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Abstract

The aim of this work is to describe some operations in the category of regular holonomic
D-modules with support a normal crossing and variation zero introduced in [Àlvarez Montaner, J.,
García López, R., Zarzuela, S., 2003. Local cohomology, arrangements of subspaces and monomial
ideals. Adv. Math. 174 (1), 35–56]. These operations will allow us to compute the characteristic cycle
of the local cohomology supported on homogeneous prime ideals of these modules. In particular, we
will be able to describe their Bass anddual Bass numbers.
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1. Introduction

Let X = Cn,OX the sheaf ofholomorphic functions inCn, andDX the sheaf of
differentialoperators inCn with holomorphic coefficients.Galligo et al.(1985) described
in terms of linear algebra the category Mod(DX)T

hr of regular holonomicDX-modules
such that their solution complexRHomDX (M,OX) are perverse sheaves relatively to the
stratification given by the unionT of the coordinate hyperplanes inCn.
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In Section 2we recall the definition and the basic properties of the categoryDT
v=0

of modules with variation zero introduced inÀlvarez Montaner et al.(2003) (see also
Àlvarez Montaner and Zarzuela, 2003). Moreover, we define the category of modules with
unipotent monodromy that is also a full abelian subcategory of Mod(DX)T

hr . Thiscategory
is closed under extensions and includesDT

v=0.
In Section 3we describe some operations in the categoryDT

v=0. We have to point
out that we will consider the case ofR = k[x1, . . . , xn] being the polynomial ring in
n independent variables over any fieldk of characteristic zero andD being the ring of
differential operators overR. We can consider this case due to the good behavior of this
category with respect to flat base change (seeÀlvarez Montaner and Zarzuela, 2003).

First, we describe the restriction to a homogeneous prime ideal of a module with
variation zero. However, the main result of this section is a description of the kernel, the
cokernel and the image of the homomorphismλi : M −→ M[ 1

xi
] of localization of a

module with variation zeroM by the variablexi .
In Section 4, by using the results of the previous section and Brodmann’s exact

sequence, we give an algorithm that allows usto compute the characteristic cycle of
the local cohomology modulesH p

pα
(M), where pα ⊆ R is an homogeneous prime

ideal. In particular, we give a different approach to the computation of the Bass numbers
µp(pα, M) := dimk(pα)ExtpRpα

(k(pα), Mpα ) given inYanagawa(2001).

Finally, in Section 5we define Matlis duality in the categoryDT
v=0. Thisduality theory

is nothing but a duality in the lattice{0, 1}n. TheMatlis dual of an injectiveDT
v=0-module is

projective so, by using the results of the previous section, we describe projective resolutions
in DT

v=0.
In the sequel we will denote1 = ε1+ · · · + εn whereε1, . . . , εn is the natural basis of

Zn. For allα ∈ {0, 1}n, Xα will be the linear subvariety ofX defined by the homogeneous
prime idealpα =< xi | αi = 1 >. For unexplained terminology on the theory of
algebraicD-modules we refer toBjörk (1979) andCoutinho(1995).

2. Preliminaries

Let Cn bethe category whose objects are families{Mα}α∈{0,1}n of finitely dimensional
complex vector spaces, endowed with linear maps

Mα
ui−→Mα+εi , Mα

vi←−Mα+εi

for eachα ∈ {0, 1}n suchthatαi = 0. These maps are called canonical (resp., variation)
maps, and they are required to satisfy the conditions:

ui u j = u j ui , vi v j = v j vi , ui v j = v j ui and vi ui + id is invertible.

Such an object will be called ann-hypercube. A morphism between twon-hypercubes
{Mα}α and {Nα}α is a set of linear maps{ fα : Mα → Nα}α , commuting with
the canonical and variation maps. InGalligo et al.(1985), an equivalence of categories
between Mod(DX)T

hr andCn is described.
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The functor Mod(DX)T
hr −→ Cn is a contravariant exact functor. The construction of

the n-hypercube corresponding to an objectM of Mod(DX)T
hr is given inGalligo et al.

