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Abstract

The dam of this work is to describe some operations in the category of regular holonomic
D-modules with support a normal crossing and variation zero introduced in [Alvarez Montaner, J.,
Garcia Lopez, R., Zarzuela, S., 2003. Local cohomology, arrangements of subspaces and monomial
ideals. Adv. Math. 174 (1 35-56]. These operations will allow us to compute the characteristic cycle
of the local cohomology supported on homogeneous prime ideals of these modules. In particular, we
will be able to describe theBass andlual Bass numbers.
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1. Introduction

Let X = C", Ox the sheaf otholomorphic functions irnC", and Dy the sheaf of
differentialoperators ifC" with holomorphic coefficientsGalligo et al.(1985 de<ribed
in terms of linear algera the category Mc(d)x)ﬁr of regular holonomicDx-modules
such that their solution complékHomp, (M, Ox) are perverse sheaves relatively to the
stratification given by the uniom of the coordinate hyperplanes@'.
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In Section 2we recall the definition and the basic properties of the cate@lir:yo
of modules with variation zero introduced Avarez Montaner et al(2003 (see also
Alvarez Montaner and Zarzugl2003. Moreover, we define the category of modules with
unipotent monodromy that is also a full abelian subcategory of(NZPngr. Thiscategory
is closed under extensions and includ?sl'szo.

In Section 3we descthe some operations in the categdbgzo. We have ¢ point
out that we will congler the case oR = K[Xxy, ..., Xn] being the polynomial ring in
n independent variables over any fidddf characteristic zero anf? being the ring of
differential operators oveR. We can consider this case due to the good behavior of this
category with respect to flat base change @warez Montaner and Zarzuel2003.

First, we describe the restriction to a homogeneous prime ideal of a module with
varidion zero. However, the main result of thiection is a description of the kernel, the
cokernel and the image of the homomorphism: M — M[%] of locdization of a
module with variation zer® by the varableX;.

In Section 4 by using the radts of the previous section and Brodmann’s exact
sqjuence, we give an algorithm that allows tes compute the characteristic cycle of
the local cohomology modules-lp’,)a(M), wherep, < R is an homogeneous prime
ideal. In particular, we give a different agarch to the computation of the Bass numbers
wpPa, M) = dimk(pa)Extgm (K(pa), Mp,) given inYanagawa(2001).

Finally, in Section 5ve define Matlis duality in the catego@lzo. This dudity theory
is nothing but a duality in the lattig®, 1}". TheMatlis dual of an injectivéDIZO—module is
projictive S0, by using the results of the previous section, we describe projective resolutions
iNnD,_o-

In the sequel we will denote = ¢1 + - - - + e Whereey, . . ., &n IS the natural basis of
Z". For alla € {0, 1}, X, will be the linear subvariety ok defined by the homogeneous
prime idealp, =< X | i = 1 >. Forunexplained terminology on the theory of
algebraicD-modules we refer t8jork (1979 andCoutinho(1995.

2. Preliminaries

Let Cn bethe category whose objects are familigdsl, }o (0,10 Of finitely dimensional
complex vector spaces, endowed with linear maps

Ui Vi
Mo[ — MO{+€i 3 Mo[ < MO(+€i

for eacha € {0, 1}" suchthate; = 0. These maps are called canonical (resp., variation)
maps, and they are required to satisfy the conditions:

Ujuj = ujui, vivj =vjvi, Uivj =vjui and viuj +id isinvertible.

Such an object will be called amhypercube. A morphism between twehypercubes
(Myle and {MVy)e is a set of linear map$f, : My, — Nyle, cOmMmuting with
the canonical and variation maps. Balligo et al.(1985, an equivalence of categories
between MOGD)()L andCy, is descibed.
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The functor Mocde)Er — Cp is a contravariant exactihctor. The construction of
the n-hypercube corresponding to an objédet of Mod(Dx)L is given inGalligo et al.
(1985. From the construction one can describe the compositionu; in terms of the
partial monodromy around the hyperplane= 0. We also want to point out that the
n-hypercube describes the characteristic cycle of the corresporigiigrodule M.
Namely, [etCC(M) = > m, T;a(C” be the charactatic cycle of M. Then, one has
the equality ding My = My.

