPi for that matter) to To 

by Jlger [ 171 and Jager and Pohlers [ 191. Similar results in a different constructive 

framework, namely that of Martin-LGf type theory, have recently been obtained by 

Griffor and Rathjen in [14] and independently by Setzer in [24]. 

The results of the present paper contribute to both aspects of these proof-theoretic 

reductions, but in contrast to the previous cases it is hard to say which aspect is more 

interesting: Do we learn more about the working of the constructive system or do we 

gain more confidence into the non-constructive systems used in the characterization? 

Both of these aspects will be considered and both are equally important. 

The subject of our investigations are extensions of explicit mathematics by the prin- 

ciple (MID) which asserts the existence of least fixed points of arbitrary monotone 

operations. Since inductive definitions form a very powerful yet still constructively ac- 

ceptable principle, the interest to understand this principle in the context of explicit 

mathematics is obvious. We quote from Feferman’s article [8, p. 881: 

What is the strength of To + (MID)? [. . .] I have tried, but did not succeed, 

to extend my interpretation of To in .X:-AC + (BI) to include the statement 
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(MID). The theory To + (MID) includes all constructive formulations of itera- 

tion of monotone inductive definitions of which I am aware, while Ta (in its 

(IG) axiom) is based squarely on the general iteration of accessibility inductive 

definitions. Thus it would be of great interest for the present subject to settle 

the relationship between these theories. 

We provide (the major part of) an answer to this question by proving the following 

theorem (cf. Theorems 9.1 and 10.1): 

Theorem. Let F be a .Zi-sentence. 

(a) The following are equivalent. 

1. EM0 I+ (Join) + (IG) I+ (MID) t F 

2. C&AC0 +(&CA-) I-F 

3. KPi’ + 3y(L, 41 L) I- F 

(b) Analogously, the following are equivalent. 

I. EM0 + (Join) + (IG) / + (MID) k F 

2. Z&AC + #-CA-) t- F 

3. KPiw + 3y(L, +i L) k F. 

Here (II:-CA-) asserts comprehension for ZI&formulas without set parameters. The 

systems KPi’ and KPiw of Kripke-Platek axioms for a recursively inaccessible universe, 

with restrictions on induction principles, which were introduced in [ 191, are described 

in Section 2.3. Actually, our results also show that the proof-theoretic strength of the 

theories does not increase if we add Church’s Thesis since the models we use are 

based on the model of partial recursive indices for the operations. Also, there are some 

extensions of our results which are discussed in Remark 9.3. 

Looking at these results from the perspective of reductive proof theory, we have 

obtained a reduction of axiom systems of second-order arithmetic and set theory with 

very strong non-constructive axioms to explicit mathematics. Actually, the strength of 

these theories is so big that until now there have not been any constructive justifications 

for systems of that strength in the literature. 

Next, we want to go briefly into the history of investigations of proof-theoretic 

strength for systems of explicit mathematics with (MID). First investigations (after 

the problem had been posed by Feferman) in this direction were begun by Takahashi, 

cf. [27]. It turned out that even the construction of models of Ts + (MID) was surpris- 

ingly difficult. Takahashi showed that Te + (MID) can be interpreted in the fragment of 

analysis with ZZ:-comprehension and bar induction. The question whether To + (MID) 

is stronger than To remained open. 

Using Takahashi’s models for proof-theoretic reductions using asymmetric interpre- 

tations, Glag in [ 121 obtained a characterization of many subsystems of To + (MID) in 

terms of theories of second-order arithmetic. As already noted by Takahashi, in absence 

of (restricted) (IG) the strength of (MID) collapses to the strength of accessibility in- 

ductive definitions. When this axiom is present, GlaB’ work, which is one source of 
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a part of the present paper, uses strong monotone inductive definitions in the context 

of second-order arithmetic for a characterization. However, a direct estimate for the 

strength of these systems was not achieved there. 

The actual reason for the strength of the axiom (MID) in the presence of (restricted) 

(IG) was illuminated by Rathjen in [21], thereby providing the key to a computation 

of the proof-theoretic strength of theories containing (MID) in terms of well-known 

principles in second-order arithmetic and, more importantly, in set theory. Namely, it 

was shown that, in the presence of (restricted) (IG) and (Join), (MID) allows to prove 

the existence of inductively generated sub-fixpoints of non-monotonic inductive defini- 

tions. To do this, sophisticated techniques used by Harrington and Kechris, cf. [15], to 

reduce non-monotonic induction to suitable forms of monotonic induction were applied. 

In the present paper, we again use the machinery of generalized recursion theory for 

non-monotonic inductive definitions. Drawing on ideas from Cenzer’s paper [4], we 

show that the non-monotonic inductive definitions can be used to construct sets with 

strong stability properties. These stability properties in turn imply the existence of sub- 

fixpoints of the respective non-monotonic inductive definitions, so the characterization 

is faithful. 

Let us present a short overview of how the paper is organized. This will show an, 

in our opinion, interesting interplay of techniques from the areas of proof theory, set 

theory, second-order arithmetic, explicit mathematics, inductive definitions and general- 

ized recursion theory, which is, in addition to the above intentions of this investigation, 

one attractive feature that triggered our interest in these questions. 

After assembling the necessary preliminaries on theories of second-order arithmetic, 

explicit mathematics and set theory in Section 2, we consider stability notions and show 

that they imply the existence of sub-fixpoints of non-monotonic inductive definitions in 

Section 3. Section 4 then gives a careful account of Takahashi’s models for (subsystems 

of) To + (MID) which is used in the following section to give a reduction of these 

systems into systems of set theory axiomatizing the existence of a stable ordinal. 

Sections 6-8 then serve to prepare the converse reduction: In Section 6 we show in 

a purely proof-theoretic manner that the stability axiom in our theory can be reduced 

to some “local instances” of stability. Section 7 forms the recursion-theoretic heart of 

the proof in that it shows that closure ordinals of non-monotonic inductive definitions 

give rise to ordinals with strong stability properties. Section 8 then simply uses the 

well-known technique of representation trees to transfer the situation to second-order 

arithmetic, which is more easily interpreted in systems of explicit mathematics. In Sec- 

tion 9 we combine all the previous work to give our first main result, namely, the 

proof-theoretical equivalence between the systems of explicit mathematics and those of 

set theory as given by the theorem mentioned above. The main new ingredient in this 

section is an application of the main theorem of Rathjen’s [21] to achieve the reduction 

back into explicit mathematics. Finally, in Section 10 we provide a characterization of 

the strength of these theories in terms of axiom systems for second-order arithmetic 

with comprehension for II:-formulas without set parameters, before we close the paper 

with some outlook on future work and open questions. 
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2. Preliminaries 

2.1. Subsystems of second-order arithmetic 

The language 32 of second-order arithmetic contains (free and bound) number vari- 

ables a,b,ao,al,..., x,y,z ,..., (free and bound) set variables A,B,Aa,Ai ,..., X,Y,Z ,..., 

constants 0, 1, function symbols +, ., and relation symbols =, <, E. 

Terms are built as usual, formulas are built from the prime formulas s = t, s < t, 

and s E A using A, V, 7, VX, 3, VX and 3x where s, t are terms. 

As usual, number quantifiers are called bounded if they occur in the context 

VX(X < s -+ . . .) or 3x(x < s A . . .) for a term s which does not mention x. The L$- 

formulas are those formulas in which all quantifiers are bounded number quantifiers, 

Cg-formulas are formulas of the form 3xiVx2 . . . Qx#, where F is L$, II:-formulas are 

those of the form Vxi3~2.. . QxkF. Th e union of all ZZp- and Ci-fon-nulas for all k E N 

is the class of arithmetical or Lrk-formulas. The Z:(ZIi)-formulas are the formulas 

Xi V& . . Q&F (resp. VXi 3x2 . . . @r&F) for arithmetical F. 

When arguing in formal theories we also say that a formula belongs to one of 

these formula classes if it is equivalent to one formula of the class over the basic 

theory IIL-CAc. But we will comment on these identifications when they are used in 

a non-obvious way. 

The basic axioms in all theories of second-order arithmetic are the defining axioms 

of 0, 1, +, ., < and the induction axiom 

VX(0 E x A Vx(x E x --f x + 1 E X) + Vx(x E X)), 

respectively, the schema of induction 

F(0) A Vx(F(x) -+ F(x + 1)) + VxF(x), 

where F is an arbitrary L?2-formula. 

We consider the axiom schema of %-comprehension for formula classes %? which is 

given by 

(g-CA) 3xVx(x E X (--f F(x)) 

for all formulas F E 97. 
We only will consider theories containing at least (nk-CA). For each axiom schema 

(Ax) we denote by Ax the theory consisting of the basic arithmetical axioms, the 

schema of (K&-CA), the schema of induction and the schema (Ax). If we replace the 

schema of induction by the induction axiom, we call the resulting theory Axe. 
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An example for these notations is the theory II:-CA which contains the induction 
schema, whereas II:-CA, only contains the induction axiom in addition to the com- 
prehension schema for fli -formulas. 

In the framework of these theories we can introduce defined symbols for all primitive 
recursive functions, especially we can define a pairing function (., .) along with its 

inverses. 
Using these pairing functions, we can consider (within our theory) a set A as a 

sequence (A,)n of sets, where A, = {m : (n,m) E A}. Also, for a binary relation +, 
we can define A+, = {m : In’ -x n(n’,m) E A}. 

Using this, we can formulate another axiom schema we will encounter, namely the 
axiom of choice for formulas in %? given by 

(V-AC) ‘v’x3YF(x, Y) -+ 3YVXF(X, Y,). 

Furthermore, we can introduce a primitive recursive standard wellordering 4 of 
order type ~0, cf. e.g. [23, 22, 201. W.1.o.g. 0 is the least element of this wellordering 
whose elements we denote by lower case Greek letters. Also, we can define ordinal 
addition, multiplication and exponentiation on this order relation as primitive recursive 
functions. Since all our theories contain Peano Arithmetic, we have TI(Q,F) for all 
nk-formulas F and all elements a of a denoting ordinals below ~0. Here 

TI(a,,F) = vX(vy a XF(y) -+ F(X)) -+ vX a s(X). 

If the theory additionally contains the induction schema, TI(a,,F) can be proved for 
all a 4 EO and all formulas F. 

Using these notations for ordinals we can define another principle which will be 
used in this paper. 

Definition 2.1. (a) Let Un; be a universal fit -formula, cf. e.g. [25]. Then the hyper- 
jump of a set A is HJ(A) = {(X,y) : Up[x,y,A]}. 

(b) For a formula F, let the formula SF(a,A) be given by 

c?‘&(a,A)wctcc field(a)~V~Vy(y EA, -xaa~F(~,y,A~~)). 

XF(a,A) expresses that A is the set obtained by iterating the formula F along 4 up 
to a. 

(c) The axiom schema of a-times iterated n!-comprehensions is given as the uni- 

versal closure of 

(n;-CA,) xzF(a,X) 

for all n,‘-formulas F. 
(d) The axiom schema (ni-CA,b) consists of all axioms (n,‘-CA,) for a <I /3. 

Remark 2.2. The most important application of the above definition is that it allows 
to prove the existence of iterated hyperjumps. This is the special case for the formula 
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F (with parameter A) given by 

F(x,y,X) E (x = 0 A y E A) V (Sue(x) A y E HJ(X)) V (Lim(x) A y E X), 

where Sue(x) indicates that x denotes a successor ordinal in a, and Lim(x) that it 

denotes a limit ordinal. The (unique) set B such that X~(CC’,B) holds is denoted by 

HJ(a,A). Here ~1’ is the successor of a w.r.t. 4. 

The following connections between subsystems of second-order arithmetic will be 

used. 

Proposition 2.3. (a) On the basis of (say) Zi’k-CAa, (CA+,-AC) implies (A!,+,-CA), 

especially it implies (ZIA -CA). 

(b) The theory Ci-AC proves each instance of Ii’;-CA, for CI denoting an ordinal 

less than .zo, therefore it contains the theory IIt-CA,,,. 

(c) C:-AC, is conservative over II:-CA0 for ZIll-sentences. 

(d) Zi-AC is conservative over ZIl’i-CA,,, for Ill-sentences. 

Proof. This was originally proved by Friedman in [ 111, but it can also be found in 

[9, Theorem 2.2.11. 0 

2.2. Systems of explicit mathematics 

The language of EMo, _5?a~@, has two sorts of variables. The free and bound variables 

a,b,c,... and x,y,z... are conceived to range over the whole constructive universe 

which comprises operations and classijications among other kinds of entities; while 

upper-case versions of these A, B, C, . . . and X, Y, 2,. . . are used to represent free and 

bound classification variables. 