(1985). From the construction one can describe the compositionvi ◦ ui in terms of the
partial monodromy around the hyperplanexi = 0. We also want to point out that the
n-hypercube describes the characteristic cycle of the correspondingDX-module M.
Namely, letCC(M) = ∑

mα T∗Xα
Cn be the characteristic cycle ofM. Then, one has

the equality dimCMα = mα .
The papersÀlvarez Montaner et al.(2003) andÀlvarez Montaner and Zarzuela(2003)

study objects in the category Mod(DX)T
hr having the following property:

Definition 2.1. We say that an object M of Mod(DX)T
hr has variation zero if the

morphismsvi are zero for all 1≤ i ≤ n and allα ∈ {0, 1}n with αi = 0.

Modules with variation zero form a full abelian subcategory of Mod(DX)T
hr that will be

denotedDT
v=0.

The simple objects ofDT
v=0 are of the form:

DX

DX({xi | αi = 1}, {∂ j | α j = 0}) .

This module is isomorphic to the local cohomology moduleH|α|Xα
(OX).

Every holonomic module has finite length, so ifM ∈ DT
v=0, then there exists a finite

increasing filtration{F j } j≥0 of M by objects ofDT
v=0 such that for all j ≥ 1 one has

DX-module isomorphisms

F j /F j−1 	 H|α|Xα
(OX), α ∈ {0, 1}n.

The categoryDT
v=0, regarded as a subcategory of Mod(DX)T

hr , is not closed under
extensions. However, its objects can be characterized by the following particular filtration:

Proposition 2.2 (Àlvarez Montaner et al., 2003). An object M of Mod(DX)T
hr has

variation zero if and only if there is a increasing filtration{F j }0≤ j≤n of M by objects
of Mod(DX)T

hr and there areintegers mα ≥ 0 for α ∈ {0, 1}n such that for all1 ≤ j ≤ n
one hasD-module isomorphisms

F j /F j−1 	
⊕

|α|= j
(H|α|Xα

(OX))⊕mα .

2.1. Closing the categoryDT
v=0 for extensions

In this section we will find the minimal full abelian subcategory of Mod(DX)T
hr

containingDT
v=0 that is closed under extensions.

Definition 2.3. We say that anobjectM of Mod(DX)T
hr has m-trivial monodromy if the

composition of morphisms(vi ◦ ui )
m is zero for all 1≤ i ≤ n and allα ∈ {0, 1}n with

αi = 0.
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Modules withm-trivial monodromy form a full abelian subcategory of Mod(DX)T
hr that

will be denotedDT
(vu)m=0. Notice that we have

DT
v=0 ⊆ DT

vu=0 ⊆ DT
(vu)2=0 ⊆ · · · ⊆ DT

(vu)m=0 ⊆ · · · .
In particular, we get an increasing filtration of the following category:

Definition 2.4. We say that anobjectM of Mod(DX)T
hr has unipotent monodromy if the

composition of morphismsvi ◦ ui is nilpotent for all 1 ≤ i ≤ n and allα ∈ {0, 1}n with
αi = 0.

Modules with unipotent monodromy form a full abelian subcategory of Mod(DX)T
hr

that will be denotedDT
uni.

It is easy to see that the simple objects of the categoryDT
uni are isomorphic to the local

cohomology modulesH|α|Xα
(OX), for α ∈ {0, 1}n. The categoriesDT

(vu)m=0, regarded as

subcategories of Mod(DX)T
hr , are not closed under extensions for allm, butDT

uni is.

Proposition 2.5. The categoryDT
uni, regarded as a subcategory ofMod(DX)T

hr , is closed
under extensions.

