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a b s t r a c t

A micromechanical model consisting of a band with a square array of equally sized cells, with a spherical
void located in each cell, is developed. The band is allowed a certain inclination and the periodic arrange-
ment of the cells allow the study of a single unit cell for which fully periodic boundary conditions are
applied. The model is based on the theoretical framework of plastic localization and is in essence the
micromechanical model by Barsoum and Faleskog (Barsoum, I., Faleskog, J., 2007. Rupture mechanisms
in combined tension and shear—micromechanics. International Journal of Solids and Structures 44(17),
5481–5498) with the extension accounting for the band orientation. The effect of band inclination is sig-
nificant on the strain to localization and cannot be disregarded. The macroscopic stress state is charac-
terized by the stress triaxiality and the Lode parameter. The model is used to investigate the influence
of the stress state on void growth and coalescence. It is found that the Lode parameter exerts a strong
influence on the void shape evolution and void growth rate as well as the localized deformation behavior.
At high stress triaxiality level the influence of the Lode parameter is not as marked and the overall duc-
tility is set by the stress triaxiality. For a dominating shear stress state localization into a band cannot be
regarded as a void coalescence criterion predicting material failure. A coalescence criterion operative at
dominating shear stress state is needed.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

It is a well known fact that the stress triaxiality has a significant
influence on void growth and coalescence and hence on the ductil-
ity of materials. This has been demonstrated by several authors in
the past, both experimentally, theoretically and numerically. The
classical work by Hancock and Mackenzie (1976), where they per-
form experiments on notched round bar specimens, show that
ductility increases with decreasing stress triaxiality. These experi-
mental findings are annotated by the use of the theoretical void
growth models by McClintock (1968) and Rice and Tracey (1969).
Recently, Weck et al. (2006) perform an experimental study on
void coalescence in voided layers and observe that the voids grow
until a critical spacing between them is reached, which corre-
sponds to the onset of coalescence. Beyond this point two different
ductile failure mechanisms leading to final rupture are observed.
One is void shearing due to that the deformation becomes concen-
trated into a narrow shear band between the larger voids leading
to micro-void nucleation at second phase particles (Cox and Low,
1974; Faleskog and Shih, 1997). The other mechanism is referred
ll rights reserved.
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to as void coalescence by internal necking, where the ligament be-
tween the voids necks down to a point. This event is studied exten-
sively numerically e.g. by Koplik and Needleman (1988), Pardoen
and Hutchinson (2000) and most recently by Scheyvaerts et al.
(2010), who investigate the influence of the stress triaxiality on
void growth and coalescence under axisymmetric conditions by
the use of a cell model. However, it has been observed in recent
experimental studies by Wierzbicki et al. (2005) and Barsoum
and Faleskog (2007a) that the stress triaxiality is insufficient to
characterize the stress state in ductile failure. A deviatoric stress
measure is also needed and the stress state is hence characterized
by the stress triaxiality and the Lode parameter.

Zhang et al. (2001) and Gao and Kim (2006) perform systematic
numerical analysis on a cell model with straight boundaries sub-
jected to different macroscopic stress states characterized by the
Lode parameter and stress triaxiality. They find that the Lode
parameter has a strong influence on the stress carrying capacity
of the material and the onset of void coalescence, which they de-
fine as the shift to an uniaxial straining mode. As a consequence
of the constraint on the cell not allowing for shear deformation,
the uniaxial straining mode is the only mode of localization that
will occur in their model. Other cell studies by Tvergaard (1981),
Tvergaard (1982), Pijnenburg and Van der Giessen (2001) and
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Leblond and Mottet (2008) incorporate the possibility of shear
deformation by employing fully periodic boundary conditions,
but they do not systematically investigate the effect of the Lode
parameter.

In a recent study, Barsoum and Faleskog (2007b) employ a
micromechanical model to study the ductile rupture mechanisms
observed in their experimental investigation on double notched
tube specimens subjected to combined tension and torsion
(Barsoum and Faleskog, 2007a). The micromechanical model
assumes that ductile failure is a consequence of that plastic defor-
mation localizes into a band and is based on the model introduced
by Rudnicki and Rice (1975) and Rice (1977). The model consists of
a planar band with a square array of equally sized cells, with an ini-
tially spherical void in the center of each cell. The periodic arrange-
ment of cells allows for the study of a single unit cell for which
fully periodic boundary conditions are applied within the band.
The loading condition of the unit cell is chosen such that it resem-
bles the stress state, characterized by the stress triaxiality and the
Lode parameter of the experiments. The model captures the exper-
imental trend fairly well and predicts the different rupture mech-
anisms involved but does not account for the orientation of the
band, which has an important role in the localization behavior.
Tvergaard (2009b), Tvergaard (2009a) has very recently carried
out a series of similar micromechanical studies, where a combina-
tion of normal stress and shear stress is applied to unit cells under
plane strain conditions. Tvergaard’s results demonstrates that
voids deforming under zero or low stress triaxiality may lead to
material softening. Also Scheyvaerts et al. (in press) have most re-
cently studied material softening and failure due to growth and
coalescence of voids under combined tension and shear. However,
both Tvergaard (2009b), Tvergaard (2009a) and Scheyvaerts et al.
(in press) use a similar model as in Barsoum and Faleskog
(2007b), and do not fully account for the influence of the orienta-
tion of the voided cells.

The influence of the band orientation on the localization behav-
ior has been the subject of studies in the past. Yamamoto (1978)
adopts elastic–plastic constitutive relations for a void-containing
material to develop a criterion for localization under plane strain
conditions. The same procedure is employed by Saje et al. (1982)
where they investigate the influence of void nucleation and band
orientation on localization under plane strain and axisymmetric
conditions. Tvergaard (1989) uses a two dimensional computa-
tional cell model and employs fully periodic boundary conditions
to incorporate the possibility of shear deformation to study the
influence of band orientation. They all find that the orientation of
the band has a significant influence on localization. Nahshon and
Hutchinson (2008) propose a modified Gurson model to account
for shear failure. They perform a localization analysis, following ear-
lier localization studies employed by Mear and Hutchinson (1985),
where they explore the relationship of the localization strain to the
Lode parameter, stress triaxiality and band orientation.