0, sN and pN are operation constants whose intended interpretations are the natural 

number 0 and the successor and predecessor operations. Additional operation constants 

are k, s, d, p, PO, and pt for the two basic combinators, definition by cases on the natural 

numbers, pairing and the corresponding two projections. Additional for the uniform 

formulation of classification existence axioms the constants j, i and c, with n E N are 
used for join, inductive generation, and comprehension. 

The terms of EM0 are just the variables and constants of the two sorts. The atomic 

formulas of EM0 are built up using the terms and four primitive relation symbols =, 

N, App, and E as follows: if q,r,rl,rz are terms, then q = r, N(q), App(q,rt,rz), and 

q E P (where P has to be a classification variable) are atomic formulas. App(q,rt, r2) 
expresses that the operation q applied to rl yields the value r-2; q E P asserts 3 that q 
is in P or that q is classified under P. 

We write tlt2 e t3 for App(tl, t2, t3). 

3 We use the symbol 2” instead of “E”, the latter being reserved for the set-theoretic elementhood relation. 
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The set of formulas is then obtained from these using the propositional connectives 
and the two quantifiers of each sort. 

In order to facilitate the formulation of the axioms, the language of EM0 is expanded 
definitionally with the symbol N, and the auxiliary notion of an application term is 
introduced. The set of application terms is given by two clauses: all terms of EM0 are 
application terms, and if s and t are application terms, then (st) is an application term. 

For s and t application terms, we have auxiliary, defined formulas of the form: 

s N t := Vy(s N y H t P! y), 

if t is not a variable. Here s N a (for a a free variable) is inductively defined by s N a is 
s = a, ifs is a variable or a constant, and s 21 a is 3, y[si N x A sz N y A App(x, y, a)], 
ifs is an application term (~1s~). 

Some abbreviations are ti tz . . .t,, for ((. . .(tltz). . .)tn); tl for 3y(t N y) and 4(t) for 
3y(t N y A d(y)). If s, t are application terms, where t is not a classification variable, 
then s E t is short for 3X[t N X AS E X]. 

Some further conventions are useful. Systematic notation for n-tuples is introduced as 
follows: (t) is t, (s, t) is pst, and (tl,. . . , t,) is defined by ((tl ,. . .,t,-I),&). t’ is written 
for the term sNt. s $X and s # t are short for ~(s E X) and ~(s = t), respectively. 
Vx’xe Y(...) stands forVx((xc Y -+ . . .). Similar conventions apply to 3. Variables k, n, m 
are supposed to range over N; Vx E N and 3x E N are short for Vx(N(x) ---t . . .) and 
%(N(x) A . . .), respectively. 

Giidel numbers for formulae play a key role in the axioms introducing the constants 
c,. A formula is said to be elementary if it contains only free occurrences of classifi- 
cation variables A (i.e. only as parameters), and even those free occurrences of A are 
restricted: A must occur only to the right of E in atomic formulas. We assume that a 
standard GGdel numbering has been chosen for 9s~~; if r$ is an elementary formula 
and a,bl,..., b,,A I,. . . , Al is a list of variables which includes all parameters of 4, 
then {x : 4(.x, bl,. . . , b,,Al,. . . ,Al)} stands for c&b,, . . . , b,,A,, . . . ,A/), where m is the 
numeral that codes the pair of GGdel numbers (r4l, ‘(a, bl,. . . , b,,A,, . . . ,A[)‘); m is 
called the index of C$ and the list of variables. 

In this paper, the logic of all subsystems of To is assumed to be that of classical two- 
sorted predicate logic with identity. The non-logical axioms of EM0 are the following: 

I. Basic Axioms 

(a) VX3x(X =x), 

(b) App(a,b,cl) ~App(a,b,cz) + CI = ~2. 

II. Applicative Axioms 
(a) kab 2 a, 
(b) (sab)J A sabc N ac(bc), 

(c) po(w0al) N a0 A Pl(pa0al) 2 al, 

(d) (c = d -+ dabcd N a) A (c # d + dabcd 21 b), 
(e) N(a) A N(b) -+ [pN(a’) N a A ~(a’ = 0) A (a’ N b’ -+ a N b)]. 
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III. Elementary Comprehension Axiom 

WA) 3X[X ? {x : l++(x)} A Vx(x & x ++ l&x))] 

for each elementary formula $(a), which may contain additional parameters. 

IV. Natural Numbers 

(Nl) N(0) A Vx(N(x) + N(x’)) 

(N2) 4(O) A W$(x) -+ 4(x’)) + ‘v’_x E N4(x) 
for each formula 4 of _!?a~~. 

Definition 2.4. The following axioms will be considered in extensions to EMs: 

l The join axiom (Join): 

VXJ~AAY(~X=Y)+X[X~L~(A,~) 

nVz(z E X +-+ 3x E A3y(z N (x,y) A y E fx))] 

l Inductive Generation (IG): 

3&X7 = i(A,B) A Prog, (B,X) A (Prog, (B, {x : F(x)}) -+ Vx E AT(x))], 

where F is an arbitrary formula of EM0 and 

Prog,(B,X) := ‘dx~A(Vy[(y,x) EB + y&X] -+x&X). 

l Restricted Inductive Generation (IG) 1: 

3X[X z i(A, B) A Prog, (B,X) A VZ(Prog, (B, Z) + Va E X(x E Z)]. 

Definition 2.5. (a) EM0 1 is EM0 where N-induction, i.e. (N2), is replaced by the 

N-induction axiom 

VZ [0 E Z A Vx (x E Z + x’ E Z) ---f Vx E N(x E Z)]. 

(b) To is EM0 + (Join) + (IG), TO 1 is EM0 r + (Join) + (IG) 1. 

Next, we state two important tools for obtaining operations in EM0 1. Both results 

can already be proved in the fragment of EM0 r without classification axioms. 

Employing the axioms for the combinators k and s one can deduce an abstraction 

lemma yielding I-terms of one argument. This can be generalized using n-tuples and 

projections. 

Lemma 2.6 (Abstraction Lemma, cf. Federman [6]). For each application term t 
there is a new application term t* such that the parameters of t+ are among the 

parameters of t minus xl,. . . ,x,, and such that 

EMs]kt*lAt*(xi,...,x,)=t. 

i,(xi, . ..,xn).t is written for t*. 
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The most important consequence of the abstraction lemma is the recursion theorem. 

It can be derived in the same way as for the I-calculus, cf. [6, 7, 2, VI.2.71. Actually, 

one can prove a uniform version of the recursion theorem (with a recursion operator) 

in the applicative fragment of EM0 r. 

Corollary 2.7 (Recursion theorem). 

‘Jf &?V’xl . ..blg(x1....,&l> - f(g,x1,...rxn). 

Now we describe the monotone inductive definition principle and its uniform version 

in 9s~~. Several other principles considered in this paper will also be described. 

Definition 2.8. For classifications, “A” denotes extensional equality, i.e. 

Further, let X C Y := Vv(v E X -+ v E Y) and 

Clap(f) = VX3YfX 2: Y 

Ext(f) = VXVY[X” Y --) fX 4 fY] 

Man(f) =VXVY[X&Y + fA’cfY] 
Lfp(Y,f)- fY~YAVX[fx~x+Y~X] 
Elfp(f) = 3YLfp(Y,f). 

When f satisfies Clop( f ), we call f a classijcation operation. When f satisfies 

Clop( f) and Ext (f ), we call f extensional or an extensional operation. When f 
satisfies Clop( f) and Mon( f ), we call f monotone or a monotone operation. Since 

monotonicity entails extensional@, a monotone operation is always extensional. 

Now we state (MID) and (UMID). 

Definition 2.9. MID (Monotone Inductive Definition) is the axiom 

vf Wp(f) A Man(f) ----t W(f )I. 

An axiom which seems to be more in keeping with the spirit of explicit mathematics can 

be formulated by adding a constant lfp to 9’ ~~~ which names a fixed point when applied 

to a monotone operation. This leads to the principle (UMID) (Uniform Monotone 

Inductive Definition): 

~fVop(f) A Man(f) + LfWiNf ),f )I. 

(MID) states that if f is monotone, there is a least fixed point. (UMID) states that if 

f is monotone, lfp( f) is a least fixed point of f. 
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2.3. Subsystems of set theory 

The axiom systems for set theory considered in this paper are formulated in (defin- 

itorial extensions of) the usual language _YC containing E as the only non-logical 

symbol besides =. Formulas are built from prime formulas a E b and a = b by use 

of A, v, 1) bounded quantifiers Vx E a, 3x E a and unbounded quantifiers Vx, 3x. As 

usual, &-formulas are the formulas without unbounded quantifiers, Ci-formulas are 

those of the form 3xcp(n) where q(a) is a da-formula. n,-formulas are the formulas 

with a leading sequence of IZ alternating unbounded quantifiers starting with a univer- 

sal one followed by a do-formula. The class of C-formulas is the smallest class of 

formulas containing the do-formulas and closed under A, V, bounded quantification, 

and unbounded existential quantification. 

The exact details of the formulation do not really matter for the purpose of this 

paper, any standard formulation will work. Also, we use the standard da-definitions of 

predicates like x = 0, Tran(x), On(x) and the like. 

Definition 2.10. We use Kripke-Platek set theory ISP, cf. [l], as our basic theory. 

It consists of the axioms of extensionality, pairing, union, of the axiom schemas of 

separation and collection for do-formulas and of the foundation schema for arbitrary 

formulas. KPo arises from KP when adding the infinity axiom 

3x(x # 0 A Vy E x32 E x(y E z)). 

Definition 2.11. (a) The language 2.d contains, in addition to _YE, a unary predicate 

symbol Ad. 

(b) The Ad-axioms are the following: 

l Ad(x) -+x # 0 A Tran(x). 

l Ad(x) + F for all axioms F of Kpw. 

(c) KPl is the theory containing extensional&y, the axiom schema of foundation, the 

axioms for Ad and the axiom Vx3y (x E y A Ad(y)). Since the axioms of KPw apart 

from de-collection are provable in KPl, we may consider them as axioms if useful. 

(d) KPi is KP + KPl. 

(e) KPl’ (KPi’) arises from KPl (KPi) when replacing the axiom schema of foun- 

dation by the foundation axiom 

Vx@y(y E x) --+ 3y(y E x A vz E x(z $! y))). 

(f) KPlw (IQ?‘“) is obtained when adding the schema 

Vx E w(Vy E xF(y) -+ F(x)) --f ‘dx E OF(X) 

of complete induction to KPl’ (KPi’). 
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Remark 2.12. We will use Godel’s constructible hierarchy L = (La)aEon in one of its 

usual formulations. For definiteness let 

LO = 0, &+I = Def&), Ln = u L for Iz E Lim. 
1 < 1, 

Here Def(x) is the set of all definable subsets of x. 

For subsets X g o we will also consider the relativized constructible hierarchy 

L(X) = (L,(X)),,o” which is defined as 

Lo(X) = 0, L,+t(X) = Defx&(x)), LA(X) = U L,(X) for 1 E Lim. 
ctci, 

Here Defx(x) is the set of all subsets definable over the structure (x, E r x2,X n x) in 

the language YE(R) which contains an additional relation symbol R. 

Definition 2.13. (a) A non-empty, transitive set a is called an admissible set, if 

(4 E) k KP. 
(b) An ordinal a is called admissible, if 15, is an admissible set. 

(c) We use ,Jg.Q, to denote the enumerating function of the class of admissible 

ordinals and their limits. wFK IS another name for the first admissible ordinal beyond o. 

(d) For y,6 E On, the ordinal y+(@ is the 6-th ordinal greater than y which is 

admissible or a limit of admissibles. 

Remark 2.14. The above notions can be formalized in KPl’. Especially we get a 

do-predicate Ad’ defining the admissible sets. For this obviously 

KPl’ k Vx(Ad(x) 4 Ad’(x)) 

is provable, where Ad is the basic predicate symbol of z&j and Ad’ is the defined 

symbol. The converse direction is not provable, since the Ad-axioms do not enforce 

that every admissible set really falls under Ad. Nevertheless, we will identify Ad and 

Ad’ in the following since each model of KPl’ or of any of the other theories we 

will encounter can be transformed to a model of the same theory in addition satisfying 

Ad(x) c) Ad’(x) by reinterpreting Ad by the set of all x satisfying Ad’. 