The paperd\lvarez Montaner et ak2003 andAlvarez Montaner and Zarzue(2003
study objects in the category M(ﬂi?x)ﬁr having the following property:

Definition 2.1. We say tha an object M of Mod(Dx),, has varition zero if the
morphismsy; are zero for all 1< i < nand alle € {0, 1}" with ; = 0.

Modules with variation zero form a full abelian subcategory of Mg), - that will be
denotedD]_,.
The simple objects @I:o are of the form:

Dx
Dx({Xi i = 1},{0j |aj =0}

This module is isomorphic to the local cohomology modui%l (Ox).
Every holonomic module has finite length, soM € DIZO, then here exits a finite

increasing filtration{F; }j>o0 of M by objects ofDI:O such trat for all j > 1 one has
Dx-module isomorphisms

Fi/Fij-1 =My (Ox), a e {0, 1",

The categoryDIzo, regarded as aubcategory of Mode);r, is not closed under
extengons. However, its objects can be characatediby the following particular filtration:

Proposition 2.2 (Alvarez Montaner et al2003. An object M  of Mod(DX)Er has
variation zero if and only if there is a increasing filtratiqiFj Jo<j<n of M by objects
ofMod(Dx)L and there ardntegers iy > Ofor o € {0, 1}" such thatforalll < j <n

one hasD-module isomorphisms

Y A lo| @ M
FilFi-a= P, (Hx(Ox)N®™.
2.1. Closing the categorpIZO for extensions

In this section we will find the minimal full abelian subcategory of NIBg)[,

containinm)I o that is closed under extensions.

Definition 2.3. We say thaanobject M of Mod(Dx)Er has m-trivial monodromy if the
composition of morphismév; o u;j)™ is zero for all 1< i < n and alla € {0, 1}" with
o =0.



1002 J. Alvarez Montaner / Journal of Symbolic Computation 40 (2005) 999-1012

Modules withm-trivial monodromy form a full abelian subcategory of M@()L that
will be denotedDau)mzo. Notice that we have

T T T T
Dy—o S Dyy—o S D(vu)Zzo - < D(uu)m=0 S

In particular, we get an increasindtffation of the following category:

Definition 2.4. We say thaanobject M of Mod(Dx)gr has unipotent monodromy if the
composition of morphisms; o u; is nilpotert for all 1 <i < n and alla € {0, 1}" with
ai = 0.

Modules with unipotent monodromy form a full abelian subcategory of Mmﬂr
that will be denoted®

uni-
It is easy to see that the simple objects of the cate@gware isomorphic to the local
cohomology module%i‘)‘a (Ox), fora € {0,1}". The categoriesDau)m:O, regarded as

subcategories of Mo®x), ., are not closed under extensions formll but D/ is.

Proposition 2.5. The caggory DIni, regarded as a subcategory Mod(Dx)gr, is closed

under extensions.

i T

Proof. Let 0 M/ M M 0 be an exact sequence in
Mod(Dx){l. suchthat M’, M” e D[ .. Consider, for alle € {0, 1}" suchthate; = 0,

uni*
the commutative diagm in the categorg, of n-hypercubes:

ul’ Ui uj
e My e My —— = M ——>
0 a @ o 0
v/ vj v/
T o+éj iot+si

Mo

0—— M, My Ia My——0
where(v/ o u))™ = 0 and(v/ o u/)™" = 0. It is easy to check that fan > maxm’, m'},
(vi ou))M=0soM e D} O

uni-
Since every holonomic module has finite length, it follows that the objec/pfare
characterized as follows:

Proposition 2.6. An objectM of D;r has unipotent monodromy if and only if there is a

finite increasing filtration{F| } j~o of M by objects ODEr such that for all j> 1 one has
D-module isomorphisms

Fi/Fi-1 =My (Ox). «e{0.1"
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However, notice that the modulest € D[ ; are not characterized by a filtration given
by the height (as irProposition 2.2, unless they are modules with variation zero, i.e.,
we cannot give a filtration{Fj}j>o of M where the submodule; correspond to the

n-hypercubes:

Mg if|BI<]
Fi)g =
(Fi)p :O otherwise

the canonical and variation maps being either zero or equal to thas¢.in

3. Operationsin the category DUT=0

By using flatbase change, we can define the categbho of modules with variation
zero, as well the corresponding categornéfypercubes, for the case Bfbeing the ring
of differential operators oveR, whereR is the polynomial or the formal power series
ring in n independent variablegy, ..., Xy, over any fieldk of characteristic zero (see
Alvarez Montaner and Zarzugla003 Remark 4.1). From now on, we will only consider
the caseR = K[xi, ..., Xn] in order to take advantage of tH&'-graded structure of
these modules given by the equivalence of categoriesAseeez Montaner et al2003,
between the category of modules with variation zero and the category of straight modules
introducedby K. YanagawaYanagawa 2007).

3.1. Restriction to a faceideal

Let Z¥ C Z" be the coordinate space spanned{lly | «j = 1}, « € {0, 1}". The
restriction of R to the honegeneous prime ideal, € R is theZ*-gradedk-subalgebra
of R

R[pa] = k[Xi | af = 1].

The restriction tg,, of aZ"-graded modulé/ is the Ry,;-module

Mip == € Ms.

BeZ*

Restriction gives us a functor that plays in some cases the role of the localization functor.
For detils of the description of the morphisms and further considerations we réfgit¢o
(2000.

Let | = Iy N---Nly, bethe minimal primary decomposition of a squarefree
monomial ideall € R. Then, the estriction ofl to the face ideap,, is the squeefree
monomial idealp,| € Ryp,) whose face ideals in the minimal primary decomposition are
those face idealk,; contained irp,. Namely

g1 = [ la-
otjfot

Notice that the restriction tp,, of the local cohomology modulbl,‘g’?(R) supported on a

face ideabg € Rvanishes ifand only ifpg ¢ pe.
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The restriction top, of a moduleM € DI:O is again a module with variation
zero. This can be seen considering therietsdon of a fixed increasing filtration oM,
0=FpC F1 €--- C Fy= M given byProposition 2.2

Proposition 3.1. (i) The vertices of thgwx|-hypercube corresponding to (M, are the
vector spacesM|p, ), = M, fory <a.
(i) The map y : (Mp,1))y = (Mip,1)y+¢; is the sare mapas uj : My, — M, 4.

Proof. Let CC(M) = > m, T;gyx be the charactestic cycle of M. Then, the
characteristic cycle oy, is

CC(My,) = Y m, T X

Y=«

so we gethe vertices of th@-hypercube.

In order to get the linear mapg’s we only have to point out that the filtration of
the module My, is determined by the filtration d; in paticular, they have the same
extension problems. Then we are done Alyarez Montaner et a2003 Sedion 3) and
Alvarez Montaner and Zarzue{@8003 Theorem 4.1). O

3.2. Localization by a variable

Let M be a module iﬁDI:O andx; € R a variabe. We will describe tha-hypercube

of the locdization M[X—li]. First of dl, it is worthwhile pointing out that localization by

a \ariable is an exact functor in the category of modules with variation zero due to the
fact thatR[ ] is a flat module mDT _o- It also fdlows that localization commutes with
restriction to homogeneous prime |deals

Proposition 3.2. (i) The vertices of the n-hypercube corresponding tqu are the
vector spaceM[%],, = M, if i = 0. In this case we also havA/l[X—li]ergi =M,.

(i) The map y : M[ i]y N M[X—li]ng , wherey; =0, is:
Id if j=i
i My —> My, if ] #1. Inthis case, this map is also equal to

uj:/\/l[i} —>M[i} .
Xi Jyte Xi Jytei+e;

Proof. The vertices of tha-hypercube corresponding M[%] can be easily described by
means of a formula given iBriangon et al.(1994. Namely, [etCC(M) = Y m, T, X
be the charactestic cycle of M. Then, the charactéstic cycle ofM [X—li] is