In the current study the micromechanical model in Barsoum
and Faleskog (2007b) is extended to incorporate the effect of band
orientation in a somewhat simplified manner. The objective is to
explore the influence of the Lode parameter and the band orienta-
tion on the localization behavior, void growth and coalescence. The
model is presented in Section 2, the mechanical properties of the
materials considered are summarized in Section 3 and the results
of the micromechanical analysis are presented in Sections 4 and
5. The paper is concluded in Section 6.
2. Micromechanical model

Building on the work by Marciniak and Kuczynski (1967),
Rudnicki and Rice (1975) and Rice (1977) investigate the condi-
tions corresponding to localization of deformation into a planar
band and present a general framework for imperfection based
localization analysis, as is also discussed by Needleman and
Tvergaard (1992). The present micromechanical analysis fits well
into the theoretical framework given by Rudnicki and Rice
(1975). The micromechanical model employed here assumes that
ductile material failure occurs when the deformation becomes
highly non-uniform and localizes into a thin planar band as a result
of nucleation, growth and coalescence of voids. The material is as-
sumed to contain an initial planar band with a regular square array
of pre-existing voids that can be viewed as initial imperfections,
which may induce localization of deformation. Thus the stage of
void nucleation is not considered in the present study.

A systematic study of the influence of the full range of the Lode
parameter, L (�1 6 L 6 1), on void growth and coalescence can be
done in several ways. As in Barsoum and Faleskog (2007b) we con-
sider a material subjected to a combination of an axisymmetric and
a pure shear stress state, as shown in Fig. 1(a) with reference to the
Cartesian coordinate system X0

1X0
2X0

3. Localization into a planar
band, as shown in Fig. 1(b), may then occur in a symmetric mode,
a shear mode or a combination of both modes. In general, the band
will localize in the most favorable direction and thus the orienta-
tion of the band should be considered. The orientation of the band
is here defined by h, the angle between the band and the macro-
scopic Cauchy stress component R0

33 along the X0
3-axis, according

to Fig. 1(a). As shown by Rudnicki and Rice (1975) and further dis-
cussed by Perrin and Leblond (1993), the normal to the plane of
localization will always be perpendicular to the direction of the
middle principal stress RII ¼ R0

22 and located in the X0
1 � X0

3 plane.
Hence, the unit normal vector of the band is taken to be in the
X0

1 � X0
3 plane and perpendicular to the X0

2-axis. At this point we
introduce a second Cartesian coordinate system X1X2X3, rotated
an angle h such that X1 is normal to the band in Fig. 1(c) and (d)
with X2 ¼ X0

2, as shown in Fig. 1. The macroscopic stress compo-
nents Rij with reference to X1X2X3 acting on the inclined band in
Fig. 1(c) can readily be obtained by tensorial transformation of
the macroscopic stress components R0

ij in Fig. 1(b). As discussed
above, the maximum and minimum principal stresses, RI and RIII,
respectively, are located in the X0

1 � X0
3. Their directions are here

defined by the angle a between RIII and the X0
3-axis. For later pur-

poses we introduce the angle u = h + a and note that
RI P RII ¼ R0

22 P RIII, see Fig. 1(d).
The influence of the band orientation is accounted for in a sim-

plified manner in this study. Upon deformation the orientation of
the inclined band in Fig. 1(a) will change such that the angle be-
tween X0

3-axis and the band evolves as tanhdef = (F13 + F11 tanh)/
(F33 + F31 tanh), where hdef is the angle in the deformed configura-
tion and Fij are components of the deformation gradient with refer-
ence to the Cartesian frame ðX0

1X0
2X0

3Þ. Here, we do not account for
the evolution of the angle with deformation. Instead, given a fixed
set of the stress triaxiality and the Lode parameter, we apply pro-
portional stressing on the aggregate of cells in the inclined plane in
Fig. 1(c) and seek the angle h that minimizes the strain to failure.
Hence, the angle h shown in Fig. 1(a) may be viewed as the angle
at the instance of localization. Put in an another way, the stress
state in Fig. 1(c) is co-rotating with the inclined band during defor-
mation and thus the coordinate system X1X2X3 is used as the refer-
ence system. In this way, we can fully employ the micromechanical
model developed in Barsoum and Faleskog (2007b) in which the
periodic boundary conditions are formulated based on the assump-
tion of proportional stressing. Note that for the special case of no
initial band inclination, the band will not rotate during deforma-
tion. This special case is also considered below.

Due to the regular array of voids, attention can be restricted to a
three dimensional unit cell as indicated in Fig. 1(e), with dimen-
sions 2D1, D2 and D3. The height of the unit cell (2D1) is taken large



Fig. 1. The micromechanical model: (a) material subjected to a combination of axisymmetric and pure shear stress state indicating two bands with (b) macroscopic stresses
R0

ij acting on a planar band containing pre-existing spherical voids. (c) The inclined band depicted in the principal stress space with (d) macroscopic stresses Rij acting on the
inclined band with inclination angle h. (e) Dimensions of the unit cell and macroscopic stresses acting on the unit cell referring to a Cartesian coordinate system with origin at
the center of the void.
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enough to avoid interaction with other rows of voids. The influence
of the height of the unit cell can be quantitatively appreciated from
Pardoen and Hutchinson (2000). The unit cell contains one void
placed in its center, initially of spherical shape with radius R0.
The initial size of the cell is given by D1 = D2 = D3 = D0. The initial
ratio of void size to void spacing is defined as v0 = R0/D0 and the
initial void volume fraction is f0 ¼ v3

0p=12, where v0 is the more
relevant parameter for defining porosity in the present study.