We also will use a theory which is similar to the subsystem IZt -CA,,, of second- 

order arithmetic. For its formulation, we notice that in Kpl’ w-exponentiation of 

ordinals can easily be shown to be total. Therefore we can assume that for all 

ordinals 6 < so there is a constant in KPl’. 

Definition 2.15. The theory KPl& is the extension of KPl’ by the axiom schema 

which says that for each (meta) 6 < EO and each y the ordinal y+(‘) exists. Moreover, 

it can be shown that there is an order isomorphism from the primitive recursive ordering 

4 onto the set of ordinals less than ~0, so we may switch freely between these two 

notions. 
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Remark 2.16. As in the case of .$-AC and lT;-CA,,,, KPi” proves the axioms of 

=1: E0 and so KPl&, can be regarded as a subtheory of KPi”‘. This inclusion is 
conservative for Zi-sentences as we will see in Section 6. 

We will regard the language of second-order arithmetic as a sublanguage of set 
theory via the translation mapping numerical quantifiers 3x to 3x(x E w A.. .) and set 
quantifiers 3X to 3X(X 2 o A . . .). Here we already used the convention to use upper 
case letters also for variables in set theory, if they are intended to denote a subset 
of o. Also, it will be convenient to be able to perform generalized recursion theory on 
o directly within our systems of set theory. For this, we provide the following notions. 

Definition 2.17. Let (for convenience) S < ~0. For a set X 2 w, of+* is the least 
ordinal which is not the order type of a well-ordering recursive in HJ(G,X). 

Using this, we define u$ = sup{c$+, : 6 < A} for limit ordinals II. 

Proposition 2.18. The following are provable in KPl’. 

(a) rf x = c$+i for some X, then u E Ad. 
(b) Conversely, ifX E L, where tl E Ad, then w;” <cr. 

Proof. The usual proof, cf. e.g. the relativization of [ 1, Theorem VS. lo] to HJ(G,X) 
for (a) and [l, Theorem V.3.31 for (b), can be carried out in KPl’. 0 

We finish the section by recalling two theorems which are provable in KF’l’. 

Proposition 2.19 (Quantifier Theorem). KF’l’ proves that each (translation of a) Ci- 
formula is equivalent to a C-formula. 

Proof. Cf. e.g. [ 18, Theorem 7.11. 0 

Proposition 2.20 (Shoenfield absoluteness). KPl’ proves that for each .Z,-formula F 

without parameters, F is equivalent to FL. 

Proof. The usual proof, cf. e.g. [l, Theorem V.8.1 I], can again be formalized in 
KPl’. 0 

3. Stable ordinals and inductive definitions 

In this section we introduce the notions of stable ordinals and a special class of 
inductive operators on the power set of o. Then we show that the stability properties 
allow to construct sub-fixed points of these operators. A sort of converse of this will 
be shown in Section 7. 
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Defi~tion 3.1, (a) An ordinal y is stable if L, -: 1 L, i.e. for all nl, . . . , a, E L, and ail 

Cr -formulas F 

L I=ml7”.., %?I * f;, /== m1,...,%?3. 

(b) An ordinal y is J-stable if y < 6 and L, -45 Ls_ 
(c) An ordinal y is weakly (&-stable if L, 4; L(L), +T La), i.e. if the above 

implication holds for parameter-free Cl -formulas F. 

Remark 3.2. (a) The above definition can be formalized in KPI’ using a universal 
CJ -formula Satr: 

L., +I L * tfe f WVX E ~~(Sat~~e,~)~ --, Satz(e,x)L*:). 

(b) If y is y + l-stable, then it is a first-order reflecting ordinal, from which it easily 
follows that L, is a model of KPi. 

The strength of the assumption of stability in the context of a given theory greatly 
depends on the strength of that theory. Obviously, if the theory can prove strong closure 
properties of L, it can prove strong closure properties of L, for stable ordinals y. 

Proposition 3.3. (a) For each n E IV, KPf -k L, 41 L proves that for aN a < y there 

is a /I3 < y such that a 6 p and L,g 41 Lg+m 
(b) Fm each (meta) 6 < E@, KPi”’ + L, 41 L proves thut for ali a < y there D it 

/3 < y such that a < B and Lp 41 Lp+m. 

Proof, (a> Choose a < y. Using the limit axiom n times, KPi’ proves the existence of 
yfin). Since L, +i L we especially have L, $1 L,,+w So we have 

L~=3836(a<PAS=P+(“)ALg~lLs), 

where & 6 can be chosen as ~,p~f’)~ respectively. This form&a can easily be seen to 
be equivalent to a El-formula and therefore stability of y gives 

L, j== 3@36(a < /? A 6 = p+@) A Lg -Xl La). 

A J? < y satisfying this formula is as required for part (a) of the proposition. 
(b) is proved completely analogously using the fact that using the induction scheme 