Proof. Let 0 �� M′ i �� M π �� M′′ �� 0 be an exact sequence in

Mod(DX)T
hr suchthatM′,M′′ ∈ DT

uni. Consider, for allα ∈ {0, 1}n suchthat αi = 0,
the commutative diagram in the categoryCn of n-hypercubes:

...
...

...

0 �� M′′
α

u′′i

��

πα �� Mα

ui

��

iα �� M′
α

u′i

��

�� 0

0 �� M′′
α+εi

v′′i

��

πα+εi �� Mα+εi

vi

��

iα+εi �� M′
α+εi

v′i

��

�� 0

0 �� M′′
α

u′′i

��

πα �� Mα

ui

��

iα �� M′
α

u′i

��

�� 0

where(v′i ◦ u′i )m′ = 0 and(v′′i ◦ u′′i )m′′ = 0. It is easy to check that form� max{m′′, m′},
(vi ◦ ui )

m = 0 soM ∈ DT
uni. �

Since every holonomic module has finite length, it follows that the objects ofDT
uni are

characterized as follows:

Proposition 2.6. An objectM of DT
hr has unipotent monodromy if and only if there is a

finite increasing filtration{F j } j≥0 of M by objects ofDT
hr such that for all j≥ 1 one has

D-module isomorphisms

F j /F j−1 	 H|α|Xα
(OX), α ∈ {0, 1}n.
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However, notice that the modulesM ∈ DT
uni are not characterized by a filtration given

by the height (as inProposition 2.2), unless they are modules with variation zero, i.e.,
we cannot give a filtration{F j } j≥0 of M where the submodulesF j correspond to the
n-hypercubes:

(F j )β =
{
Mβ if | β | ≤ j

0 otherwise,

thecanonical and variation maps being either zero or equal to those inM.

3. Operations in the category DT
v=0

By using flatbase change, we can define the categoryDT
v=0 of modules with variation

zero, as well the corresponding category ofn-hypercubes, for the case ofD being the ring
of differential operators overR, whereR is the polynomial or the formal power series
ring in n independent variables,x1, . . . , xn, over any fieldk of characteristic zero (see
Àlvarez Montaner and Zarzuela, 2003, Remark 4.1). From now on, we will only consider
the caseR = k[x1, . . . , xn] in order to take advantage of theZn-graded structure of
these modules given by the equivalence of categories (seeÀlvarez Montaner et al., 2003),
between the category of modules with variation zero and the category of straight modules
introducedby K. Yanagawa (Yanagawa, 2001).

3.1. Restriction to a faceideal

Let Zα ⊆ Zn be the coordinate space spanned by{εi | αi = 1}, α ∈ {0, 1}n. The
restriction ofR to the homogeneous prime idealpα ⊆ R is theZα-gradedk-subalgebra
of R

R[pα ] := k[xi | αi = 1].
The restriction topα of aZn-graded moduleM is theR[pα ]-module

M[pα ] :=
⊕
β∈Zα

Mβ .

Restriction gives us a functor that plays in some cases the role of the localization functor.
For details of the description of the morphisms and further considerations we refer toMiller
(2000).

Let I = Iα1 ∩ · · · ∩ Iαm be the minimal primary decomposition of a squarefree
monomial idealI ⊆ R. Then, the restriction of I to the face idealpα is the squarefree
monomial idealI[pα ] ⊆ R[pα ] whose face ideals in the minimal primary decomposition are
those face idealsIα j contained inpα . Namely

I[pα ] =
⋂

α j≤α

Iα j .

Notice that the restriction topα of the local cohomology moduleH |β|pβ
(R) supported on a

face idealpβ ⊆ R vanishes ifand only ifpβ � pα .
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The restriction topα of a moduleM ∈ DT
v=0 is again a module with variation

zero. This can be seen considering the restriction of a fixed increasing filtration ofM,
0= F0 ⊆ F1 ⊆ · · · ⊆ Fn = M given byProposition 2.2.