2.1. Loading of the 3D unit cell

The macroscopic Cauchy stresses R0
ij acting on the unit cell, in

the band shown in Fig. 1(b), are equal to the volume average of
the Cauchy stresses, r0

ij, over the deformed volume of the unit cell
V, and can be calculated as
R0
ij ¼

1
V

Z
V
r0

ij dV : ð1Þ

The mean value and the von Mises effective value of the macro-
scopic stress are then defined as

Rh ¼
1
3

R0
11 þ R0

22 þ R0
33

� �
; ð2Þ

Re ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0

11 � R0
22

� �2
þ ðR0

22 � R0
33Þ

2 þ R0
33 � R0

11

� �2
þ 6 R0

13

� �2
r

: ð3Þ

Loading is applied on the unit cell such that the macroscopic stres-
ses acting on the cell follow a proportional loading history defined
by the stress ratios
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R0
22=R

0
11 ¼ R0

33=R
0
11 ¼ qn; R0

13=R
0
11 ¼ qs; ð4Þ

where qn and qs are prescribed constants corresponding to normal
and shear stress ratios, respectively. The remaining shear stress
components, R0

12 and R0
23, are equal to zero. By varying qn and qs

a combination of axisymmetric and pure shear stress states can
be accomplished. The stress invariants, the stress triaxiality T and
the Lode parameter L, will then remain constant during the load his-
tory as

T ¼ Rh

Re
¼ ð1þ 2qnÞ � signðR0

11Þ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qnÞ

2 þ 3q2
s

q ; ð5Þ

L ¼ 2RII � RI � RIII

RI � RIII
¼ �ð1� qnÞ � signðR0

11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qnÞ

2 þ 4q2
s

q ; ð6Þ

where RI P RII ¼ R0
22 P R III are the principal stresses as illustrated

in Fig. 1(d). The inverse relations from Eqs. (5) and (6), the stress ra-
tios qn and qs can be expressed as

qn ¼
3T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ L2

p
þ 2L

3T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ L2

p
� 4L

; qs ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L2

p
3T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ L2

p
� 4L

: ð7Þ

The solutions for qn and qs are valid for �1 6 L 6 1 and R11 ? 0

when T?4L=ð3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ L2

p
Þ. A few limiting cases are here of interest.

These are: qn = �1/2 and qs ¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L2

p
=ð4LÞ for T ? 0; qn = 1

and qs ¼ 1=ð
ffiffiffi
3
p

TÞ for L ? 0; qn = (3T ± 1)/(3T � 2) and qs = 0 for
L ? ±1.

The macroscopic principal stresses are given by

RI ¼
1
2

1þ qn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qnÞ

2 þ 4q2
s

q� �
R0

11;

RII ¼ R0
22 ¼ qnR

0
11

RIII ¼
1
2

1þ qn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qnÞ

2 þ 4q2
s

q� �
R0

11:

ð8Þ

Again, we emphasize that RII > RIII, which from Eq. ((8)) is seen to
hold when jqsj > 0. For pure axisymmetric stress states, i.e. when
qs = 0 the plane of localization is undetermined. However, here it
is assumed to remain with its normal in the X0

1 � X0
3 plane.

The orientation of the principal stresses, defined by the angle a
shown in Fig. 1, can be expressed in terms of T and L as

tan a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L2

p
= signð3T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ L2

q
� 4LÞ � L

� �
: ð9Þ

The ratio of the macroscopic stress components with reference to
the inclined coordinate system X1X2X3 will also remain fixed and
constant during the loading history, as discussed above, and can
Fig. 2. (a) Depicting a general deformation mode of the unit cell in plane X2 = 0 and (b)
be expressed by tensorial transformation in terms of qn, qs and an-
gle h as

w1 ¼ R22=R11 ¼
qn

cos2 hþ sin2 hqn þ sin 2hqs

;

w2 ¼ R33=R11 ¼
sin2 hþ cos2 hqn � sin 2hqs

cos2 hþ sin2 hqn þ sin 2hqs

;

w3 ¼ R13=R11 ¼
cos h sin hðqn � 1Þ þ cos 2hqs

cos2 hþ sin2 hqn þ sin 2hqs

:

ð10Þ

Thus, for the case of a planar band with h = 0, Eq. (10) simplifies to
Eq. (4) such that w1 = w2 = qn and w3 = qs.

Hence, for a band with a certain orientation h and a stress state
characterized by the stress triaxiality T and the Lode parameter L,
the macroscopic stress ratios acting on the 3D unit cell boundaries
are given by Eqs. (7) and (10), which is the strategy employed when
loading the 3D unit cell shown in Fig. 1(e). This is accomplished by
applying appropriate boundary conditions and prescribed displace-
ment such that the stress ratios are kept constant, which is discussed
next.

2.2. Deformation of the 3D unit cell

Relative to a fixed Cartesian frame, a material point is described
by the coordinates Xi in the undeformed configuration and by the
coordinates xi = Xi + ui in the deformed configuration, where ui de-
notes the displacements. Fig. 2(a) depicts how the 3D unit cell may
deform under loading in a planar band indicating that the cell
boundaries will not remain straight. Thus, fully periodic boundary
conditions must be applied on faces with normal vectors in the X2–
X3 plane, which will be given in detail in Section 2.3. Sufficiently
remote from the band of imperfection, i.e. the layer of voids, homo-
geneous conditions are assumed to prevail (@ui/@Xj = const.), where
for instance @u1/@X2 = @u1/@X3 = 0. Such conditions are here as-
sumed for the boundary surfaces X1 = ±D0, which will remain
straight and parallel throughout the loading.

Following the notation of Rice (1977), compatibility across the
band requires in the present cell analysis that the displacement
gradient with respect to X1 on sides X3 = ±D0/2 must take the form

@ui

@X1
¼ @ui

@X1

� �o

þ qiðX1Þ; i ¼ 1;3; ð11Þ

where ()o denotes the uniform field quantities outside the band of
localized deformation and qi denotes the non-uniform part of the
displacement gradient across the band, which is a function of X1

only, see the illustration in Fig. 2(b). The volume average of the
deformation gradient can be determined from the displacements
on the cell boundary as
illustrating the uniform and non-uniform parts of the displacements, where i = 1, 3.



Fig. 3. Finite element mesh of one half of the unit cell.