up to 6 < &a for arbitrary set theoretic formulas (which can be proved from the schema 
of complete inductions we can show ‘d”J3tf(q = y +@I), especially this holds for y as 
in the assertion. Then proceed as in (a). Cl 

~~~~~n 3.4. (a) An operator F : Pow(w) -+ Pow(w) is called a Ll:,6-operator ifI 

‘dra E co(n & T(X) +$ f$~,X,....,“I’ ((x,xl,..., xk)) I= W,RlI 

for some f;l -formula F. The sets XI,. . . , & 2 co are called the parameters of r. 
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(b) The iteration stages of an operator Z are defined as 

ZF = Z(Z,‘“) U Z>’ where 1;’ = U Z!. 
8<y 

(c) A set X 5 w is called a sub-jxpoint of an operator Z if Z(X) CX. 

Remark 3.5. The definition of Y = Z(X) is a C-statement as it stands, namely it 

expresses that there is a set which is equal to Lw::,x,..,“) ((X, Xl,. . , Xn) ) and in which 

F[n] is evaluated. But we will in each case only use ZZf,d-operators such that our 

meta-theory allows to prove VX & 03y(“y = Lo;+,(X)“), thus turning the operators 

into d-form. For the meta-theory KPi’ these are the ZZj,,-operators for n E N and for 

ICE’? the ZZ;,s-operators for 6 < ~0. Moreover, this also leads to the definition of a 

d-predicate of x and y which says that x = (ZF))Ic7. 

When working in axiom systems of set theory without the full foundation scheme, it 

is not always possible to prove the existence of the sequences (ZF)acr for arbitrary y. 

But it will be enough to prove existence in the “local” form of the following lemma. 

Lemma 3.6 (Kpl’). ZfLr b KF’i and r is a ZZ’, , g-operator in parameters from L, for 

some (meta) 6 =C ~0, then (Z;)a<7 can he dejined by C-recursion in L, and therefore 

is an element of L,+,. 
Moreover, the de$nition of ZF is absolute w.r. t. all models of KPi containing the 

parameters of r. 

Proof. Standard. 0 

Lemma 3.7 (Kpl’). Assume r is monotone on L, where L, b KPi and r is a ZZ; d- 
operator in parameters from L, for some (meta) 6 < ~0. Then for all X E L, suih 
that T(X) g X and all a < y we have Zj? CX. 

Proof. Obvious induction on CC. 0 

Proposition 3.8 (Kpl’). Assume L, 41 L, +,b+Ij where (meta) 6 < Ed. If r is a Zli,s- 

operator with parameters from L,, then T(Z;‘) C I;‘. 

Proof. Assume n E T(I,<‘). Let Y := (Z;?,Xt,. . . ,X,) where Xt,. . .,X, are the pa- 

rameters of Z. This means 

&;,,(Y) + F[n, RI 

for the corresponding Cl-formula F from Definition 3.4. Since I>’ E L,+l holds by 

Lemma 3.6, we have c.$+t gy+(‘+‘) and so it holds 

L ./+10+11 + 323c+3x3Y( x = Z,<% A Y = (X,X1,. . . ,X,) A 

p < o;+, A z = LB(Y) A z b F[n]). 
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This can be formalized by a Ct-formula with parameters from 15,. So the stability 

property of y gives 

L, t= 3z3u3/33x3Y(x=z;” A Y = (X,X~,...,X,) A 

p<o$+,AZ=Lp(Y)Az/=F[n]). 

Picking such an ordinal a, we can conclude from this formula that 

and therefore n E r(Z;a) 2 Z,<y. 0 

Corollary 3.9. (a) For each n E N KPi’ proves that each II:,,-operator r with 

parameters from a set L, such that L, -i L has a sub-jixpoint in L,. 
Moreover, if r is monotone on L,, it has a minimal sub-jixpoint in L,. 
(b) KPiw proves the above for all ZI:,s-operators where 6 -C ~0. 

Proof. Work in KPi’ under the assumption that y is stable. Then for each u < y there is 

a c( < fl c y such that Lb +1 Lg+(“+lj. Using the previous proposition for p, the assertion 

follows. The minimality condition follows applying Lemma 3.7 to L, itself. 

Similarly, KPiw proves that for each tx < y there is a a < /3 < y such that L, -XI 
L I+,d+lI. Then again use the previous proposition. 0 

4. Modeling To in set theory 

4.1. Applicative structures 

Modeling the applicative part of To can be done in very weak systems of set theory, 

since only recursively enumerable sets are necessary. Nevertheless, we again use KPl’ 

as our base system in this subsection since we do not need more exact information in 

the following part. Since the models we use are already well described in the literature, 

cf. [7, 271, we do not present the full details. 

We start off with the pair structure Gpair = (S,rr,‘~ta,rct,O) where S = w and n : 
S2 -+ S\(O) is an injective (recursive) pairing function with (recursive) inverses 7to, rrt 

such that ~(0) = rtt(O) = 0. For technical reasons we moreover fix a special such 

function rc, namely rr(x, y) = 2’ . 3y. As its inverses, we fix rra, ret where no(z) = x 

and ret (z) = y if z = 2’. 3Y and no(z) = nt (z) = z if z cannot be written in this form. 

We call the base set S (and not o) since we will have “natural numbers” in this 

model and we want to avoid confusion between those two sets. Moreover, the intuition 

about S is that S consists of general objects and not only of the natural numbers, 

For each n E o, the representation no E S of n in the structure Gpai’ is defined 

inductively by 0” = 0, (n + 1)” = n (0, no). Then let NS G S be the set of all no for 
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n E o. More generally, for X c w let X” = {no : n E X}. In the following, we use the 
codes 

k = l”, s =2”, p = 3”, p. =4”, pI = 5”, d = 6”, 

!+,’ = 7”, pN = 8”, i = 9”, j = lo”, and c,,, = (11 + m)“. 

The relation App E S3 then is inductively defined by the following clauses, where 
we use the abbreviations xy N z :E App(x, y,z) and (x,Y) for rc(x,Y). 

l kx = (k,x), (k,x)Y = x, sx 2 (s,x), (s,x)Y = ((a,~), Y) 

. PX = (P,X), (P,X)Y = 71(x, Y), POX = 710 (x), PlX = Xl(X) 
l dx = (Q), (d,x)Y = ((d,x), Y), ((c&x), Y)zl 2 (((&x)7 Y),zl ) 

(((&x)3 Y),zl )z2 = 
{ 

X if 21 = z2 

Y if ~1 # ~2 

. SNX 2 (0,X), pj&,,X) = X 

l If xz 2: u,yz N v and uu N w, then ((s,x), y)z N w. 
This defines an applicative structure Gapp = (S, App,Ns, k, s, P, PO, pi, d, SN, pN, 0) 
such that Gapp models the applicative part of To. GaPP can be shown to be an el- 
ement of $K, actually, it can be shown to be coded by recursively enumerable 

sets. 

Definition 4.1. (a) Let B 2 S be defined as B := S\z[S2]. Denoting the closure of B 

under rc by Gen(B), we see that R : S2 + S\B, Gen(B) = S and rca(x) = 711 (x) = x 
for all x E B. We therefore say that B is an atomic base for S. 

(b) For x E S then supp,(x) C B is defined by recursion on the definition of Gen(B) 

by supps(x) = ix) f or x E B and s~pp~(n:(x,y)) = suppB(x) u suppB(y). 
(c) For finite sets F C B let 

Aut(B/F) := {a : B -+ B : CT is bijective and Vx E F U {0)(0(x) =x)} 

We identify each CJ E Aut(B/F) with the mapping o : S 4 S it induces via o(n(x, y)) = 

n(e(x), O(Y)). 
(d) Let Pow(S/F) = {X E Pow(S) : a[X] =X for all cr E Aut(B/F)}. 

Lemma 4.2. (a) If xy N z, then suppB(z) c suppB(x) u sappy. 
(b) If B E Aut(B/@), then xy N z # o(x)a(y) 21 a(z). 

(c) If f E S and b, c E B\(suppB (f) U (0)) then 

where x[b := c] is the obvious substitution of one base element b by an element c E S 
in x E S = Gen(B). 

(d) rf X C o, then X” E Pow(S/F) for all jinite F C B. 

Proof. (a), (b), (c) can be proved by induction over the definition of App, (d) is 
obvious from the definitions. For details cf. [27]. 0 



18 T. Glaj et al. I Annals of Pure and Applied Logic 85 (1997) 146 

Definition 4.3. The trace trB/~ (x) of an element x E S over the finite set F C B is 

defined by trs/F (x) = {o(x) : CJ E Aut(B/F)}. 

Lemma 4.4. (a) The predicate trEIF (x) C_ X is arithmetical in x,X. 
(b) For any set X C 5’ it holds U{trs,F (x) : x E X} E Pow(S/F). 

(c) For any set X C S it holds U{x : trB/F (x) G X} E Pow (S/F). 

Proof. (a) follows because in the definition of trs/F(x) LX by 

tr&x)CX H Ya E Aut(B/F)(a(x) E X) 

we can replace the quantification over Aut(B/F) by quantification over finite sequences 

in supp, (x). 

(b), (c) are verified straightforwardly. 0 

We will need a set M LB which will provide names for parameters we want to 

code into our models for To. For this set M some special technical conditions are 

needed. We now describe this set M and an atomic base B. The idea again stems 

from [27]. 

Since B is the set of non-pairs with respect to rt, we can construct 

a a partition B = xnEw B,,. 

l for each finite F LB infinite sets h4,$) such that the Mf) are pairwise disjoint and 

the following property holds: 

If FU,,, B,withn>O,thenA4~)=0andifFCU,,,<,,B,forn>O,then 

M’“’ C B F - Il. 

Namely, for n E o we define B,+j = {(pn+2)X+1 : x E co} CB, Bo = B\U,,oB,. If 

we identify F = {bo,. . . , bk} where bo < . ’ . < bk with the sequence (bo,. . . , bk) we 
can define for F G B 

&fp = 
{ptcx) : x E co} 

n+l 
ifFC U B, andn>O, 

M<ll 

0 otherwise. 

These sets are as required. 

We get the set M G B of names for the parameters by defining MF = lJn,O I@“) 

and M = UF C B finite hf,?2. Since Bo C_ B\M, we see that B\M is infinite. _ 

4.2. Models with jnitely many parameters 

We work in KPi in this subsection. We want to formalize the standard models of 

To, originally defined in [6], using a finite set MO CA4 (where A4 from now on is the 

set defined above) to denote parameters. 

So fix MO CM and sets $ C: S for b E MO, the parameters of the construction. 
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Definition 4.5. By induction on CI we define structures 

GM&, = (S, ClM@, Wo.rr, APPA ks, P, PO, Pl,d, SN, PN,O,(CdmEo,j~ i> 

extending Gapp. So we only have to define clad,, s S and EM~,~ & S x cl~,,, 1. 
(a) Cl~~,o = MO and for b E MO and z E S let z a~,,,0 b ej z E g. 
(b) If CI = /I + 1 is a successor, then let CIM,,b C cl~~,~ and .s~~,a s .s~~,~ and 

additionally: 
l If F is an elementary formula with Giidelnumber m, then let c,,, (2,Z) E clan,, for 

all .? E S and a’ E Cl~~,b. Further define 

z ~,,,a t&(x’,4 * %,,J + FkLa’l. 

l If a E Cl~,,b, f E S and 6 M~,B k Vx E a3Y(fx 21 Y), then let j(f,a) E CIM~,~ and 
for z E S 

z ~.44~,~ j(0) w %40,~ I= 3~ s a3Y s Hz = (~4). 

l For a, b E Cl~~,,p let i(u, b) E cl~~,,,~ and for z E S let 

z EM~,~ i (a, b) H IX C S(Prog(a, b,X) -+ z E X) 

where Prog(u, b,X) :- 

Vet wo,~ a(\Jy E S(W) ~o.fi b --f Y E W +x E X). 

(c) If CI is a limit ordinal, then let C~M~,~ = UB_CIM,,,~ and EM,,,~= Us_ EM,,,~. 

Remark 4.6. The formalization of the preceding definition in KPi needs some care. 
On the one hand, a truth definition for the structures GM,,+ is necessary. The definition 

of %o,l I= F . g’ IS tven by recursion on the set of formulas. This recursion can be 
performed in any admissible set containing 6&,, as an element therefore leading to a 
A-notion on this admissible set. 

On the other hand, in the clause for (IG), the definition of z ~~~~~ a uses a condi- 
tion which is ZIi on S = o in the parameter a~~,8 where CI = /? + 1. As is known 
from generalized recursion theory, cf. e.g. [l, Theorem IV.3.11, this is equivalent to a 
condition which is Ci on the next admissible set, namely 

z EM~,~ i(u, b) H VX C S(Prog(u, b,X) ---f z E X) 

* 3p3f(fun(f)Adom(f)CuAmg(f)COnAz E dom( 

% Y E St@, v) u,,p b A Y E domU)) 

--t x E domtf) A f(x) < f(y)) 

e 38 E u3f E u(. . .) 

for all u such that Ad(u) and EM~,BE U. 
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So the above definition can be given by C-recursion in the theory KPi. Moreover, 
we see that in each inductive step, the definition uses a Ci-predicate over the next 
admissible set. More exactly, we get the following result: 

Proposition 4.7. There are Z-predicates Po(b,Mo, u, R), Pi (x, b,Mo, a, R) with the fol- 

lowing property: for every jnite MO 2 M, every set X C S x MO let - :Mo -+ Pow(S) 
be dejined by 2 = {x E S: (~,a) E X}. Then we have 

b E Ch,,,cc * Po(b,Mo,M) 

This means that the inductive dejnition clauses for clan,, and EM,,~ (built on the 
basis of - 1 MO) of the above definition can be proved. Moreover, it holds 

Po(b,Mo,G) @ L,~,(X) t= Po(b,Mo,a>R) 

and 

For finite subsets MO C M we identify mappings h : MO -+ Pow(S) with the corre- 
sponding set X as in the definition and use the more suggestive notions b E Cl,,,, 
and x Q.Q b where the mapping A is to be understood by the context. 

Lemma 4.8. Let Ml 2 MO be finite subsets of M and - :Mo -+ Pow(S) be given. 

(a) For all a we have cl~,,. C clan, c(. 
(b) For all x E S and a E cl~,,, it is x EM,,, a H x EM,,+ a. 