Proposition 3.1. (i) The vertices of the|α|-hypercube corresponding to M[pα ] are the
vector spaces(M[pα])γ =Mγ for γ ≤ α.

(ii) The map uj : (M[pα])γ → (M[pα])γ+ε j is the same mapas uj :Mγ →Mγ+ε j .

Proof. Let CC(M) = ∑
mγ T∗Xγ

X be the characteristic cycle of M. Then, the
characteristic cycle ofM[pα ] is

CC(M[pα ]) =
∑
γ≤α

mγ T∗Xγ
X

so we get the vertices of then-hypercube.
In order to get the linear mapsui ’s we only have to point out that the filtration of

the moduleM[pα ] is determined by the filtration ofM; in particular, they have the same
extension problems. Then we are done byÀlvarez Montaner et al.(2003, Section 3) and
Àlvarez Montaner and Zarzuela(2003, Theorem 4.1). �

3.2. Localization by a variable

Let M be a module inDT
v=0 andxi ∈ R a variable. We will describe then-hypercube

of the localization M[ 1
xi
]. First of all, it is worthwhile pointing out that localization by

a variable is an exact functor in the category of modules with variation zero due to the
fact thatR[ 1

xi
] is a flat module inDT

v=0. It also follows that localization commutes with
restriction to homogeneous prime ideals.

Proposition 3.2. (i) The vertices of the n-hypercube corresponding to M[ 1
xi
] are the

vector spacesM[ 1
xi
]γ =Mγ if γi = 0. In this case we also haveM[ 1

xi
]γ+εi =Mγ .

(ii) The map uj :M[ 1
xi
]γ →M[ 1

xi
]γ+ε j , whereγi = 0, is:

� Id if j = i
� u j :Mγ →Mγ+ε j if j �= i . In this case, this map is also equal to

u j :M
[

1

xi

]
γ+εi

→M
[

1

xi

]
γ+εi+ε j

.

Proof. The vertices of then-hypercube corresponding toM[ 1
xi
] can be easily described by

means of a formula given inBriançon et al.(1994). Namely, letCC(M) = ∑
mα T∗Xα

X

be the characteristic cycle ofM. Then, the characteristic cycle ofM[ 1
xi
] is

CC

(
M

[
1

xi

])
=

∑
αi=0

mα (T∗Xα
X + T∗Xα+εi

X).

In order to get the linear mapsui ’s we will use induction on the lengthl of M. Let
l = 1, i.e., M = H |α|pα

(R) is a local cohomology module. Ifαi �= 0 thenM[ 1
xi
] = 0. If
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αi = 0, we just have toprove thatthe mapui :M[ 1
xi
]α →M[ 1

xi
]α+εi is the identity. For

simplicity we will use the restriction topα+εi . Then localizing by xi the minimal graded
injective resolution:

0−→H |α|pα
(R)−→∗E(R/pα)(1)−→∗E(R/pα+εi )(1)−→0

we get an isomorphismH |α|pα
(R)[ 1

xi
] ∼= ∗E(R/pα)(1), so we get the desired result by

the description of injective modules given in the proof ofÀlvarez Montaner et al.(2003,
Theorem 4.3). Notice that the same argument can be used to describe then-hypercube of
the localizationH |α|pα

(R)[ 1
xβ ] of a local cohomology module by any squarefree monomial

xβ := xβ1
1 · · · xβn

n , β ∈ {0, 1}n.
The casel = 2 is proved as well since a module of length two has to be, for convenient

α, β ∈ {0, 1}n and j ∈ {1, . . . , n}, isomorphic to one of the following modules

H |α|pα
(R)⊕ H |α|pα

(R), H |α|pα
(R)⊕ H |β|pβ

(R), H |α|pα
(R)