Table 1
Material parameters for the two materials considered (Eq. (21)).

N e0

Material 1 0.05 0.0050
Material 2 0.10 0.0025
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Fik ¼
1

V0

Z
V0

Fik dV0 ¼ dik þ
1

V0

Z
S0

uin0
k dS0; ð12Þ

where V0 and S0 are undeformed volume and outer surfaces of
the cell, respectively, dik denotes Kronecker delta and n0

k are com-
ponents of the normal vector to S0 in the undeformed configura-
tion. In view of Fig. 2(b) and Eqs. (11) and (12), the volume
average of the deformation gradient for the 3D unit cell can be
expressed as

F ¼ F0 þ Fq ¼
F0

11 þ �q1 0 0

0 F0
22 0

F0
31 þ �q3 0 F0

33

2
64

3
75 with �qi ¼

Dui

D0
: ð13Þ

Here, F0 denotes the uniform deformation gradient outside the band
of localized deformation, and hence localization of deformation into
a narrow planar band can be defined as Needleman and Tvergaard
(1992)

g ¼ _�F
��� ���. _F0

��� ���!1: ð14Þ

In Eq. (14) the norm kk of a 2nd order tensor with components ()ij is

evaluated as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð Þijð Þij

q
and for practical purposes localization is taken

to occur when the ratio g is sufficiently large. In the present study a
ratio of 10 was used.

As an effective scalar measure of strain was employed

Ee ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3

D0ijD
0
ij

r
dt; D0ij ¼ Dij �

1
3

dijDkk; ð15Þ

where Dij is the components of the volume average of the rate of
deformation tensor, which can be calculated from the volume aver-
age of the deformation gradient as

Dij ¼
1
2

_FikF�1
kj þ

_FjkF�1
ki

� �
: ð16Þ

The effective strain at localization will be a function of the inclina-
tion angle, therefore it is convenient to define the critical strain at
localization for a certain inclination angle as Ec

eðhÞ. For a planar band
with h = 0 the critical strain is denoted Ec

eðh ¼ 0Þ and for a band min-
imizing ductility the critical strain is denoted Ec

eðh ¼ hcÞ, where hc is
the orientation giving minimum localization strain for a given stress
state.

2.3. Numerical implementation

The 3D unit cell was numerically analyzed by use of the finite
element program (ABAQUS, 2004). The material in the cell was as-
sumed to be elastic–plastic with isotropic hardening, with the uni-
axial behavior defined in Section 3 below. ABAQUS (2004) makes
use of an updated Lagrangian formulation to account for large
deformations and employs a finite strain J2 flow theory, with an
associated flow rule, based on a co-rotational stress rate to account
for rotations of the principal axes of deformation.

Symmetry allows for modeling of the X2 6 0 half of the unit cell.
A typical mesh with v0 = 0.2 is shown in Fig. 3. It consists of 5184
20-node tri-quadratic elements with reduced integration of which
432 are located on the half of the spherical void surface. Periodic
boundary conditions are applied on the surfaces X3 = ±D0/2. Four
displacement measures di (i = 1, 2, 3, 4) are introduced to describe
the periodic and the homogeneous boundary conditions, respec-
tively. The displacement boundary conditions can then be formu-
lated as

On X1 ¼ �D0 : u1ðD0;X2;X3Þ ¼ �u1ð�D0;X2;X3Þ ¼ d1;

u2ðD0;X2;X3Þ ¼ u2ð�D0;X2;X3Þ;
u3ðD0;X2;X3Þ ¼ u3ð�D0;X2;X3Þ þ 2d4;

ð17Þ
On X3 ¼ �D0=2 : u1 X1;X2;
D0
2

� 	
¼ u1 X1;X2;

�D0
2

� 	
;

u2 X1;X2;
D0
2

� 	
¼ u2 X1;X2;

�D0
2

� 	
;

u3 X1;X2;
D0
2

� 	
¼ u3 X1;X2;

�D0
2

� 	
þ d3;

ð18Þ

On X2 ¼ 0 : u2ðX1;0;X3Þ ¼ 0;
On X2 ¼ �D0=2 : u2 X1;

�D0
2 ;X3

� 	
¼ d2=2:

ð19Þ

Utilizing Eqs. (17)–(19) in Eq. (12), the volume average of the defor-
mation gradient and the velocity gradient, respectively, can be ex-
pressed as

F ¼

D1
D0

0 0

0 D2
D0

0
d4
D0

0 D3
D0

2
664

3
775; L ¼ _FF�1 ¼

_d1
D1

0 0

0
_d2
D2

0
_d4
D1
� _d3

D3

d4
D1

0
_d3
D3

2
6664

3
7775; ð20Þ

where D1 = D0 + d1, D2 = D0 + d2 and D3 = D0 + d3. The symmetric part
of L defines the volume average of the rate of deformation tensor D,
(16).

Here, the rates of di are determined from the condition of load-
ing under fixed stress ratios according to Section 2.1. The numeri-
cal procedure for implementing the special type of boundary
conditions will not be addressed here. The method is outlined in
Barsoum and Faleskog (2007b).

3. Material

Two materials are considered, one corresponding to a medium
strength steel with moderate hardening and one corresponding
to a high strength steel with low hardening. The true stress–strain
behavior is given by Eq. (21) for both the materials, where r0 rep-
resents the initial yield stress, N strain hardening exponent and
e0 = r0/E, with E being Young’s modulus. These material parame-
ters are listed in Table 1.

r ¼
Ee; e 6 e0;

r0
e
e0

� �N
; e > e0:

8<
: ð21Þ

It is assumed that voids will nucleate from inclusions embedded in
the matrix material. It should be noted, however, that not all



930 I. Barsoum, J. Faleskog / International Journal of Solids and Structures 48 (2011) 925–938
inclusions will contribute to nucleation of voids. For such steels
considered here, typically the volume fraction of inclusions is in
the range 0.03–0.7% (Barsoum and Faleskog, 2007b; Garrison and
Moody, 1987), which corresponds to an initial void size to void
spacing ratio v0 in the range 0.1–0.3. Thus an initial void size to void
spacing ratio v0 = 0.2 is used in the micromechanical analysis,
which is a representative fraction of inclusions participating in
nucleating voids in these materials.