(c) For all cr<fi, all a E cl~,,,, and all x E S it is x EMU,@ a H x EIM~,~ a. 

Proof. Induction on u. Cl 

In the following we may leave out the indices MO, CI from the relation x E a since the 
preceding lemma shows that the relation is independent of these parameters as long as 

a E C~M~,~. 

Lemma 4.9. Let Ml C MO CM and - : MO + Pow_<S/Flfor a finite set F G S. If 
CJ E Aut(B/F) satisjes both cr t Ml :Ml + MO and b = a(b) for all b E Ml, then for 
all a E CAM, ,@ and x E S: 

(a) a E %4,,, ++ a(a) E C~,[M,I,, 
(b) x E a H a(x) E a(a). 

Proof. Induction on a, cf. [27, Lemma 3.11. 0 
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Corollary 4.10. Let F C S and MO GM be finite, - : MO + Pow(S/F) and o E 
Aut (B/MO U F). Then 

a E cl~,,,, ti o(a) E cl~,,,~ and x E a es o(x) E o(a). 

Proof. Take MO = Ml in Lemma 4.9. 0 

Corollary 4.11. Let A :Mo + Pow (S/F) for finite MO s M and F C S. Further assume 
GcS isJinite and (FUG)nMCMo. 

For all a E clan,, satisfying suppB(a) nM G MO and all x E a there is an automor- 

phism o E Aut (B/MO U F U G) such that o(x) E a and supp, (o(x)) n M s MO. 

Proof. In this situation let H = (supp, (x) n M)\Mo. By hypothesis 

(M~UFuGusupp,(a))nMGM~ 

and so H n (MO U F U G U supps(a)) s H rl MO = 8. Since B\M is infinite, cf. sub- 
section 4.1, there is a c E Aut (B/MO U F U G U suppB(a)) such that cr : H -+ B\M. 
For this c it is o(a) = a since cr is the identity on suppe(a). By Corollary 4.10 we 
therefore have a(x) E a. Moreover, we have 

supps(c(x))nM=c[su~~,(x)lnM~c[MolCMo 

as desired. 0 

Proposition 4.12. Let MO GM, be finite subsets of M and - : Ml + Pow(S). If 
- /MO :Mo + Pow(S/F) f or a finite set F such that F fl M CMo, then we have for 

all a E C~M,,~ 

supps(a)nMcMo + a E cl~,,,,. 

Proof. Again, we use induction on or. In the most important case that a = j(f ,ao), we 
use the following lemma. The induction hypothesis guarantees the assumption of that 
lemma. 0 

Lemma 4.13. Let Mo,Ml,F, A be as in Proposition 4.12. If a0 E cl~,,#, 

(suppB (as) U supp, (f)) n M CM0 and Vx s ao3y E Cl~,,Jfx = yl 

and, furthermore, 

vxeaovy E %t,,Jfx 2 Y A ~uPP~(Y)~MGMo *Y E Cl~,,,l, 

then for x E a0 and fx 11 y we have y E Cl,,,,. 

Proof. Let G := supp,(ao) U supps(f) an a := a0 in Corollary 4.11. Then the hy- d 

potheses of this corollary are satisfied and so there is an automorphism c E Aut (B/Mou 
F U supp,(ao) U supp,(f)) such that a(x) E a0 and supp,(cr(x)) n M CJMo. 
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Lemma 4.14. (a) For each b E M the set {b’ E M:; = g} is infinite. 
(b) For each Jinite set Fo C B there is a jinite set F1 such that Fo C F1 5 B 

and - r FI nM:F, nA4 + A$. 

Proof. (a) Let b E M, i.e. g E Jke, for some finite F C B. For each of the infinitely 

many n such that F g U,,, B,, g is in the range of A 1 k$). This gives infinitely 

many b’ with b = b3. 
(b) can be verified by elementary computation, cf. [27, Lemma 3.111. q 

Now we use the mapping A given above to define a model 6~. All we 

have to do is to define the stages cl~,# and ~n;l,~ of the classifications and the E- 

relation of the model. Let for CI < y and finite sets A40 Sit4 the sets CAMS,+ and 

.s~~,~ be defined as in subsection 4.2 based on the restrictions of the mapping -. 

Let then CIM,~ = U{CIMO,a:Ms CM is finite} and a~,~= U{Q,,,~: MO CM is finite}. 

Although we will not use it, it is good for motivational purposes to define 

c1,$4 = U{Cl.&Ja : CI < y} and EM= lJ {EM,; u < y}. 6~ is then as usual 6~ = 

(S, Cl‘W, KU,. . .). 
First we note one important point in the construction of our models. Namely, each 

classification in the model is extensionally equal to one in the “basis” Cl,,. Although 

we will only need this for elements in levels Cl~,b where 6 < ~0, we formulate it in 

full generality here. 

Lemma 4.15. Let a E Cl~,6 for some 6 < y. Then there exists a set Y E ~‘2’ = {X E 

L, : X E Pow (S/F) for some jinite F GM} such that 

GM,~ FxxaaxE Y. 

Proof. Let a E C~M,U,S and the finite set FO defined by FO := supp,(a). By Lemma 4.14 

(b), there is a finite F C B containing FO such that - : F n A4 + d$. Defining A40 := 

F n A4 = {bo, . . . , b,} we have a E Cl~,,s by Lemma 4.12 and so Lemma 4.7 yields 

xsa@&,;+,(W +9(x,a,Mo,&R) 

forX with&, =& fori=O ,..., n. Theset 

Y = {x E S&,;+,(X) k 9(~,a,&,&R)} 

is in L;.. Moreover, Y E J?F since for 0 E Aut(B/F) we can use the equivalences 

xEY*xxaao(x)~~(a)=a~c7(x)EX. 

So YE A? as desired. 0 

The following lemma is central to our embedding. It is a refinement of Takahashi’s 

Theorem 3.8 in [27]. 
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Lemma 4.16. Let L, + KPi, - : M ---) Pow(S) and G;M be as above. Assume that 

for some f E S and for all b E M 

as well as for all bl, bz E M 

GM,,a /= bl & b2 + fb, g fb,. 

Then there is a finite F 5 B and a IZ,‘,s-functional r : Pow(o) + Pow(w) such that 

for all b E M with b E Pow(S/F) 

r(g) E Pow(S/F) and Q,s k x e f b H x E T(b). 

Proof. By Lemma 4.14 choose F 2 supp, (f) such that - : F II M + Pow (S/F). Write 
F nM = {bl,..., b,} and choose bo E M\F. Then it is GM,~ k f b, N a for some 
a E Club. Let MO:= {bo,. . .,b,}. 

Then supps(a)nMGsupp,(f)UsuppB(bo)&{bo,...,bn} and so by 4.12 (for some 
MI 2Mo such that Q E Cl~,,a) we see that a E Cl~,,s. 

Define the operator r by 

W) = {x : L,“,, (W b x c!wo,6 a 

where ub, =X,ub, = 6 for i = l,...,n and (U), = 8 otherwise} 

={x:xeMO,ba w.r.t. -:Mo+Pow(S) 

where&=X,&=&fori=l,..., n} 

h h 
Obviously, r is a II;,g-operator in the parameters bt,. . . , b,. 

Claim 1. Ifg E Pow(S/F) and b $ {b 1,. . . , b,}, and if o E Aut(B/F), then 

GM,.I,s + x E a[bo := b] H o(x) E a[bo := b]. 

Proof of Claim 1. Let MA := {b,bl,..., b,}. Then b, bo q! supps (f) and therefore 
f b N u[bo := b], consequently supp,(u[ba := b]) f’ M 2 MA, which by Lemma 4.12 
gives a[bo:= b] E Cl~;,s. 

For cr E Aut (B/F) and x E S choose some b’ E M such that g = b3 but b’ 4 

supp,(x) U suPPs(G)) U {bl, . . . , bn}. Use this to define Q’ E Aut (B/{b’} U F) which 
agrees with IS on supps(x). Then we easily compute: 

GM,~ k x E a[bo := b] ti GM,& + x E u[bo := b’] because f b’ N u[bo := b’] 

and f is ext. on M. 

e GM,~ k a’(x) E u[bo:= b’] because of Lemma 4.9 

H G’M,s k CT(X) E a[bo:= b] because of ext. of f on M 
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Claim 2. For g E Pow(S/F) it is 

GM,.~,s t= x 8 fb if and only if x E T(b). 

Proof of Claim 2. First we consider the case that b 6 {bl, . . . , b,}. We have to show 

GM,6 +x E u[b,,:= b](=fb) ti EJ;~,~ +x E a 

where the latter model is based on - : MO --+ Pow(S/F) with & = g and 6 = & 

for i = l,..., n. To this end, choose a E Aut(B/F) with a(b) = bo and let A4: = 

{b,bi, . . . , b,} and Mr = {b,bo, bl,. . . , bn}. We can extend - from A4; to a mapping 
-. . Ml + Pow(S/F) by additionally defining LO := $. Since a[bo := b] in Cl~;,a by 

Lemma 4.9 we have 

GM,,6 b x E u[bo := b] ti G,,p6 k x E a[bo:= b] 

H GM;,6 + a-l(x) E a[bo:= b] by Claim 1. 

* G& /== x E a(u[bo := b]) = a, 

where in the final equivalence we used Lemma 4.9 for M{ &Ml and the mapping 
-. . M, + Pow(S/F). 

This finishes the case that b 4 {bl, . . . , bn}. If on the other hand b E {bl, . . . , b,} 

holds, then choose b’ +I! {bl, . . . , b,} such that b3 = g. By extensionality of f on M, 

we conclude 

The claim now follows from the first case. 

Claim 3. If; E Pow(S/F), then r(g) E Pow(S/F). 

Proof of claim 3. Assume g E Pow(S/F), a E Aut(B/F), and choose b’ 4 {bl,. . . , b,} 
such that b = b3. Then we have 

ti G’M,~ + n E u[bo:= b’] 

-3 G.M,~ k a(x) E u[bo:= b’] 

@ %,.I,s k a(x) Efb’ 

ea(_x)ET(b3)=r(i;). Cl 
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Lemma 4.17. Let F C B be jinite and r a IZ’, , ,-operator as in the preceding lemma 

such that for all b E M with g E Pow (S/F) 

Define the operator r’ : Pow(w) + Pow(o) by 

Z+(X) = r (IJ {trBp(x) : x E X}) . 

(a) r’ is a l7t s-operator. 

(b) Zf f is monotone, then r is monotone on A$ = L, n Pow(S/F) and r’ is 
monotone on L,. 

(c) Let f be monotone on M. Let X’ & w be minimal in L, such that r/(X’) CX’, 

which exists by Corollary 3.9. Then ,X = U{trB,F(x): x E X’} E Aut(B/F), therefore 
there is some b E MF such that x = 6. For this b 

Moreover, for all a E 6;~ we can conclude 

Proof. (a) Follows from Lemma 4.4(a). 

(b) The monotonicity of r follows from that of f using the equivalence charac- 

terizing r. From this, the monotonicity of r’ is obvious since U{trBp(x): x E X} E 

Pow(S/F) by Lemma 4.4(b). 

(c) Since trBp(x) 2X’ is arithmetical in x,X’ by Lemma 4.4(a), the set X is in L, 
if X’ is and moreover it is in Pow(S/F). 

Note that 

r(x) = r’(F) Lx’ LX 

from which GM b f b C b follows since b E MF. 
Now assume 6~ k fa C a. By Lemma 4.15 we have 

for some Y E JZZ = {X E L, : X E Pow(S/F) for some finite F C: B}. Then the set 

Y’ = {x E S : trBp(x) C Y} is in L, n Pow(S/F) by Lemma 4.4. So there is some 

b’ E MF such that b3 = Y’. Obviously also 6~ + b’ 2 a and so by monotonicity of f 
we have 6~ k f b’ c fa C a. Since b’ E MF this means QY’) & Y and r( Y’) E J+. 

Therefore for all x E r( Y’) and rr E Aut (B/F) we have a(x) E T(Y’) & Y, which 

means trB(x) C Y, leading to I’( Y’) 2 Y’. Since Y’ E .kF, we moreover have T’(Y’) = 

r( Y’) C Y’. The minimality of X’ yields X’ G Y’ and thus X C X’ 2 Y’ & Y. But this 

means 6~ k bza. 0 
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5. Proof-theoretic reduction to systems of set theory 

5.1. A Tait-style calculus for explicit mathematics 

The Tait-style calculus to be developed in this subsection relies on a slightly different 
account of the language of explicit mathematics. Namely, the Tait language 2r only 
contains the logical symbols A, V, v, 3, but has the relation symbols N, 4V, =, #, 

APP, -App, E, $ Negation in this language is defined in the obvious way using the 
de Morgan laws to push it down to the prime formulas. 

Definition 5.1. The CEM-formulas form the least class of formulas containing the 
quantifier-free formulas which is closed under A, V, object quantification, and 3 
qu~tification over classi~cations. 

The ~EM-fo~ulas form the least class of formulas containing the quantifier-free 
formulas which is closed under A, V, object quantification, and V-quantification over 
classifications. 

AEM-formulas of 9r are formulas which are both CEM- and ZJEM-formulas, i.e. which 
do not contain any unbounded classification quantifiers. 

~~“-fo~ulas are formulas of the form 3x1 . . . ti&F(X~, . . . ,A’&) where F is a dEM- 
formula. Similarly for II~“-formulas. 

The idea now is to embed theories from explicit mathematics into the Tait-calculus 
and then to perform a partial cut-elimination which only leaves us with cuts on CF”- 
(and II:“-) formulas. For this to work we have to use some minor adjustments. First, 
we need an adequate definition of the rank of a formula. 

Definition 5.2. The rank of an _!?r-formula is the rank over its Cy”- and IJy”- 
subformulas. Formally: 

(a) If F is a zy”- or ~~“-fo~ula, then rk(F) = 0. 
(b) Otherwise, if F is Fa A FI or F’o V Fl, then rk(F) = m~{rk{~o~,rk(F~)} + 1. 
(c) Otherwise, if F is hG(x),V~G(x),3XG(X),V~G(X), then rk(F) = rk(G)+ 1. 

The second adjustment is to make sure that all formulas introduced by non-logical 
axioms and rules are CF”. For this it is necessary to switch to a slightly different 
fo~ulation of the join axiom which has a syn~ctically simpler form. 

Lemma 5.3. The applicative fragment of EM0 1 proves that under the hypothesis 
b’x E AX(fx N X) the following assertions are equivalent: 

(a) 3ZJoin(f,A,Z), i.e. 3Z(Z 2: j(f,A)AVz( z~Z~3xnA3y(z~(x,y)Ay~fx)). 

(b) tri3Z Join’(f,z,A,Z) where 

Join’(f,z,A,Z) = 3Y3X(Z 21 j(ha) A 

(z E 2 + poz E A A Y N f(poz) A plz E Y) A 

(poz E A A (X N f(poz) + prz E X) --+ z E Z)). 
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Proof. Argue in the applicative fragment of EMa 1. If Vx E A(X(fx N X)), then these 

X are unique. Therefore 

3ZJoin(f,A,Z) H Vz3Z(Z 21 j&4) A (z E Z c) 3 E A3y(z CY (x,y) A y E~x)) 

H Vzt3Z(Z 2! j(f,A) A 

(z E Z 4 pcz E A A 3Y(y N f(poz) A plz E I’)) A 