[
1

x j

]

that correspond to then-hypercubes with non-vanishing part

k2 , k ,

k

k

1
��
k

If l > 2 we consider the submoduleM ′ ⊆ M whose correspondingn-hypercube only
has the vertices and linear map we want to study. Namely,u j : Mγ−→Mγ+ε j , where
γi = 0. If then-hypercube ofM has another vertex different from zero then lengthM ′ <
lengthM sowe are done by induction. If then-hypercube ofM only has the verticesMγ

andMγ+ε j , i.e., M ′ = M, wecan give a precise description of this module in terms of the
rank ofu j . Namely, let m = rk(u j ), mγ = dimkMγ andmγ+ε j = dimkMγ+ε j . Then,
M is the direct sum of

� m copies ofH |γ |pγ
(R)[ 1

x j
],

� mγ −m copies ofH |γ |pγ
(R),

� mγ+ε j −m copies ofH
|γ+ε j |
pγ+ε j

(R).

Sowe are done since we can reduce to the cases of lengthl = 1 andl = 2. �

3.3. Image, kernel and cokernel of the localization by a variable

Let M be a module inDT
v=0 andxi ∈ R a variable. We will describe then-hypercubes

of the image, kernel and cokernel of the morphismλi : M −→ M[ 1
xi
] of localization of

M by the variablexi .
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Proposition 3.3. (i) Thevertices of the n-hypercube corresponding toIm λi are computed
from the characteristic cycle

CC(Im λi ) =
∑
αi=0

(mα T∗Xα
X + rk(ui ) T∗Xα+εi

X).

(ii) The maps uj : (Imλi )γ → (Imλi )γ+ε j are the same as the corresponding for the
module M.

Proof. We will use induction on the lengthl of M. Let l = 1, i.e.,M = H |α|pα
(R) is a local

cohomology module. Ifαi �= 0 then Imλi = 0. If αi = 0 we have the exact sequence:

0 �� H 0
(xi )

(M) �� M �� M[ 1
xi
] �� H 1

(xi )
(M) �� 0 .

Notice thatH 0
(xi )

(M) = 0 andH 1
(xi )

(M) = H |α+εi |
pα+εi

(R) sowe are done. The casel = 2 is
easy to compute using the description of a module of length two.

If l > 2, we consider the submoduleM ′ ⊆ M whose correspondingn-hypercube only
has the vertices and linear map we want to study. Namely,u j : Mγ−→Mγ+ε j , where
γi = 0. It follows asin the proof of Proposition 3.2. �

Once then-hypercube for Imλi is determined we can easily compute then-hypercube
for Kerλi and Cokerλi .

Proposition 3.4. (i) The vertices of the n-hypercube corresponding toKerλi are
computed from the characteristic cycle

CC(Kerλi ) = CC(M) − CC(Im λi ).

(ii) The maps uj : (Ker λi )γ → (Ker λi )γ+ε j are the same as the corresponding for the
module M.

Proposition 3.5. (i) The vertices of the n-hypercube corresponding toCokerλi are
computed from the characteristic cycle

CC(Cokerλi ) = CC(M[ 1

xi
])− CC(Im λi ).

(ii) The maps uj : (Cokerλi )γ → (Cokerλi )γ+ε j are the same as the corresponding for

the module M[ 1
xi
].

Example. Let R = k[x1, x2, x3]. Given the 3-hypercube of a moduleM ∈ DT
v=0 (see

below), consider the morphismλ3 : M −→ M[ 1
x3
]. Then we have thefollowing exact

sequences of 3-hypercubes:

0 Ker λ3�� M�� Im λ3�� 0��
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It is not difficult to check out that:
� M ∼= H 1

(x1)
(R)[ 1

x2
] ⊕ H 2

(x1x2,x3)
(R)

� M[ 1
x3
] ∼= H 1

(x1)
(R)[ 1

x2x3
] ∼= ∗E(R/(x1))(1)

� Kerλ3 ∼= H 2
(x1x2,x3)

(R)

� Im λ3 ∼= H 1
(x1)

(R)[ 1
x2
]

� Cokerλ3 ∼= H 2
(x1,x3)

(R)[ 1
x2
] ∼= ∗E(R/(x1, x3))(1)

4. Bass numbers of modules with variation zero

It is easy to prove that the injective objects ofDT
v=0 are of the form:

D
D({xi | αi = 1}, {x j ∂ j + 1 | α j = 0}) , α ∈ {0, 1}n.