4. Results: localization into the plane of axisymmetry (h = 0)

Here the localization behavior and results pertaining to a planar
band with h = 0 will be presented. Such an over constraint case,
where a relatively thin layer of material is confined between two
blocks of materials preventing a change in the direction of localiza-
tion is found, e.g. in the double notched tube experiments reported
by Barsoum and Faleskog (2007a). There the fractographs reveal a
rather flat fracture surfaces indicating that localization occurs in
the plane of axisymmetry between the notch roots, at least on a
macroscopic level in the lower stress triaxiality regime. Another
example when an initial planar band is prevented from changing
direction of localization is in voided polymer blends, where the
polymer acts as an adhesive layer between two material blocks
of higher stiffness (Pijnenburg and Van der Giessen, 2001; Ferracin
et al., 2003).

In order to gain a more general understanding of the influence
of the Lode parameter on localization, a systematic investigation
covering the entire span in the Lode parameter, �1 6 L < 1, is here
performed for various levels of stress triaxiality. In Fig. 4 the local-
ization locus in terms of the effective strain at the onset of locali-
zation Ec

eðh ¼ 0Þ, given by the criterion in Eq. (14) is plotted vs. L
for Material 1 and Material 2 in Fig. 4(a) and (b), respectively.
The results correspond to v0 = 0.2, h = 0 and T = 0.75, 1, 1.5 and 2.
As shown Ec

eðh ¼ 0Þ decreases with increasing T, as would be ex-
pected. For the Lode parameter in the interval �1 6 L 6 0, ranging
from axisymmetric tension to a pure shear stress state with super-
imposed hydrostatic tension, Ec

eðh ¼ 0Þ decreases with increasing L
and reaches a minimum close to L = 0. However, beyond this point
Ec

eðh ¼ 0Þ increases drastically for increasing positive L values. Here
the localized deformation shifts gradually from a shear to a biaxial
deformation mode and for L ? 1 the deformation will not localize
across the planar band of voids. The stress strain response of the
unit cell is virtually unaffected by the presence of voids at high T
values when L ? 1.

4.1. Influence of the Lode parameter on void growth and coalescence

To exemplify the influence of L on the stress–strain response, void
growth and localization behavior results pertaining to Material 1 are
Fig. 4. Localization loci for (a) Material 1 and (b) Mate
shown in Fig. 5 for an intermediate stress triaxiality level T = 1 and
an initial void size to void spacing ratio v0 = 0.2. Here, attention is
again restricted to a planar band with h = 0. Seven different L values
are considered, L = �1, �0.75, �0.5, �0.25, 0, 0.25, 0.5.

As can be seen from Fig. 5(a), the macroscopic effective stress–
strain behavior is strongly effected by L. During the deformation a
competition between hardening of the matrix material and soften-
ing due to void growth takes place. As deformation progresses a
maximum effective stress is reached prior to the onset of localiza-
tion. The effective stress decreases as the hardening of the matrix
material is insufficient to compensate for the reduction in intervoid
ligament caused by void growth. For �1 6 L 6 0 the strain to local-
ization decreases with increasing L as shown in Fig. 5(b) where the
ratio g in Eq. (14) is plotted vs. Ee for the different L values consid-
ered. For L = �1 localization occurs at Ee = 0.43, whereas for L = 0
localization occurs at Ee = 0.14 at g = 10. Furthermore, the softening
rate in the post-localization regime increases with decreasing L as
can be seen in Fig. 5(a). This is closely connected to the increase in
void growth rate, which can be appreciated from Fig. 5(c) where
the quotient between current to initial void volume Vv/Vv0 vs. Ee

is depicted. The void growth rate is the slope of these curves. For
the case L = �1 the void growth rate is initially low but increases
drastically at the onset of localization giving rise to significant soft-
ening. For increasing L, L = �0.75, �0.5 and �0.25, the initial void
growth rate increases leading to softening at an earlier stage dur-
ing the deformation history. However, the drastic increase in void
growth rate associated with the onset of localization lessens with
increasing L. For the case L = 0 the onset of localization occurs at
a rather early stage of deformation followed by an intermediate
rate of void growth and hence a less significant rate of softening.

Fig. 5(d) and (e) shows the deformation measures �q1 and �q3 vs.
Ee corresponding to the non-uniform normal and shear deforma-
tion, respectively. The mode of deformation, whether normal,
shear or a combination of both can be apprehended from these
two figures. For the case of L = �1, q1 > 0 and q3 = 0 indicating pure
axisymmetric deformation, as would be expected. Increase in L, i.e.
L ? 0, gives increase in shear deformation. At L = 0.5 the normal
and shear deformation measures attain values q1 < 0 and q3 > 0,
which indicates a compressive shear deformation mode. As can
be seen from Fig. 5(b) the deformation does not localize across
the band, which is a consequence of a positive value of L. Here
the rapid increase in void growth is due to that deformation takes
place within the planar band in the X2 and X3 directions of the unit
cell. Hence q1 and q3 gradually looses the purpose of being valid
parameters for localized deformation for increasing positive L.
Not shown here, for lower stress triaxiality and positive L, i.e.
T = 0.5 and L > 0, the void growth is very limited and no localization
point can be identified. As a consequence of the compressive defor-
mation mode and low level of hydrostatic stress self-contact of the
rial 2 with v0 = 0.2, h = 0 and T = 0.75, 1, 1.5 and 2.



Fig. 5. Influence of the Lode parameter on the model behavior for Material 1 with v0 = 0.2, T = 1.0 and h = 0. Showing (a) macroscopic effective stress, (b) the ratio g in Eq. (14),
(c) void growth, (d) �q1 and (e) �q3 vs. macroscopic effective strain.
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void surface is encountered. In such situation the presence of a
void-nucleating particle or inclusion is crucial, which is reported
by Tvergaard (1989), Tvergaard (2009b), Tvergaard (2009a),
Siruguet and Leblond (2004a), Siruguet and Leblond (2004b) and
McVeigh et al. (2007) among others.