(poz E A A VX(X Y f(poz) + plz E X) + z E Z)) 

H Vzi3ZJoin’(f,z,A,Z). 0 

Definition 5.4. The calculus F is defined as follows: 

(a) Logical axioms 

(Ax) F, TF, F where rk(F) = 0. 

(b) Equality axioms 

(Ml > 

(E@) 

F,t = t for object terms t. 

c s # t, -F(s),F(t) where rk(F) = 0. 

(c) Logical rules 

(A) 
CFo KFI 
r,Fo AF1 

(F) 
cF(a) 

r,VxF(x) * 

r,F(A) 

(VI) r,VXF(X) * 

CFi 
WI 

r,Fo VFI 
i = 0,l 

(go) 
T,F(t) 

r, %F(x) 

(3’) 
CF(A) 

r, =w 

The variables a and A in the V-inferences may not occur in the conclusion of the 

inferences. 

(d) Non-logical axioms 

where F is one of the following: 

l an instance of an applicative axiom. 

l an instance of (ECA), i.e. X(X N c&A) A Vx(x E X c) F(x,?,l))) for certain 

terms 1 and classification variables A’. 

l the induction axiom 

l the open form of (IG) 1, which is separated into two axioms, 

(IGl) F, X(X 1~ i(A,B) A Prog, (B,X)). 
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and 

(IG2) 1 ci(A,B)-DAProg,(B,C)--,Yx.sD(xsC). 

(e) the rule for join 

(Join) 
r,VX&EA3x(“fX 2LX) 

K 3ZJoin’(f,t,A,Z) 

for terms f and t. 

(f) the o-rule 

(0) 
. ..r.n#t... 

r, TN(t) 

In the following we write F [ Z for the existence of a derivation in F in which 
all cut-formulas have rank less than k and which is of length <a. We further assume 
that for a derivation that uses the w-rule we always have u 2 w. 

The definition of the calculus 5 is tailored so that the following proposition holds: 

Proposition 5.5. (a) If EM0 1 +(IG) 1 +(Join) t F, then there are n,k < o such that 
Y EF. 

(b) rf EM0 + (IG) r +(Join) t- F, then 9 E F for some o! < w .2 and k E N. 

Proof. The only noteworthy point is that in part (b) the usual o-rule 

. ..r.F(n)... 

T,Vx E NF(x) 

is derivable. Indeed, using cuts with Z, n # a, TF(n), F(u) (derivable from the equality 
axioms), the premises of the rule give Z’,n # u,F(u) for a new a, from which we 
get Z, TN(U), F(u) by the o-rule which in turn leads to the conclusion using (V) and 
F-inferences. 0 

Since all non-logical axioms and rules only introduce formulas of rank 0, we can 
eliminate all cuts of higher complexity from our derivations. In other words: 

Proposition 5.6. Zf Y t r, then there is some /I such that Y { r. 

More exactly, it is /? <2k_l(a) where 20(a) = a and 2,+1(a) = 2*.(“). 

Proof. Standard cut-elimination. 0 

Putting the previous propositions together, we obtain: 

Proposition 5.7. (a) Zf EM0 r +(IG) 1 +(Join) F F, then there is some n < w such 
that Y [F. 

(b) Zf EMo + (IG) 1 +(Join) l- F, then JT [F for some c1 < ~0. 
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To treat (MID) in this context we again (as in the case of (Join)) have to use a 

slight variant of the axiom which is in a syntactic form that can be dealt with in an 

easier way in the following. 

Lemma 5.8. The applicative fragment of EMc ] proves: Zf Clop( f ), then the follow- 

ing formulations of the least jixed-point axiom are equivalent. 

(a) W(f,A). 
(b) Lfp’(f,A)6v’XVYVZ(Y? fAAZ= fX+ YcA/i(Z&X+AGX)). 

Therefore, the axiom (MID) is equivalent to 

(Mid) ~f(Clop(f) A Man(f) + xLfp’(fJ)). 

Proof. Similar to Lemma 5.3. 0 

Remark 5.9. The above propositions can be proved in KPl’ (actually in much weaker 

theories). We will use this fact later on, which is especially important in the case of 

EMor +(IG)r +(Join) + (MID). 

5.2. Asymmetric interpretations 

In this subsection we actually reduce theories for explicit mathematics containing 

(MID) to systems of set theory which axiomatize the existence of a stable ordinal. 

To this end we will use asymmetric interpretations of the quasi cut-free derivations of 

the previous subsection into the model of To as defined in subsection 4.3. 

In the following, we work in theories which assume 

L, -x, L A y is countable 

in addition to KPi’ (resp. KPi”) when treating EMor+ (Join) + (IG)] + (MID) (resp. 

EM0 + (Join) + (IG)f + (MID)). 

Let the set A4 be defined as in subsection 4.1. Using this, we define the models 

64 = Ua<y G’M,~ as in subsection 4.3 based on the mapping - : A4 -+ Pow(S) given 

there. 

The importance of CEM- and ITEM-formulas in our context rests on the fact that they 

satisfy persistency properties in these models for To in the following sense. 

Definition 5.10. (a) A formula F[ii,A] is called upwards persistent (w.r.t. the model 

Gw = lJ, &or) if for all CI </I 

(b) A formula F[ii,d] is called downwar& persistent if in the above situation the 

converse implication holds. 

(c) A formula is called absolute if it is both upwards and downwards persistent. 
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Proposition 5.11 (Persistency). zEM-formulas are upwards persistent, ZIEM-formulas 
are downwards persistent, and AEM-formulas are absolute. 

Proof. Straightforward induction on the definition of CEM- and IZEM-formulas. 0 

In the following proposition, we use the convention to use X, Y,Z as notations for 

elements of cl~,,, (instead of a, b as before) in order to avoid confusion with free 

object variables. 

Proposition 5.12 (Asymmetric interpretation). (a) For each (meta) n and m the the- 

ory KPi’ + 3y(L, 41 L A “y is countable”) proves: 

Zf Y [ l(Mid),T[ii,a], r a set of CEM-formulas, then for all (meta) m 

V2 E Cl‘+&mV,? E S(G’M,m+2” + J-[x’,J]). 

(b) For each (meta) S < EO the theory KPiw+3y(L, 51 LA“~ is countable”) proves: 

Zf Y r +Mid), T[&A] f or some u < co6 and a set r of CEM-formulas, then 

vlp < o”V/? E c1,pvz E S(64+21 k r[$?]). 

Proof. We prove part (a) by induction on n. We restrict our attention to the most 

important cases, as the remaining ones easily follow using the i.h. 

If r is an axiom, then there are two subcases. 

In the first one, r is a AEM-formula (in the cases of (Ax), (Eq), applicative ax- 

ioms, induction axiom and (IG2) 1). Then the assertion holds by construction of GM,,. 

In the case of the induction axiom we have to note that for each X E cl~,~ the set 

{x E S : GM,m+2n k x EX} is in L, and therefore we can use induction in L, (on the 

set {no : n E w}) to prove the instance of the induction axiom. 

In the second axiom case we have an instance of (ECA) or one of (IGl) in its open 

formulation. For example, let us treat (IGl). For arbitrary m and &,Xt E cl~,,,, we 

have i(&,%) E %,,+I & Cl.~,~,m+zn and so the assertion is established. 

We leave out the propositional, quantifier and equality rules, since they can be treated 

using the i.h. But note that it is important that there are no (VI)-rules because of the 

fact that r consists of CEM-formulas. 

Now assume the last inference was a cut with formulas of rank 0. Then we have 

the premises 

and 

where F is a AEM-formula and no,nl < n. Application of the induction hypothesis to 

the first premise yields 
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for all m, x’ E S and _?,Z E cl~,~. Using inversion on the second premise we get 

r r T&i], lF[ii, r;, ?,A$] 

for new classification variables e. Applying the i.h. to this derivation we get 

for all m’ and appropriate 2, ?,z,Z. 

Now assume that there are x’ E S, d E cl,~,, such that G’M,~+P k r[13,2]. Using 

persistency, the above conclusion from the i.h. for the first premise supplies us with 

Y E Cl~,~+~fl~ such that 

6 ‘44,m+2?7 + F[x’, G, V?,Z]. 

Using the conclusion from the i.h. for m’ = m + 2”0 we get 

6 M,&fZ”I i= T[x’,~],1F[~,,,~,~,Z], 

so using the choice of p this means 

6 M,m'+Z"I k w21 

which by persistency contradicts the assumption GM,~+~” k r[l?,d], so that this must 

be false and the assertion is shown in this case. 

If the last inference is (Join), the formula 3ZJoin’(f,t[a’,,],A,Z) is in r and the 

premise of the inference is 

Fix _? E cl~,~ and x’ E X and identify f = f(x’,_?). Assume GM,~+~~ k &?,_?I. The 

i.h. gives, using persistency again, G~M,~+P, b KX E ElY(fx N Y) and therefore 

j(fX) E G4,m+2~o+1 CQ4,m+2n. Consequently, GM,,,,+z” b 3ZJoin(f,X,Z) and there- 

fore 6M,m+2n k Vz’z3ZJoin’(f,z,X,Z), a contradiction establishing the assertion also in 

this case. 

Assume, and this is the central case, that the last inference was an (lo)-inference 

with main formula -(Mid). Then we have the premise 

y r T(Mid), T[ii,d], Clop( t) A Mon( t) A Vx~Lfp’(t,X) 

for no < n and an object term t which w.1.o.g. has no free variables not in &A’. Using 

inversions, we get the following derivations 

(1) F y y(Mid),T[ii,&A c B + tA G tB 

(2) F r -(Mid), T[ki,,d], 3Y(tA N Y) 

(3) y F l(Mid), T[ii,A’], -Lfp’(t,A) 

where A,B are new free variables. 

Now assume m E IV, 2 E cl~,,, and x’ E S. Define f := t(&?) E S and k := m+2”0. 

Then k + 2”O <m + 2” and so using persistency we see that if G’M,~+~“~ t= f [?$I, 
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then also GM,~+~” k r[&?] and we are done. Otherwise the i.h. for (1) and (2) leads 
to 

(4) ‘s;u, Y E m4J&,k+Z”o I= x c Y + fx c 0-3 

(5) vx E ClM,k,kGM,k+2”0 k 3Y(fX = Y). 
Since A4 = Cl~,o C Cl~,k, (4) and (5) imply especially that f satisfies the hypotheses 
of Lemma 4.16 for 6 = k + 2”o. Therefore by this lemma there is a 17;,k+2”o-operator 
r : POW(O) --+ Pow(w) with parameters in L, and some finite F such that for all 
b E A4 with g E Pow(S/F) 

(6) Z(g) E Pow(S/Z’) and GM,~+~v k x E fb H x E r(g). 

From this operator r we define again the variant r’ by 

i+(X) = r (U{tr&x) : x E Xl> . 

By Corollary 3.9 and Lemma 4.17 r’ has a sub-fixpoint Y’ in L,. For 

Y = {tre,F(x) : x E Y’}, 

this lemma moreover yields 

G’M,k+Z”o k Vz(z E fb + z E b) 

and 

(7) VX E Cl~,/A,,k+~o + fX CX -+ b CX 

for some b E M,v such that b = Y. On the other hand it follows that 

(8) %4,M,m+2”o + f b c b -+ 3X(fXgXAbgX) 

when choosing b E M = Cl,~,o for A in the i.h. for (3). Fixing X as in (8) contra- 

dicts (7) since because of k = m + 2”o we also have X E Cl,,. 

(b) can be proved analogously using transfinite induction up to 6. 0 

Corollary 5.13. (a) Zf EM0 r + (Join) + (IG) I+ (MID) t- F for a ZEM-formula F, then 

Cm I= F. 

(b) If EM0 + (Join) + (IG)r+(MID) I- F for a CEM-formula F, then GM,@ /= F. 

6. Reductions of subsystems of KPi in the presence of stability axioms 

Now we are going to prepare the second part of the reductions, namely reducing 

subsystems of set theory to systems of explicit mathematics. This will take some in- 

termediate steps. 

First, namely in the present section, we prove several well-known results on sub- 

systems of KPi which will be used in the second part of the section for reductions 

between different theories involving stability. First we want to reduce KPi’ to KPl’ in 

an analogous way as ,X:-AC0 can be reduced to ZZ: -CAa. 
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Definition 6.1. The calculus T(KPi’) is defined as a Tait-style calculus for set theory 

(with equality rules) together with the rules 

r, TF 
(~KPl'.) - r 

for axioms F of KF’l’ 

( As-Coll) 
r, VX E a3yF(x, y) 

r, 3zVx E a3y E zF(x, y) 
for F E do. 

By the usual proof-theoretic arguments we obtain: 

Proposition 6.2. (a) If KPi' t- F, then there are 1, r EN such that T(KPi’) $ F, where 
I is an upper bound for the length of the derivation and r is the cut-rank of the 
derivation. Here the rank of Cl- and Ii’,-formulas is defined to be 0 and for other 

formulas it is defined from this using the usual clauses. 

(b) If TW’i’) F F f or some 1, r E N, then there is a k, k = 2,_1( I), such that 

T(KPi’) $ F. 

Definition 6.3. For a formula F let F w the formula arising from F by relativizing 

all unbounded universal quantifiers 

(after appropriate renaming). For a 

where F E r. 

to x and all unbounded existential quantifiers to y 

finite set r of formulas, PJ’ is the set of all F’,J 

When arguing in theories which allow the definition of the constructible hierarchy, 

we will write F’,b instead of FLx*LP. 

Proposition 6.4. If T(KPir) 6 r[a] and r only contains VZ-formulas, then for all 

1EN 

Proof. Induction on k. 0 

Corollary 6.5. If KPi’ t- F for a C-sentence F, then also KPl’ k F. 

Now we are going to extend these arguments to I@?“, so that we have to treat the 