These modules are isomorphic to the shifted graded injective hulls∗E(R/pα)(1) of the
quotientsR/pα . In particular, the minimal injective resolution of a module with variation
zeroM is in the form:

I•(M) : 0 �� I 0 d0
�� I 1 d1

�� · · · dm−1
�� I m dm

�� · · · ,
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where thej -th term is

I j =
⊕

α∈{0,1}n
∗E(R/pα)(1)µj(pα,M).

The Bass numbers ofM with respect to the face idealpα ⊆ R are the invariants defined by
µ j (pα, M).

In general, the Bass numbersµp(p, M) := dimk(p)ExtpRp
(k(p), Mp) with respect to any

prime idealp ⊆ R can be described as the multiplicities of the characteristic cycle of
H p

p (M). Namely, by using the same arguments as inÀlvarez Montaner(2004, Proposition
2.1) we have:

Proposition 4.1. Letp ⊆ R be a prime ideal and

CC(H p
p(M)) =

∑
λp,p,α T∗Xα

X

be the characteristic cycle of the local cohomology module Hp
p(M). Then, the Bass

numbers with respect top of M are

µp(p, M) = λp,p,αp,

where Xαp is the subvariety of X= Spec(R) defined byp.

Our aim in this section is to compute the characteristic cycle of the local cohomology
modulesH p

pα
(M), wherepα ∈ R is a face ideal. In particular, we give a different approach

to the computation of the Bass numbers of these modules given inYanagawa(2001). We
have to point out that, by means ofGoto and Watanabe(1978, Theorem 1.2.3), one may
compute the Bass numbers ofM with respect to any prime ideal.

To this purpose we will use the Brodmann sequence

· · ·−→H p
pα+εi

(M)−→H p
pα

(M)−→H p
pα

(M)

[
1

xi

]
−→H p+1

pα+εi
(M)−→· · ·

in an iterated way. By using the additivity of the characteristic cycle with respect to short
exact sequences it will be enough to compute the characteristic cycle of the kernel and
cokernel of the localization morphism. This will be done by using the description given in
Propositions 3.4and3.5.

We present the following:

Algorithm.
INPUT: A module with variation zeroM ∈ DT

v=0 and the face idealpα ⊆ R.
Denotepαk := (xi | αi = 1, i ≤ k).

OUTPUT: The characteristic cycle ofH p
pα

(M) ∀p.

• For i = 1, . . . , n, while αi = 1:

• Consider the Brodmann exact sequence:

· · · �� H p
pαi

(M) �� H p
pαi−1

(M)
λi,p �� H p

pαi−1
(M)[ 1

xi
] �� H p+1

pαi
(M) �� · · ·
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• Compute the characteristic cycle of Kerλi,p and Cokerλi,p, ∀p
by usingPropositions 3.4and3.5.

• CC(H p
pαi

(M)) = CC(Kerλi,p)+ CC(Cokerλi,p−1), ∀p.

Example. Let R= k[x1, x2, x3]. Consider the 3-hypercube
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of the moduleM ∈ DT
v=0 studied in the previous example. Then:

• For i = 1, 2, 3, consider the Brodmann sequences

0 �� H 0
(xi )

(M) �� M
λi,0 �� M[ 1

xi
] �� H 1

(xi )
(M) �� 0 .

By usingPropositions 3.4and3.5we get:

CC(H 0
(x1)

(M)) = T∗X(1,0,0)
X + T∗X(1,1,0)

X + T∗X(1,0,1)
X.