4.2. Equivalent plastic strain field in the void cell

In Figs. 6 and 7 the contours of the equivalent plastic strain are
shown at different stages throughout the deformation illustrating
the development of the localization process. Fig. 6 corresponds to
T = 1 and L = �1 showing the distribution of the equivalent plastic
strain at the pre-localization stage or void growth stage in (a), at
the onset of localization in (b) and at the post-localization stage
or void coalescence stage in (c). During the void growth stage the
plastic deformation has not yet localized in a band and is homoge-
neously distributed around the void. Once the localization takes
place, the plastic strain is confined to a band with a thickness
approximately of the size of the void spacing. At the post-localization
stage in Fig. 6(c) the void has grown considerably with plastic flow



Fig. 6. The distribution of the equivalent plastic strain around the void for T = 1 and
L = �1 at different loading stages: (a) pre-localization and void growth stage, (b) at
localization (g = 10) and (c) post-localization.
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localizing in the ligament between the voids leading to final coales-
cence by internal necking of the intervoid ligaments.

However, Fig. 7 corresponding to T = 1 and L = 0 shows a dis-
tinctly different evolution of the plastic strain field during localiza-
tion. Fig. 7(a) shows the plastic strain at the pre-localization stage
indicating no localization of plastic flow in the intervoid ligament.
With progress of deformation plastic flow localizes in a rather nar-
row band as shown in Fig. 7(b) where the void has undergone lim-
ited growth. With further progress of the deformation shown in
Fig. 7(c) the void undergoes considerable shearing and plastic flow
localizes and increases markedly in the intervoid ligament. As indi-
cated by Fig. 7(c) and reported in Barsoum and Faleskog (2007b)
the final rupture takes place by shearing of the intervoid ligament,
assumably by secondary void nucleation within the intervoid liga-
ment. However, the process of void nucleation is not considered in
the present micromechanical model.

5. Results: Localization into a plane minimizing ductility (h = hc)

Here the influence of the Lode parameter and band orientation
on localization is explored using the 3D computational unit cell.
The objective is to find the band orientation that gives rise to the
minimum localization strain over all possible band orientations
within the framework of the simplified approach discussed in Sec-
tion 2. The minimum of the localization strain gives the critical
strain and direction at which the inception of localization is first
possible for a certain stress state characterized by T and L. Hence,
the dependence of the critical localization direction and critical
Fig. 7. The distribution of the equivalent plastic strain around the void for T = 1 and L
localization (g = 10) and (c) post-localization.
strain on T and L is sought for. Fig. 8 depicts the localization strain
Ec

eðhÞ as function of the band orientation h for various L values and a
constant stress triaxiality level T = 1. The solid lines and dashed
lines correspond to material 1 and 2, respectively, and the dots cor-
respond to the numerical analyses. The localization strain depends
strongly on the band orientation for all L values. For the axisym-
metric stress states L = ±1, the relation Ec

eðhÞ vs. h is not unambigu-
ous since all bands with the same inclination with respect to the
axis of symmetry (X1) will be equally critical. Not shown here,
but the magnitude and the shape of the curves are also dependent
on the level of triaxiality. Typically, lower T-values give rise to
higher localization strains with curves of more narrow shape and
by contrast higher T-values give rise to lower localization strains
with curves of more open shape.

The minima of the curves determine the most critical inclina-
tion angle and the lowest possible localization strain denoted hc

and Ec
eðh ¼ hcÞ, respectively. These were obtained by determining

the minimum of the spline interpolation curves fitted onto the data
points from the numerical analyses such as in Fig. 8. Four different
stress triaxiality levels T = 0.75, 1, 1.5 and nine different L values
L = �1, �0.75, �0.5, �0.25, 0, 0.25, 0.5, 0.75, 1 for both materials
were considered. Fig. 9(a) and (b) shows the critical inclination an-
gle hc and uc, respectively, vs. L. The dots correspond to minimum
values of curves such as in Fig. 8 for all T values considered and
both materials with v0 = 0.2. As revealed from Fig. 9(a) the critical
inclination angle of the band hc depends strongly and only on L and
takes on hc values of about 37�, 0� and �53� for L = �1, 0 and +1,
respectively.

Interestingly, the shape of the curve uc vs. L in Fig. 9(b) is close
to symmetric about L = 0, with uc = 45� for L = 0 and uc � 37� for
L = ±1. The solid line is a third order polynomial fit to the numerical
data such that uc = 45� for L = 0 given as Eq. (22). The modest scat-
ter in the data points does not show a systematic trend with re-
spect to T and is mainly due to the numerical evaluation
procedure of finding the minimum of the curves based on discrete
data as shown in Fig. 8.

Eq. (22) shown in Fig. 9(b) differs at most with 1.6� from the
data points. For L = ±1, uc attains the value 37�, as also reported
by Rudnicki and Rice (1975). For L = 0, uc attains the value 45�,
which is also observed by Nahshon and Hutchinson (2008).
Tvergaard (1989) also finds this value for the case of uniaxial plane
strain tension. Thus, it appears that uc is rather independent of the
level of stress triaxiality and the mechanical properties of the
undamaged material between the voids. This implies that the
direction at which the inception of localization is first possible is
only affected by the deviatoric stress state parameter L and given
by

uc ¼ 45� 1� 0:29jLj þ 0:32L2 � 0:20jLj3
� �

: ð22Þ
= 0 at different loading stages: (a) pre-localization and void growth stage, (b) at



Fig. 8. Localization strain vs. the band inclination angle h for different L values with T = 1 and v0 = 0.2. The solid lines correspond to Material 1, the dot-dashed lines to
Material 2 and dots correspond to numerical analyses.