1
CC(M[XID .Zoma (T, X+ Tx, . X)-

In order to get the linear mapsg’s we will use induction on the Iengﬂhof M. Let
| =1,ie,M = H""‘(R) is a local cohomology module. & # 0 thenM[ =] = 0. If
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aj = 0, we just have tgrove thatthe mapu; : M[X—li]a N /\/l[x—li]wﬁEi is the identity. For
simplicity we will use the restriction tp,.;. Then bcdizing by x; the minimal graded
injective resolution:

0— H (R)—*E(R/pa)(D)—>*E(R/pu-te ) (1)—>0

we get an ismorphism H’Lz‘(R)[%] = *E(R/pqy)(1), so we get te desied result by

the description of injective modules given in the proof Alfvarez Montaner et al(2003
Theorem 4.3). Notice that the same argument can be used to describdypercube of
the IocalizationH“gjl(R)[Xiﬁ] of a local cohomology module by any squarefree monomial
xP = xfl xfh B eto, 1.
The casé = 2 is proved as well since a module of length two has to be, for convenient
a, B €{0,1}"andj € {1, ..., n}, isamorphic to one of the following modules
HIR) @ HIE(R),  HIE(R) @ HIE(R), HI(R) [ =
Po po VTV Pu pp A Pu X

that correspond to the-hypercubes with non-vanishing part

k
E
k

If | > 2 we aonsider the submodulel’ € M whose corresponding-hypercube only
has the vertices and linear map we want to study. Nanwgly, M, — M, 1¢;, where
yi = 0. If then-hypercube oM has another vertex different from zero then length<
lengthM sowe are done by induction. If the-hypercube oM only has the verticed,
andM, 4., i.e, M’ = M, we can give a precise description of this module in terms of the
rank ofuj. Namely, letm = rk(uj), m, = dimkM,, andmy ., = dimgM, 1, . Then,
M is the direct sum of

k2 k ,

k

. mcopies ong’;‘(R)[X—lj],
. M, —mcopies ofHJj;l(R),

.M, 1, — M copies ongj:_H(R).

Sowe are done since we can reduce to the cases of léngth andl = 2. O

3.3. Image, kernel and cokernel of the localization by a variable

Let M be a module irDIZO andx; € R a variabk. We will describe th&-hypercubes

of the image, kernel and cokernel of the morphism M —> M[X—li] of locdization of
M by the varablex;.
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Proposition 3.3. (i) Thevertices of the n-hypercube correspondingnto,; are computed
from the characteristic cycle

CCma) = Y (Mg Ty X+ rk(ui) Ty, X0
aj=0

(i) The maps y : (Zmii), — (ZmMAi)y4; are the same as the corresponding for the
module M.

Proof. We will use induction on the lengthof M. Letl =1,i.e.,M = H]Lz‘(R) is a local
cohomology module. If # 0 then Imi; = 0. If o = 0 we have the eact sequence:

0
(Xi)

00— H) (M) —> M — M[3] — H} (M) —=0.

(Xi)

Notice thatH&)(M) =0 andH(l)(i)(M) = H,'sz:”(R) sowe are done. The casde= 2 is

easy to compute using the description of a module of length two.

If I > 2, we consider the submodulé’ C M whose corresponding-hypercube only
has the vertices and linear map we want to study. Nanwgly, M, — M, 1;, where
yi = 0. It follows asin the goof of Proposition 3.2

Once then-hypercube for Im,; is determined we can easily compute thypercube
for KerA; and Coken,.

Proposition 3.4. (i) The vertices of the n-hypercube corresponding kerai; are
computed from the characteristic cycle

CC(Kerii) = CC(M) — CC(Im Aj).

(i) The maps y : (Ker i), — (KerAj),+.; are the same as the corresponding for the
module M.

Proposition 3.5. (i) The vertices of the n-hypercube corresponding Gokery; are
computed from the characteristic cycle

CC(Cokerrj) = CC(M[%]) — CC(mAj).

(i) The naps y : (Cokeri), — (Cokerii),.; are the same as the corresponding for
the nodule M[X—li].