CC(H 0
(x2)

(M)) = T∗X(0,1,1)
X.

CC(H 0
(x3)

(M)) = T∗X(1,0,1)
X + T∗X(0,1,1)

X + T∗X(1,1,1)
X.

CC(H 1
(x3)

(M)) = T∗X(1,0,1)
X + T∗X(1,1,1)

X.

• For 1≤ i < j ≤ 3, consider the Brodmann sequences

0 �� H0
(xi ,x j )

(M) �� H0
(xi )

(M)
λ j,0 �� H0

(xi )
(M)[ 1

x j
] �� H1

(xi ,x j )
(M) �� 0 .

By usingPropositions 3.4and3.5we get:

CC(H 0
(x1,x2)

(M)) = T∗X(1,1,1)
X.

CC(H 0
(x1,x3)

(M)) = T∗X(1,0,1)
X.

CC(H 1
(x1,x3)

(M)) = T∗X(1,0,1)
X + T∗X(1,1,1)

X.

CC(H 0
(x2,x3)

(M)) = T∗X(0,1,1)
X.
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• Consider the Brodmann sequence

0 �� H 0
m(M) �� H 0

(x1,x2)
(M)

λ3,0 �� H 0
(x1,x2)

(M)[ 1
x3
] �� H 1

m(M) �� 0 .

By usingPropositions 3.4and3.5we get:

CC(H 1
(x1,x2,x3)

(M)) = T∗X(1,1,1)
X.

In particular, the Bass numbers ofM are:

pγ µ0 µ1 µ2

(x1) 1 – –
(x2) – – –
(x3) – – –

(x1, x2) – – –
(x1, x3) 1 1 –
(x2, x3) 1 – –

(x1, x2, x3) – 1 –

5. Dual Bass numbers of modules with variation zero

It is easy to prove that the projective objects ofDT
v=0 are of the form:

D
D({xi ∂i + 1 | αi = 1}, {∂ j | α j = 0}) , α ∈ {0, 1}n.

This modules are isomorphic to the localizationsR[ 1
xα ]. In particular, the minimal

projective resolution of a module with variation zeroM is in the form:

P•(M) : · · · dm
�� Pm dm−1

�� · · · d1
�� P1 d0

�� P0 �� 0 ,

where thej -th term is

P j =
⊕

α∈{0,1}n
R

[
1

xα

]π j (pα,M)

.

The dual Bass numbers ofM with respect to the face idealpα ⊆ R are the invariants
defined byπ j (pα, M).

5.1. Matlis duality

Recall that forZn-graded modules, the Matlis dual of aZn-gradedR-module M is
defined as:

M∗ := ∗HomR(M, ∗E(R/m)).

Notice that the Matlis dual defines a duality of the typeα→−α among its graded pieces.
In order to find a duality theory for then-hypercubes we should look for a duality in the
lattice{0, 1}n. More precisely, a duality of the typeα→ 1− α.
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In the category of module with variation zero we can mimic the definition of Matlis
duality because of the equivalence of categories given inÀlvarez Montaner et al.(2003,
Theorem 4.3).

Definition 5.1. Let M ∈ DT
v=0 be a module with variation zero. We define the Matlis dual

of M as:

M∗ := HomD
(

M,
D

D(x1, . . . , xn)

)
.

Nevertheless we can prove that this definition gives in fact the notion of duality in the
lattice{0, 1}n.

Proposition 5.2. (i) The vertices of the n-hypercube corresponding to the module with
variation zero M∗ are the vector spaces

M∗
α =M1−α

(ii) The maps ui :M∗
γ−→M∗

γ+εi
is thedual of ui :M1−γ−εi−→M1−γ .