Fig. 9. Critical band orientation (a) hc vs. L and (b) uc vs. L. Results are for all T values considered and both materials. The solid line corresponds to Eq. (22).
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5.1. Influence of the Lode parameter on critical localization strain

L and T have a significant effect on the critical localization
strain, which is evident from the localization loci shown in
Fig. 10(a) and (b) for material 1 and 2, respectively, where the crit-
ical localization strain Ec

eðh ¼ hcÞ vs. L for T = 0.75, 1, 1.5 and 2 is
shown. As could be expected the stress triaxiality has a strong
influence on the magnitude of the critical localization strain such
that high T values give rise to low localization strain and vice versa,
with a similar trend as was found in Fig. 4. However, regardless the
level of stress triaxiality, Fig. 10 shows that Ec

eðh ¼ hcÞ has a mini-
mum at about L = 0 and a maximum at L = +1. Fig. 10 indicates that
the most critical state of stress from a localization point of view
experienced in a ductile solid is for a pure or near a pure shear
stress state L = 0, where material failure will occur at an angle close
to uc = 45� with respect to the direction of the smallest principal
stress according to Fig. 9(b).

It is interesting to note that for a constant stress state a planar
band (h = 0), Fig. 4, shows a much higher localization strain in com-
parison with a band localizing in the direction u = uc (h = hc) min-
imizing ductility in Fig. 9. However, for stress states with L close to
zero and a high level of T, the critical localization strains are unre-
alistically low if they would be regarded as the instant of ductile
failure, as will be evident in Section 5.2.

5.2. Influence of the Lode parameter on mechanical behavior

Here the mechanical behavior of the model is explored at the
critical localization direction u = uc and is depicted in Fig. 11 for
T = 1 and Fig. 12 for T = 2. The figures pertain to results for Material
1 with v0 = 0.2, L = 0 and L = ±1. The macroscopic effective stress
strain response and the void growth are strongly affected by L, as
can be seen in Fig. 11(a) and (b) respectively, where the open cir-
cles represent the onset of localization. The sudden increase in
softening is associated with the onset of localization. The signifi-
cant increase in softening rate in the post-localization regime is
closely connected to the void growth rate as can be appreciated
from the slopes of the curves in Fig. 11(b), showing the ratio be-
tween current to initial void volume Vv/V0 vs. Ee. For L = �1 locali-
zation occurs at about Ee = 0.32 followed by a significant softening



Fig. 10. Localization loci for (a) Material 1 and (b) Material 2 with v0 = 0.2, at u = uc and T = 0.75, 1, 1.5 and 2.
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due the drastic increase in void growth rate in the post-localization
stage. For L = 0, where localization occurs earlier at about Ee = 0.14,
the softening is not as marked and the void growth rate increases
gradually with no drastic changes. However, for L = +1 the onset of
localization is delayed and occurs at about Ee = 0.63. Despite the
fact that the void has undergone extensive growth at Vv/V0 = 33
at this point. Beyond this point the extensive void growth is man-
ifested in a drastic increase in the softening rate.

Fig. 11(b) shows the deformation jumps across the band, �q1

(dashed line) and �q3 (solid line) vs. Ee. Prior to localization the
deformation is homogeneous and thus �qi are negligible. However,
Fig. 11. Influence of L on the model behavior for Material 1 at the critical localization dire
effective stress, (b) void growth and (c) the localized deformation parameters �qi vs. macro
�q1.
when deformation begins to localize �qi increase and the mutual in-
crease between �q1 and �q3 reveals the dominating deformation
mode, whether normal or shear localization. When �q3 � �q1 shear
localization dominates whereas when �q1 � �q3 normal localization
dominates. Fig. 11(c) shows that �q3 � �q1 for all L, which indicates
that the dominating deformation mechanism is shear localization.

For the higher stress triaxiality level T = 2 in Fig. 12, the behav-
ior is slightly different. Onset of localization coincides with the
onset of plastic loading for L = 0, as shown in Fig. 12(a). In the
post-localization regime the void growth is extensive and less
influenced by L as can be seen from Fig. 12(b). As indicative from
ction u = uc with v0 = 0.2 and a constant triaxiality T = 1.0. Showing (a) macroscopic
scopic effective strain. In (c) the solid lines correspond to �q3 and the dashed lines to



Fig. 12. Influence of L on the model behavior for Material 1 at the critical localization direction u = uc with v0 = 0.2 and a constant triaxiality T = 2.0. Showing (a) macroscopic
effective stress, (b) void growth and (c) the localized deformation parameters �qi vs. macroscopic effective strain. In (c) the solid lines correspond to �q3 and the dashed lines to
�q1.
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Fig. 12(c), the deformation modes are a combination of normal and
shear localization.

5.3. Influence of the Lode parameter on void shape

The effect of void shape on the mechanical behavior has been
studied by a number of authors in the past. One of the early at-
tempts is made by Gologanu et al. (1996) where they extend the
Gurson model, which is based on solutions for voids under axisym-
metric conditions, to account for ellipsoidal void growth. Pardoen
and Hutchinson (2000) make use of the extended Gurson model
in combination with an axisymmetric coalescence model first pro-
posed by Thomason (1985) and find that void shape has a strong
effect on localization and coalescence. Zhang et al. (2001) among
others use a three dimensional cell with an initially spherical void
and also find that L has a great influence on the evolution of the
void shape. Void growth under dominated shear deformation,
however, has not been thoroughly addressed in the past. Here
the effect of L on the void shape evolution is explored with the cur-
rent computational cell model allowing for shear deformation.