Example. Let R = K[x1, X2, X3]. Given the 3-hypercube of a moduld < DI:O (see
below), consider the morphisig : M — M[x_13]- Then we have théollowing exact
segquences of 3-hypercubes:

O0<~—Kerig=— M=—7Imiz<=—20
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SN N I
AL AL A
NN N %
0~—Imig<— M[L]~— Cokerig~—0
SN N I\
PG PRAL A
NN A\

It is not difficult to check out that:
‘M ZHL RSO HE L, 4 (R

MIZ12 HL (RIS E(R/GW)(D)
' xz4 T T (x) XoX3+ T 1
.Keng = HE (R

Jmiz = HY (RIE]

. Cokenig = H3 . (R[] = *E(R/(x1, X3))(1)

(X1,X3)

4. Bass numbers of moduleswith variation zero
It is easy to prove that the injective objectsﬂbjzo are of the form:

D
D({Xi |ei =1}, {xj0j +1|aj =0}’

a € {0, 1}".

These modules are isomorphic to the shifted graded injective hEIR/py) (1) of the
quotientsR/p,. In particular, the minimal injective resolution of a module with variation
zeroM is in the form:

0 1 m-1 m
I*'M): 0 |0 d |1 ... 4d |m d
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where thej -th term is

= P "E(R/py) @) P
aef{0,1}n
The Bass numbers &l with respect to the face idep) € R are the invariants defined by
:u’J (pO{s M)

In general, the Bass numberg (p, M) := dimp, Extgp(k(p), My) with respect to any
prime idealp € R can be described as the multiplicities of the characteristic cycle of
HF’,)(M). Narrely, by using the same arguments adivarez Montanef2004 Proposition
2.1) we have:

Proposition 4.1. Letp € R be a prine ideal and
CC(H M) = Z}\p,p,a T% X

be the characteristic cycle of the local cohomology modu@(ﬂﬂ). Then, the Bass
numbers with respect toof M are

wplp, M) = Ap,pap
where X, ,, is the subvariety of %= SpeqR) defined by.

Our am in this section is to compute the characteristic cycle of the local cohomology
modulesHpFL(M), wherep, € Ris aface ideal. In particular, we give a different approach
to the computation of the Bass numbers of these modules givéfairegawa(200]). We
have to point out that, by means @Gbto and Watanab@ 978 Theorem 1.2.3), one may
compute the Bass numbershdfwith respect to any prime ideal.

To this purpose we will use the Brodmann sequence

1
o HE (M) HE (M)—H] (M) [X—} —HPE (M)— -
|

in an iterated way. By using the additivity of the characteristic cycle with respect to short
exact sequences it will be enough to compute the characteristic cycle of the kernel and
cokernel of the localization morphism. This will be done by using the description given in
Propositions 3.4nd3.5

We preent the following:

Algorithm.
INPUT: A module with variation zerd! € DLO and the face ideal, € R.
Denotep,, ;= (Xi | @ =1, i <Kk).

OUTPUT: The characteristic cycle tbfpz(M) vp.

eFori =1,...,n, whileaj = 1:

e Consider the Bbdmann exact sequence:

Ai,
o= HE (M) —— HY (M) 2R HE (M —— HY M) —— -
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¢ Compute the characteristic cycle of Kerp and Cokenj p, Vp
by usingPropositions 3.4nd3.5.

o CC(Hp, (M) = CC(Ker4i,p) + CC(Cokerii,p-1), Vp.

Example. Let R = k[x1, X2, X3]. Consider the 3-hypercube
/ O\
k 0 0
| XA
s N
k k k
k

of the moduleM e DI:O studied in the pevious example. Then:
e Fori =1, 2, 3, consider the Brodmann sequences

0—= H&, (M) M —— M[3¢] H&,) (M) —=o0.

By usingPropositions 3.4nd3.5we get:

0 —
CC(H(Xl)(M)) - T;(k(l,o,m X+ T;Z(l,l,()) X+ T;(k(l,o,n X.

CCH2 (M) =T X.

*
(X2) X©0,1.1)

CC(H? (M) =T

(X3) X(1.0.)

CC(HX (M) =Tg

(x3) X@,0,1)

* k
X+ TX<0,1,1> X+ TX(171,1> X.