Proof. We only have to notice that, by usingÀlvarez Montaner et al.(2003, Lemma 4.4),
we have:

HomD
(

M,
D

D(x1, . . . , xn)

)
= HomD(M, E1) = ∗HomR(M, ∗E(R/m)(1))

= ∗HomR(M, ∗E(R/m))(1) = M∗(1),

where the last module is the Matlis dual of theZn-graded moduleM shifted by1. �

The Matlis dual functor is exact contravariant and it is easy to prove that the Matlis dual
of an injectiveDT

v=0-module is projective; more precisely we have

(∗E(R/pα)(1))∗ = R

[
1

x1−α

]

and the Matlis dual of a simpleDT
v=0-module is simple. Namely we have

(H |α|pα
(R))∗ = H |1−α|

p1−α
(R).

5.2. Dual Bass numbers

By using Matlis duality we can compute the dual Bass numbers of a projective
resolution of a module with variation zeroM ∈ DT

v=0. Namely we have:

Proposition 5.3. Let M∗ be the Matlis dual of a module with variation zero M∈ DT
v=0.

Then, we have:

π j (pα, M) := µ j (p1−α, M∗).
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Example. Let R= k[x1, x2, x3]. Consider the 3-hypercubes of the module with variation
zeroM ∈ DT

v=0 studied in the previous examples and its Matlis dualM∗:
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Then, the dual Bass numbers ofM∗ are:

pγ π0 π1 π2

(0) – 1 –
(x1) 1 – –
(x2) 1 1 –
(x3) – – –

(x1, x2) – – –
(x1, x3) – – –
(x2, x3) 1 – –

(x1, x2, x3) – – –

References

Àlvarez Montaner, J., 2004. Some numerical invariants of local rings. Proc. Amer. Math. Soc. 132, 861–865.
Àlvarez Montaner, J., García López, R., Zarzuela, S., 2003. Local cohomology, arrangements of subspaces and

monomial ideals. Adv. Math. 174 (1), 35–56.
Àlvarez Montaner, J., Zarzuela, S., 2003. Linearization of local cohomology modules. In: Avramov, L.L.,

Chardin, M., Morales, M., Polini, C. (Eds.), Commutative Algebra: Interactions withAlgebraic Geometry.
In: Contem. Math., vol. 331. Amer. Math. Soc., pp. 1–11.

Björk, J.E., 1979. Rings of Differential Operators. North Holland Mathematics Library, Amsterdam.
Briançon, J., Maisonobe, P., Merle, M., 1994. Localisation de systèmes différentiels, stratifications de Whitney et

condition de Thom. Invent. Math. 117, 531–550.
Coutinho, S.C., 1995. A primer of algebraicD-modules. In: London Mathematical Society Student Texts.

Cambridge UniversityPress.
Galligo, A., Granger, M., Maisonobe, Ph., 1985.D-modules et faisceaux pervers dont le support singulier est un

croisement normal. Ann. Inst. Fourier 35, 1–48.
Galligo, A., Granger, M., Maisonobe, Ph., 1985.D-modules et faisceaux pervers dont le support singulier est un

croisement normal. II. In: Differential Systems and Singularities. Luminy, 1983. Astérisque 130, pp. 240–259.
Goto, S., Watanabe, K., 1978. On Graded Rings, II (Z

n-graded rings). Tokyo J. Math. 1 (2), 237–261.
Miller, E., 2000. The Alexander duality functor and local duality with monomial support. J. Algebra 231,

180–234.
Yanagawa, K., 2001. Bass numbers of local cohomology modules with supports in monomial ideals. Math. Proc.

Cambridge Philos. Soc. 131, 45–60.


	Operations with regular holonomic D-modules with support a normal crossing
	Introduction
	Preliminaries
	Closing the category DTv=0 for extensions

	Operations in the category DTv=0
	Restriction to a face ideal
	Localization by a variable
	Image, kernel and cokernel of the localization by a variable

	Bass numbers of modules with variation zero
	Dual Bass numbers of modules with variation zero
	Matlis duality
	Dual Bass numbers

	References