In Figs. 13 and 14 the effect of L and T on the void shape and the
void shape evolution is shown. Two stress triaxiality levels are con-
sidered, where the results in Fig. 13(a)–(c) correspond to L = �1, 0
and +1, respectively with T = 1 whereas results in Fig. 14(a)–(c)
correspond to L = �1, 0 and +1 with T = 2. In the set of sub-figures
in the left column of Figs. 13 and 14 the void shape contours with
the deformed cell boundaries are shown at the symmetry plane
X2 = 0. In the middle column the void contours at the outermost
contour of the projected void shape on the X1 = 0 plane are dis-
played. The void contours are plotted at three different stages of
loading, where the dashed lines correspond to the initial spherical
void contours, dot-dashed lines to void contours at onset of local-
ization and solid lines to void contours at effective stress Re equal
to 75% of its overall maximum in the post-localization regime. In
the set of sub-figures in the very right column the void shape evo-
lution ra/rc (solid lines) and rb/rc (dot-dashed lines) vs. Ee is de-
picted. Here ra and rc are the minimum and maximum distances
between the origin and a point on the void contour at the symme-
try plane (X2 = 0), respectively, and rb is the distance between the
origin and the point on the void contour intersecting the X2 axis.
The open markers correspond to onset of localization and the solid
markers to the instant when Re = 0.75max(Re) in the post-localiza-
tion regime.

For T = 1 the void contour in Fig. 13 shows that the initially
spherical void undergoes excessive growth and shape change as
the deformation progress, where the distorted void shape arises
from the intense shear deformation (cf. Fig. 11(c)). For all L values
Fig. 13(a)–(c) the void gradually shifts from spheroidal to ellipsoi-
dal void growth up to the onset of localization as can be appre-
hended from the lines ra/rc and rb/rc vs. Ee. Beyond this point the
void becomes highly distorted and rotated and approaches a pen-
ny-like shape. Especially for L = 0 in (b) and L = +1 in (c), where
ra 6 R0, indicate that the presence of a void nucleating particle
would affect the void growth behavior and void shape evolution.
An interesting feature captured by Fig. 13 (left column) is the
reduction of the intervoid ligament. The void will impinge with



Fig. 13. Void shape evolution corresponding to Material 1, v0 = 0.2 and T = 1 at u = uc with: (a) L = 0, (b) L = �1 and (c) L = +1. In the left column of sub-figures the void
contours at the symmetry plane X2 = 0 are shown and in the middle column the void contours of the projected void shape on the X1 = 0 are shown. Dot-dashed lines are at the
onset of localization, solid line at Re = 0.75max(Re) and dashed lines depict the initial void. In the left column the void shape evolution ra/rc and ra/rc vs. Ee are shown.
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its neighboring voids across the smallest intervoid ligament sec-
tion at the final stage of rupture. This have been shown in a recent
study by Weck et al. (2006), where the voids coalesce by internal
shearing. Weck et al. (2006) investigate experimentally the void
shape evolution in a metallic plate with laser-drilled array of mi-
cro-holes aligned 45� with respect to the tensile loading axis. The
experimentally observed shape of the deformed micro-holes at
the coalescence event resembles the deformed void shape contour
shown in Fig. 13(b) with solid lines at the left column.

For a higher level of stress triaxiality, i.e. T = 2 in Fig. 14, the
influence of L on the void shape evolution is not as marked as for
T = 1 in Fig. 13. As seen from the void evolution curves at the right
column of Fig. 14, rb/rc P 1 throughout the entire deformation his-
tory, which indicates that the void grows faster in the X3 direction
of the unit cell than in the symmetry plane. As the deformation
progresses the ratio rb/rc increases, reaches a maximum value of
about 1.2 and decreases to about 1, whereas ra/rc decreases mono-
tonically and reaches a stationary value between 0.4 and 0.5. This
corresponds to a nearly spherical void growth. Hence the void
shape evolution is less sensitive to L for increasing T as revealed
by comparison of Figs. 13 and 14. Similarly, comparison of
Fig. 11(b) and Fig. 12(c) reveals that the influence of L on the void
growth rate is also reduced for increasing T.
Moreover, for the case of T = 1 and L = 0 in Fig. 13(c) it is seen
from the void contour that the void has undergone limited void
growth at the onset of localization (dot-dashed lines). This is even
more apparent for T = 2 and L = 0 in Fig. 14(c), where the onset of
localization coincides with onset of plastic loading and the void
growth is negligible. Therefore onset of localization cannot be
viewed as a void coalescence criterion for L = 0. This primarily
due to the fact that the micromechanical model used in the current
study disregards the existence of a volume fraction of voids outside
the band of localization. Existence of voids outside the band would
effect the localization behavior significantly as reported by
Nahshon and Hutchinson (2008). However, it is clear by now that
an additional void coalescence criterion for shear dominated stress
state is needed.
6. Conclusions

In this study the influence of the Lode parameter on ductile
material failure, which is assumed to occur when deformation
localizes into a thin void-containing band, is investigated. This
was accomplished by utilizing a micromechanical model consist-
ing of a three dimensional unit cell containing a single spherical



Fig. 14. Void shape evolution corresponding to Material 1, v0 = 0.2 and T = 2 at u = uc with: (a) L = 0, (b) L = �1 and (c) L = +1. In the left column of sub-figures the void
contours at the symmetry plane X2 = 0 are shown and in the middle column the void contours of the projected void shape on the X1 = 0 are shown. Dot-dashed lines are at the
onset of localization, solid line at Re = 0.75max(Re) and dashed lines depict the initial void. In the left column the void shape evolution ra/rc and ra/rc vs. Ee are shown.
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void allowing for fully periodic boundary conditions. The unit cell
is loaded under proportional loading conditions allowing for arbi-
trary stresses in terms of stress triaxiality, the Lode parameter
and the band inclination angle. The present study is concluded in
the following:

	 The effect of L on the void shape evolution and void growth rate
increases with decreasing level of stress triaxiality. At moderate
triaxiality levels L has a strong influence on the mechanical
behavior of the voided band.
	 For dominating shear stress states, L close to 0, and high levels

of T the localization criterion in Eq. (14) cannot be viewed upon
as a void coalescence criterion predicting material failure. Here
a micromechanical based coalescence criterion operative at
dominating shear stress states is needed.
	 In the current study void nucleation has not been considered.

However, it has been shown in recent experimental studies
(Barsoum and Faleskog, 2007a; Giovanola et al., 2006) that
nucleation can be crucial in the last stage of the ductile material
failure process, particularly at low stress triaxiality and domi-
nating shear stress state. Hence, it appears to be necessary to
account for void nucleation with a L and T dependent void
nucleation model.
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