scheme of induction on N. The aim is to obtain a similar reduction as that of Xi-AC 

to @I,‘-CA)<,,. 

Definition 6.6. The calculus T,(KPi’) is defined analogously to T(KPi’), but contains 

additionally the o-rule 

r, t # g for all n E N 

r,t @ 0. 
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To formulate this precisely, the calculus derives formulas in a language extended by 

constants 11 for n E N and a constant o. It also contains a rule 

for F E Vx(x 6 Q), F E Vx((x E n + 1 c) x E n V x = rz) and the defining axiom for w, 

namely w E On A w E Lim A Vx E w(x 4 Lim). 

The above definition can be formalized in IQ1 and therefore the following propo- 

sition can be proved (actually a much weaker theory than KPl’ would suffice). 

Proposition 6.7. (a) If KPiw I- F, then KPl’ proves that T,(KPf) p F. 

(b) For all (meta) 6 < EO and n EN, KPl’ proves that if T,(KPi’) E r for some 

~166, then T&Pi’) p r where 21(a) = x,2,+1(~) = 22n(a). 

Finally, we have (now really exploiting the full strength of KPl'& ): 

Proposition 6.8. For all (meta) 6 < EO the theory KPl’,, proves the following: lf 
T&Pi’) f r where y < 6 and r consists of V&formulas, then 

bwp < wsvx E Lcr+,B,vrl+(z),cL+(B+zi). 

Proof. Induction on y. The proof is straightforward once it is established that this in- 

duction can be carried out in our meta-theory. To that end we fix, arguing in KPl&,, 

an arbitrary ordinal CI. By the main axiom of this theory, ,+tw6) exists. Since the asser- 

tion of the theorem concerns validity in Lcl+co~j, it can be described by a do-formula. 

Hence the necessary induction principle is available in KPl’&,. 0 

Corollary 6.9. Zf KPiw I- F for a sentence F E C, then KPl:, t- F. 

Now we apply the results of the asymmetric interpretations obtained in Proposi- 

tions 6.4 and 6.8 in a context in which stable ordinals are present. The point of the 

proof is that the additional parameter a, which was not necessary to obtain the proof- 

theoretic reductions of the systems KPP and KPiw given by Corollaries 6.5 and 6.9, 

is now instantiated to these stable ordinals. 

Proposition 6.10. Zf KPi’ + 3u(L, 41 L) k F for some C-sentence F, then there is an 
n E W such that KPl’ + 3x& 51 L,+w) t-F. 

Proof. Let KPi’ + 3c((L, +I L) k F. This means 

KPi’ t 3aVx E L,Ve E w(Satr(e,x)L -+ Satr(e,x)Ls) + F. 

Using embedding and cut-elimination in T(KPir ) we obtain 

T(KPi’) f V’a3x E L,3e E w(Satr(e,x)L A +atr(e,x)LZ),F. 
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If we apply Proposition 6.4 with 1 = 1, we see that KPl’ proves: 5 

VaVj? E La+% E Lg3e E w(Satr (e,x)“+(‘++) A +3atz(e,x)Lfl) V F’+(‘+*‘). 

For each ordinal a, we can instantiate /? to c( in the above formula and apply persistency 

to F, by which we get 

KPl’ t- Va(Vx E L,Ve E w(Satr(e,x)“+“+2x) + Satz(e,x)“) -+ F). 

As a does not occur in F. this amounts to 

KPl’ + 3a(L, -CI L@+,,+*q) k F. 0 

Similarly, we obtain: 

Proposition 6.11. Zf KPiw + 3a(L, <I L) I- F for some Z-formula F, there is some 

6 < EO such that ICI%, + 3a(L, -xl LoL+(~)) t F. 

7. Non-monotonic inductive definitions give rise to stability 

The aim of this section is to prove the existence of ordinals y which are y+(“+‘)-stable 
using the existence of inductively generated sub-fixpoints of certain non-monotonic 
ZZl,d-operators. For this, we have to construct an operator of maximal closure ordinal. 

Fix 6 < ~0. We work in KPl’ + ( V = L) + V/y3q (q = y’(‘+‘)) in this section. This 
theory is a subtheory of KPl’ + (V = L) if 6 < w and of KPl’& + (V = L) otherwise. 

Definition 7.1. Define n := & : Pow(w) + Pow(w) by 

n E W? ++ Lg+,, k Satz (4 0) 

where Satz is the Cl-truth predicate. 

Remark 7.2. This definition gives rise to d-predicates 

P(X, Y) :E Y = n(X) and Q(a,X) :ZE X = Zi 

because in our meta-theory we can prove that for all X C w there is a uniquely deter- 
mined ordinal of+,. 

Further note that n is a ZZi,g-operator since L, can be defined by a z,-formula in 
L,(X) if a is admissible. Therefore the condition Lo,=, k Satz(n, 0) can be easily 
written in the form L,;+,(X) k F[n] for some El-formula F. 

5 Formally, we would have to give a &-formula in the language of set theory expressing the mentioned 

property and apply Proposition 6.4 to this formula, but we do not bother to make explicit the necessary 

computations. 
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By Proposition 3.8 we know that n(Z~y)cZ/l<Y holds if y is stable. Since n is 
defined without parameters, the proof of Proposition 3.8 gives that this also holds if y 
is only weakly stable. 

The other implication, namely that the closure ordinal y of n is y+@+‘)-stable is 
somewhat harder, since n is parameter-free. Therefore, we need a further characteri- 
zation of this closure ordinal. This will be taken up next. 

Definition 7.3. b E L, has a good z:,-definition in L, if there is some F[x] E Cl 
without further parameters (free variables) such that 

L, + F[b] and Lg + 3!xF[x] for all /?>a. 

Definition 7.4. Let a = y6+1 iff a is minimal such that tl has no good z;-definition 
in L l+(d+l). 

Note that the previous definition does not say that ya+l exists. In fact, our meta- 
theory does not allow to prove the existence of ybfl. We will show that its existence 
is equivalent to the existence of some y which is y +@+‘)-stable, indeed if y6+1 exists, 
it satisfies this property. 

Proposition 7.5. Assume y~+~ exists. 
(a) ys+l is recursively inaccessible. 

(b) Zf z < y~+l, then T has a good Z;-definition in L +M+u. 
y6+1 

(c) Zf ya+l GO < ylJyl), then a has no good C;-dejinition in Ly,=‘pflj. 

Proof. (a) Assume ya+l was not admissible. Then we had some a < ya+l and a Cl- 
formula F (possibly containing parameters from LYa+,) such that 

V’B < ct3y < Y~+~F(~?)~; AVy < ys+,3/? < a~F(/3)% 

u has a good zC,-definition in L,+cs+,, c Lyp;p~, and so have all parameters of F, which 

we may assume to be ordinals less than y~+~, therefore the following can be turned 
into a good z;-definition of ya+l in Ly;;t~): 

“ys+l = min{< : V/II < a3y < <F(/?)Ly}r’. 

So ys+l is admissible. To show that it is recursively inaccessible, assume we had 

Ys+1 = fx + for some a. Then ya+i can be C;-defined in Lyl;p,~, as the least admissible 

y above CC, where a is replaced by its good ,!C’,-definition in L,+ca+l, C L?;JH,. 

(b) Each r -C ys+l has a good C,-definition in Ly+(6+1). By (a) from t < y~+i it also 
follows that r+cb+l) 6 ys+l. 

(c) If F were a good C;-definition of CJ E [y6+lry6=(F’)[, then ys+l itself could be 
defined in Ly;;p+~) as the maximal recursively inaccessible ordinal less than 0. 0 
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Theorem 7.6. (a) Zf Y is weakly y +(6+1)-stable, then y has no good Z,-de$nition in 

(b) Zf y&+1 exists, then it is 7;~~~fl’-stabZe. 

Proof. (a) Assume y to be weakly Y +(‘+l)-stable and there is some formula F[x] E 

,X1 without further parameters such that Ly+(6+1) b F[y] A 3!xF[x]. From Ly+(6+1) k 

ElxF[x] we infer by weak y+(“+‘)-stability that L, + ELxF[x], i.e. L, k F[xo] for 

some x0 E L,. By persistence Ly+(6+1) k F[xo] contradicting the uniqueness 

condition. 

(b) Assume Lyd+:;+~j b F(al,..., a,) for al ,..., a, E LYa+, and F E Cl. The pa- 

rameters al,...,a, can be El-defined using certain ordinals ~1,. . . , a, < ya+l, which 

in turn can be C;-defined by Proposition 7.5. So we may as well assume that F is 

parameter-free. Since Ly,=‘p+Ij k F, for all /I 2 yl:f+” we can infer Lg k ~!cx(c( = 

min{fx : L, + F}). This provides a good C;-definition of the minimal CI such 

that L, k F, which by Proposition 7.5(c) therefore is less than y~+i. This means 

&a+, k F. q 

Lemma 7.7. Let TO be such that no ordinal less than z. satisjies the properties of 

YS+1. V (Z;,)r<, exists, then for all z <TO 

(a), Z;’ = {y E o : LaCd+,,,z + Satz(y,B)} where s2y was dejned as the t-th 
admissible or limit of admissibles. 

Proof. We prove (a), and (b), simultaneously by induction on r. A few words seem 

in order to justify this induction in our meta-theory. We want to show that it can be 

expressed by a da-induction because we can restrict attention to one fixed set in which 

all these sets exist. 

This can be seen as follows. First, it is easy to see that zo is countable because there 

are only countably many CT-formulas. So let f : co + TO be a bijection. Defining 

X = { (n,x) E CO : x E Z2f(fl’}, we have that o~ky, <o$+, for all r <ra since Z;i” is 

recursive in X. Therefore, our inductive assertion is a property in L,x 
6+1’ Hence our 

theory allows the intended induction. 

(a)0 and (b)o are obvious as Ii0 = 0. Next we prove (a), for r > 0. If r is a limit 

ordinal, we have 

Z;I” = U Zj = U {Y E w : LL+~+,~.~ k SatzCh0)) 
<<l 5<T 

= {Y E 0 : ~22,~+,, ~ I= Satz(y, 0)) 

by induction hypothesis. 
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If on the other hand r = r’ + 1 holds, we get 

r;i” = z;l”’ u A(@) 

= {Y E fiJ : LR(6+,,.r’ k Satz(y,Q))} U {Y E w : L ,4 k Satz(y,Q))} 
%?I 

= {Y E 0 : L62Cd+,j.Cr,+,j I= Sat~(~~0)l 

by i.h. for (u)~! and (b),!. 

To show (b), let 5 < S2~s+i).~. First, we show that l has a good C,-definition in 

-%6+Wr. Namely, if r is a limit ordinal, we can conclude that 5+(6f’) < SZ(b+i)_ Since 

ys+i ft 5, 5 has a good Z;-definition in Lg+(6+l) CLQ(~+,).~. 
For r = r’ + 1 the inequality l < S1(6+1).r means 5 < Q(d+1).~‘+6+1. If < < Q(s+~).~!, 

we can argue in the same way as in the previous case. If finally 5 > sZ(~+i).~,, then we 

show by induction on 5 that 5 has a good Zi -definition with parameters < SZ(a+i).,,, and 

so it also has a parameter-free one if we replace the parameters by their C;-definitions 

from the previous paragraph. This is obvious for the ordinals S2~6+i+,+,, for y < 6, 

since these y have good .X,-descriptions in L wp. If 5 E W(J+I).~I+~, Q(G+I).~~+~+I[, then 
4 is the order type of a CF well-ordering for v = Q(6+i).rr+y. This can be expressed 

by a Z:’ -formula with parameters from v where v’ = S2(~+i).~j+~+i. Replacing these 

parameters by their definitions given by i.h. we get a good C,-definition of 5. 

Since we have shown that every ordinal in LQ(~+~,.~ has a good Z,-definition in 

Lo (bi-l,.7 the following defines a pre-wellordering + on o of ordertype Q(a+,).,: Let 

x 4 y if x and y are C;-formulas defining ordinals cr, j? E LQ~~+,)_, and a < /I. By 

the characterization of 12T from (a), we easily see that + is recursive in I;i”, so 

o$” >Q(s+i).,. By (a), again, 12’ E Lo~~+,).,+~ and therefore ~~‘=Q~~+i).~+i. Conse- 

quently, o?* = Q(6+i).r+ol for all c(. 0 

Theorem 7.8. Assume there is some y such that (I>)d(<y exists and A(Z,“)~I,“. 
Then ys+l exists and is < y. 

Proof. If ys+i f y, we can apply the previous lemma to y. It says that 

I;I” = {Y E w : Ls~,~+,,.; k Sat~(y,Q))) 

and 

Y E 4C) @ J&+,).,+~+, + Satr (y, 0). 

Hence A(Z,“) C Z:’ leads to 

L%+l,.,+6+1 k Satz(~,Q)) * LQ+,).~ l= Sak(v,0). 

Since Katz iS universal for C;-formulas, this implies LnC6+,j,Y +; LRCa+,,,T+6+, = 

L(t++,,.;.)+(d+‘). Since it is the least ordinal with this stability property, ya+, exists and is 

<$6+1).,. Since we also assumed y<ya+i and y~+~ is inaccessible by Proposition 7.5, 
this implies ya+l = y. 0 
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Altogether, we have shown the following in this section: 

Corollary 7.9. (a) On the basis of KPl’ + (V = L), for each (meta) n the schema 

where A is l7; n W.O. parameters proves the existence of some y such that L, 51 Ly+(+ 
(b) On the basis of KPl’& + (V = L), for each 6 c EO the schema 

Wx = ($)m<, A ~(Umg(~))GUmg(x)) 

where A is II; s W.O. parameters proves the existence of some y such that L, +I LY+(6). 

Proof. (a) Let n > 0 be given. Theorem 7.8 yields in this case that yn exists, 
Theorem 7.6 says that it is $(“I-stable as desired. 

(b) is proved in the same way. 0 

8. Modeling set theory using representation trees 

We are left with the task to reduce axiom systems for set theory postulating the 
existence of inductively generated sub-fixpoints of (non-monotonic) U;,,-operators to 
systems of explicit mathematics with (MID). The next step in this direction is to model 