*
X+ TX(1,1,1) X.

eForl<i < j < 3, consider the Brodmann sequences

HO M 0 .0 HO M 1 Hl
0 > (Xi,Xj)( ) Hx) (M) o0 € )[E] = T

By usingPropositions 3.4nd3.5we get:

CC(Hy xpy (M) = Tas

CC(HG (M) = T o
CC(HG, 1y (M) = T o X T iy X
CC(HG (M) = LEe

1009

xpM) ——0.
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e Consider the Bvdmann sequence

A
0——= HO(M) —= HG ., (M) 2= HE  (M)[£] —— HL(M) —0.

By usingPropositions 3.4nd3.5we get:
1 —
CCHy xpxy M) =T X.

In particular, the Bass numbers lgf are:

*
X111

Py Mo | M1 | M2
(X1) 1] -1 -
(x2)
(X3) e e
(X1, X2)
(X1, X3)
(X2, X3)
(X1, X2, X3) | —

1 —

|

[EEN
|

5. Dual Bass numbersof moduleswith variation zero

It is easy to prove that the projective objectsDivrf:O are of the form:

D
D(xid + 1|aj = 1},{0j |aj =0}’

a € {0, 1)".
This modules are isomorphic to the Iocalizatio%x%]. In paticular, the mnimal

projective resolution of a module with variation zévbis in the form:

dam m-1 gl dO

P*(M) : pm < pl PO ——0,
where thej -th term is
‘ 1 77 (e M)
pi = H |
o
ae{0,1}" X

The dual Bass numbers &f with respect to the face ideal, € R are the invariants
defined byrj (py, M).

5.1. Matlis duality

Recall that forZ"-graded modules, the Matlis dual ofZ{'-gradedR-module M is
defined as:

M* :=*Homgr(M, *E(R/m)).

Notice that the Matlis dual defines a duality of the type> —« among its graded pieces.
In order to find a dudity theory for then-hypercubes we should look for a duality in the
lattice {0, 1}". More precisely, a duality of the type — 1 — «.
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In the category of module with variation zero we can mimic the definition of Matlis
dudity because of the equivalence of categories giveAlivarez Montaner et al(2003
Theorem 4.3).

Definition 5.1. Let M € D]_, be a module with variation zero. We define the Matlis dual
of M as:

M* := Homp <M __D )

’ ,,D(Xla"'axn) .

Nevertheless we can prove that this definition gives in fact the notion of duality in the
lattice {0, 1)".

Proposition 5.2. (i) The vertices of the n-hypercube corresponding to the module with
variation zero M are the vector spaces

M; == Ml*O{

(i) Thenmapsy : Mj— M7, isthedualof u : My_)_, — M.

Proof. We only have to notice that, by usifvarez Montaner et a(2003 Lemma 4.4),
we have:

D

H M,—— | =H M, E1) =*H M, *E(R 1

0mD< ’D(xl,...,xn)> omp(M, E1) omr(M, "E(R/m)(1))
= "Homr(M, *E(R/m))(1) = M*(1),

where the last module is the Matlis dual of ti&-graded modulé shifted byl. O

The Matlis dual functor is exact contravariant and it is easy to prove that the Matlis dual
ofan injectiveDIzo—moduIe is projective; more precisely we have

1
(E(R/pa)(1)* = R[Xl_a}
and the Matlis dual of a simpl@Lo-module is simple. Namely we have

(Hy (R = H~(R).

5.2. Dual Bass numbers

By using Matlis duality we can compute the dual Bass numbers of a projective
resolution of a module with variation zeM < DLO. Namely we have:

Proposition 5.3. Let M* be the Matlis dual of a module with variation zero MD]_,.
Then, we have:

T[] (pO{v M) = /’L] (pl—ou M*)
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Example. Let R = Kk[x1, X2, x3]. Consider the 3-hypercubes of the module with variation
zeroM e DI:O studied in the previous examples and its Matlis dJét

SN, AN
bod DX
AN

Then, the dual Bass numbershdf are:

Py 7o | T1 | 72
(V) -1 1] -
(X1) 10 - -
(X2) 1
(X3) - -1 -
(X1, X2) - -1 -
(X1, X3) i e
(X2, X3) 10 - -
(X1, %X2,X3) | = | = | —
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