set theory in a way such that it can be treated in constructive systems. 

For this we want to use the method of representation trees, which originally was 
used to reduce systems of set theory to systems of second-order arithmetic. We will 
use the following theorem, which can be found for example in [18, Corollary 7.21. 

Proposition 8.1. (a) II,‘-CA0 k FREP for each axiom F of KPl’. 
(b) Zli-CA0 l- F H FREP for each F E 2’1. 
(c) Analogously to (a) it holds IIt-CA,,, t FREP for each axiom F of KPl:,. 

Our intention is to use part (b) of this proposition to treat axioms which state the 
existence of inductively generated sub-fixpoints of n’ i, 6-operators by translating them 
to statements of second-order arithmetic which then can be treated in the context of 
explicit mathematics. For this, we have to get rid of the ordinals in the formulation 
of the definition of inductively generated sub-fixpoints. We will replace them by pre- 
wellorderings. 

Definition 8.2. (a) A binary relation 4 c A2 for some set A is called a pre-wellordering 
of A if it is transitive, linear and satisfies 

~x,y~A(x+yvy+xvx=+ y), 

where x q y means VU E A((u + x +-+ u + y) A (x + u H y 4 u)). 
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(b) X = Zr(+) MX, = 
if n $ field(+) 

T(X+,) UX,, if n E field(+) 

Proposition 8.3. Assume that I is a II’, , 6-operator. The following principles are 

equivalent in KPl’ + (V = L) + Vy(y+(‘+‘) exists): 

(a) 3yELx(x = I,<’ A T(x) Gx) 

(b) 3+ cw~Co(PWo(~)AX=~~(~)~r(u,X,)~u,Xn). 

We abbreviate the latter principle as Y(I). 

Proof. (a) +- (b). Take the least such y. Then y is countable. (An injective mapping 

into o is given by mapping a < y to the least n such that n E T(lF’l)\l;a.) So take 

a bijection f : o 4 y, neglecting the trivial case that y is finite. Define m 4 n H 
f(m) < f(n). This is a well-ordering, especially a pre-wellordering. Defining the set 

X C o by X, = I;@), we see that X = %r(+). 

(b) + (a). Let + be a pre-wellordering on o and X = ST(+) as in (b). Define 

Il.11 : fiW-9 + On by llnll = {Ml : m + n}. This definition can be formalized as a 

+-recursion in some u with Ad(u) and +E u. By -x-induction in u, we can show 

(1) Vn E field(+)(llnll E On) and y := U, [InIl E On. 

(2) Vm,n E field(+)(llmll = ]]n]l +X, =X,). 
Using the weak inverse g : y --+ field(+) with g(a) = min{n E w : llnll = a}, we can 

define x, =X,(,,. We show that (x,),<~ = (IF),,,. 

We have to show that x, = T(lJB<axp)~UB<lrxp For this, the first thing to note is 

that Um~s& = lJp4~. Namely, if m 4 g(a), then llrnll c a. Since Ilg(l]rn]l)]] = 

I]rnl], (2) then yields X,,, = Xg(llmll) = qrnll 5 UBIDIq. Conversely, from /!I < a we 
obtain p = llrnll f or some m + g(a). But then xb = X,(B) = X,,, because of (2) and 

llmll = P = IWII. 
Therefore we have 

Finally, 

q ha) =q u && u xm= uxci 
U<Y mE field( 4) mE field(+) E<Y 

follows in the same way. q 

Proposition 8.4. An operator I : Pow(o) + Pow(o) is a 17i,d-operator ifSit can be 
written in the form 

n E WY e F[n, HJ(& (4,. . . A) )I 

for some II:-formula F[a, A] and sets Xl, . . . ,X,, c w. Replacing the ordinal 6 with its 

notation in the set Cl from Section 2.1 we can regard this definition of I as given 
by an _!Yz-formula. 
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Proof. This also follows using suitable trees and noting that wEF”“‘~“) is the least 

ordinal not recursive in HJ(6, (X,X,, . . . ,Xn) ). 0 

9. Characterizations of proof-theoretic strength 

Now we are ready to combine the material assembled in the previous sections to 

prove the following main result: 

Theorem 9.1. Let F be a Ci-sentence. Then 
(a) EM0 1 + (Join) + (IG)] +(MID) t F H KPi’ + 3y(L, 51 L) I- F. 

(b) EM0 + (Join) + (IG) 1 + (MID) k F H KPiw + 3y(L, 41 L) t- F. 

Proof. (a) Assume EM0 1 +(Join) + (IG) 1 +(MID) k F for a C&sentence F G 
X@‘,@l) where Fo is ZIt. Defining an operation f that computes from a classification 

X c w the tree of unsecured sequences for Fe(X), 6 we see that, in EM0 1 + (IG) 1, F 
is equivalent to the Zi-formula (in the sense of Definition 5.1) 

F” :E X3Y(fX 2: Y A i(N, Y) N N)). 

Working in KPi’ + 3y(L, +i L), by Corollary 5.13 GM,,, b F” and since 6~,~ + 

EM0 1 + (IG) 1, we also have 6~,~ + F for the model constructed there. (Note that the 

least y such that L, -xi L is countable. In fact, the proof of this fact, cf. e.g. [l, V 7.81, 

can easily be formalized in KPl’. Accordingly, the assumption from subsection 5.2 is 

satisfied.) Since moreover for X G w 

XELytiXo={z:zEa} forsomeaEClM,o 

@X0 = {z : z c a} for some a E cl~,~, 

we also see that the second-order part of 6 M,~ is isomorphic to L, n Pow(N). 

Therefore L, b F. By the Quantifier Theorem 2.19, F is equivalent in KPl’ to a Ci- 

formula of set theory. Therefore persistency implies that F holds in the universe of 

KPi’ + 3y(L, +l L). 
For the converse direction, assume KPi’ + 3y(L, -XI L) t- F for a Ci-sentence F. 

Since F is equivalent to a Zi-formula, Proposition 6.10 yields KPl’+3a(L, +1 L,+c,,) t- 
F for some n E N. By Corollary 7.9 we get that 

(9) KPl’ + (V = L)+ 
{3x(x = (Zj)ar.y) A A(ZiY) & 12” : A is LZf,,w.o.parameters} k F. 

By Proposition 8.3 we see that this is equivalent to 

KPl’ + (V = L) + {9(/i) : A is II;,, W.O. parameters} k F. 

6 i.e. fX is a relation <,P~(x) defining a tree which is well founded iff Fe(X) holds, cf. e.g. [16, Theorem 
111.3.2]. 
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Since by Shoenfield absoluteness X(n) implies AL, this implies 

KPl’ + {9(/l) : A is ZZ:., W.O. parameters} 1 FL 

and 

KPl’ + {s(n) : A is ZZ:,, W.O. parameters} k F 

by absoluteness again. Since 9(n) can be considered to be an 55’2-formula using 

Proposition 8.4, by Proposition 8.1 we get 

ZZI-CAs + {.9(n) : ,4 is ZZ:,, W.O. parameters} k F. 

IIt -CA0 may be regarded as a subtheory of EM0 r + (Join) + (IG) f and the main 

result of [21] says that EM0 1 + (Join) + (IG) 1 proves 9(n). To see this, note that 

the operation X H /1(X) can be defined in EM0 r + (Join) + (IG) 1. Namely, let 

x E n(X) M G[x,HJ(n,X)] where G E ZZ: by Proposition 8.4. Using an operation .f 

which maps (x, Y) to the tree of unsecured sequences of G[x, Y] and a g which maps 

X to HJ(n,X), we can define 

x E n(X) @x E {y : N g i(N,f(y,gX))} 

for N = {x : N(x)}. This gives rise to an extensional operator in EM0 1 + (Join) + 

(1G)r. So by Theorem 4.1 of [21], which for convenience is quoted below, 9(n) is 

provable in EM0 1 + (Join) + (IG) r + (MID). Therefore 

EM0 1 + (Join) + (IG) 1 + (MID) t- F. 

(b) can be proved analogously. 0 

Theorem 9.2 (Rathjen). In To 1 + (MID), to any operator A there can be associated 
a monotone operator T and a total operation x H Ax, giving a classification Ax for 
all x, such that with < r denoting the pre-wellordering pertaining to T 

AT & A 

( ) 
u AY u u AY, 

y<rx y<rx 

and, for the ClussiJicution defined by 

I/l := u nx 
X&V 

it is 

AU/l) C I/i 

Put difSerently: 1~ is a clussiJcution that arises by iterating A along < r and is closed 
under A. 
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Since the pre-wellordering < r can be taken to be a subset of N if A : Pow(N) -+ 
Pow(N) the theorem amounts to saying that the principle X(A) can be proved in 
TO] +(MID) for operators A that are operations in that theory. 

Remark 9.3. The proof-theoretic strength of the theories of explicit mathematics does 
not increase if we add Church’s Thesis to them since the model used in the previous 
proof satisfies this additional axiom. 

Alternatively, we could also add the non-~ons~ctive p-operator as introduced in 
[6] to the theories without increasing proof-strength. To see this, note that we could 
have used the model built on the applicative system consisting of the Al-indices and 
performed literally the same proof. 

Finally, the result (a) of the preceding theorem remains correct if we omit the join 
axiom from the system of explicit ma~ematics. In fact, GlaB’ work in [12] shows that 
addition of the join axiom in this context leads to an extension which is conservative 
(at least) for Ci-sentences. 

10. Comwctions to theories of second-order arithmetic 

In this section we want to indicate shortly which subsystems of second-order arith- 
metic correspond to the theories we encountered in this paper. Let (Zi$CA-) be the 
axiom scheme of comprehension for n&formulas without parameters. 

Theorem 10.1. For all ~~-sentences F we have 

KPi’ + +(L, 41 L) I- F +k C&AC0 + (Z&CA-) l- F 

and 

IW” + 3yfL, +I L) t- F =S Xi-AC + (IZ$CA-) k F. 

Proof. Consider the first assertion. First we treat “-+=“. Here it is easy to show, 
cf. e.g. [ 18, Theorem 8.2, Lemma 8.21, that Z:-AC0 c KPi’. Hence we have to show 

3x(X = {x E o : F(x)}) 

where F is a ~~-fo~ula without p~meters (and then to use recursive comprehension 
to define Y := N\X). F is equivalent to a .Zi-formula G in KPl’. Let L, 41 L and 
define X := {x E o : L, + G(x)}. Using the stability of y and Shoenfield-Absoluteness, 
we see that X is as required. 

As to “a”, it is a standard result, cf. again [ 18, Theorem 8.31, that ,X:-AC* t FREP 
for each axiom F of KPi’. What is left to show is that 

$-AC0 + (@-CA-) t- 3y(L, 4; L)=‘, 

because as in Section 7 it can be shown that the least y such that L, 4; L already 
satisfies L, -il L. Using l7:-CA-, define X = (‘F1 : (L + F and F E C,)REp). Here 
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we use the fact that validity of a zi-formula in L is represented by a Cl-formula. 

Using this X, we have 

VF’ E X3Y(Y = L, A L, b F)? 

By the Ci-axiom of choice we obtain a set Z such that 

VF’ E X(zrFl = L, A L, + F)a? 

These Z can easily be combined to a representation tree for some set L, such that 

L, 4; L. 

Obviously, for the second part of the assertion we only have to add induction on 

the integers to both theories. 0 

11. Related results and future research 

In this paper, we did not attack the most obvious next question, namely the question 

about the strength of the full system To + (MID). Although the results of this paper 

seem to suggest that the strength of this system is that of KPi + 3y(L, 41 L), we 

conjecture that To + p + D exceeds the strength of that theory. The full machinery of 

ordinal analysis for impredicative systems would have to be developed for systems of 

explicit mathematics. To include that in this paper certainly would exceed the tolerable 

limits for its length. 

In any case, the results of this paper already show the principles at work in theories 

containing (MID) in addition to (Join) and (IG) t-axioms. This picture should not 

change when allowing the full schema of (IG), we expect it to involve a more or less 

obvious iteration of these principles. The computation of the proof-theoretic strength 

of this system therefore is more of technical than of foundational interest. 

The question about systems of explicit mathematics containing (UMID) seems to 

be much more interesting and challenging. The techniques of this paper do not apply 

to this axiom. The additional operation lfp allows to iterate the formation of fixpoints 

of inductive definitions in a very general way. A computation of the proof-theoretic 

strength of these systems would certainly lead to deep insight into these induction 

principles. Especially it would be interesting to compare this theory to subsystems 

of second-order arithmetic based on II:-comprehension and to systems of set theory 

axiomatizing a non-projectible ordinal. 

Finally, it should be mentioned again that we only considered theories of explicit 

mathematics based on classical logic. It is not clear whether the theories have the 

same strength when formulated on the basis of intuitionistic logic. As we said in 

the introduction, if that is not the case, we would get a radically different situation 

from former characterizations of proof-theoretical strength of To and various of its 

subsystems, which have turned out to be independent of whether the underlying logic 

is classical or intuitionistic. 
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