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We consider the effect of a non-zero lattice spacing on the low-energy effective theory of Wilson
fermions with N f = 1. Analytical results are given for both the chiral condensate and the microscopic
spectral density of the Wilson Dirac operator. It is observed that the partition function for a sector of
fixed index ν has ν real zeros. A subtle mechanism ensures that a constant chiral condensate is recovered,
once the sum over sectors ν is performed.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

The low energy effective theory of QCD is based on Goldstone
bosons of the broken chiral symmetry SU(N f )L ⊗ SU(N f )R . As
is well known, the U (1) axial symmetry is explicitly broken at
the quantum level, because of the anomaly. This means that the
N f = 1 theory might appear quite trivial at low energy because
there are no Goldstone bosons. Leutwyler and Smilga showed in
[1] that this is not the case: an expansion of the partition function
in terms of meiθ for N f = 1, shows that interesting behavior arises
in sectors of fixed topology ν .

For simulations of QCD on the lattice, one faces the problem of
doubling. For one flavor, the 15 extra states can be removed, by
adding a Wilson term to the Dirac operator. We denote the Dirac
operator with the Wilson term included by DW . The addition of
the Wilson term, moves the eigenvalues of the extra states away
from the origin in bunches of 4, 6, 4, and 1. In continuum language
the Wilson term is equivalent to a double derivative proportional
to the lattice spacing a.

The Wilson term destroys the anti-hermiticity of the Dirac oper-
ator, only retaining γ5-hermiticity, D†

W = γ5 DW γ5. The hermitian
operator D5 = γ5(DW +m) can still be defined. The eigenvalues for
DW spread in the complex plane, removing the apparent definition
of a sector ν in terms of zero modes.

We explore the low energy behavior of the Wilson Dirac oper-
ator by using the low-energy effective field theory, for which we
restrict ourself to the ε regime. For the N f = 1 case, there is no
spontaneous breaking of symmetry, but it is still possible to find
a behavior very closely reminiscent of the ε-regime in chiral per-
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turbation theory, if we focus on sectors of fixed index ν . A choice
of definition of such sectors as the Fourier modes of the partition
function, ensures a simple definition of ν , as the sum of the sign
of chirality of the real modes [2].

We will explore the special case of N f = 1. We start in Sec-
tion 2 by recalling the low-energy effective theory for the Dirac
operator for N f = 1. In Section 3 we include the terms emerging
from the Wilson term. In Section 4 we show how to obtain the
chiral condensate, which will be used to find both the full conden-
sate and the condensate for each sector of fixed index. We use this
to see the number of real zeros when the lattice spacing is non-
zero. We will in particular focus on how the full condensate is
built up from sectors of fixed ν . In Section 5, we look at the spec-
tral density of the hermitian Wilson Dirac operator D5, as well as
the corresponding ρχ , where we include two terms not previously
considered in the N f = 1 case.

2. N f in the continuum

Here we recall the arguments of Leutwyler and Smilga [1] for
N f = 1. It was shown, that though there are no Goldstone bosons
for N f = 1, the effective partition function in the ε regime, where
one confines to a box of size L = 1

ε and m ∼ ε4 [3], could be de-
scribed by the exponential of minus the energy

Z(m, θ) = eΣ V m Re(eiθ ). (1)

By use of the U (1) axial anomaly, it was shown that the only
parameter the energy would depend on was meiθ , for which the
given result is the lowest order in m. The decomposition of a sec-
tor of fixed index in QCD

Zν(m) = 〈
m|ν|Πk

(
λ2 + mm∗)〉, (2)
k
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was used to find the transformation properties. λk are the eigen-
values of the Dirac operator. These transformation properties could
be mimicked in the effective partition function if the Fourier
modes of Z , were chosen as the effective partition function for
fixed index ν , i.e. Zν such that

Z(m, θ) =
∑
ν

eiθν Zν(m). (3)

3. Inclusion of lattice spacing

We now extend the argument of the previous section to non-
zero a. The ε counting scheme for a �= 0, is taken to be

m ∼ a2 ∼ ε4 = V −1, (4)

such that first order terms in m are compatible with second order
of a. The terms proportional to the lattice constant a are included
in the effective theory, by the same principle as how the mass is
included, as they both come from terms depending on ψ̄ψ [4]

V La = V c0 Tr
(
a
(
U + U †)) + V W6

(
Tr

(
a
(
U + U †)))2

+ V W7
(
Tr

(
a
(
U − U †)))2

+ V W8 Tr
(
aUaU + aU †aU †). (5)

The first term is of the same form as the first order term in m.
We redefine both terms to 1

2 Tr(M(U + U †)), where V Σm + V W8a
≡ M . The remaining terms are set to a2W6 V ≡ a2

6, a2W7 V ≡ a2
7

and a2W8 V ≡ a2
8, which are all ∼ 1 in the ε regime. For a general

N f with Goldstone bosons, this gives [5]

Z =
∫

SU(N f )

dUe
1
2 Tr(M(U+U †))

× e−a2
6(Tr(U+U †))2−a2

7(Tr(U−U †))2−a2
8 Tr(U 2+(U †)2). (6)

For N f = 1 with no Goldstone bosons, we obtain the same form
by adding terms with aeiθ , to the partition function, such that we
only obtain real terms. We have chosen to add the phase to the
lattice spacing a. In the ε regime this gives

Z(θ,m,a) = exp
(
m cos(θ) − 2a2

8 cos(2θ)
)
. (7)

The parts proportional to a2
6 and a2

7 have been omitted, because for
N f = 1 for the partition function, a2

6, a2
7 and a2

8 can be redefined
into a a2

8 term. If the mode number of the Fourier modes of Z is
chosen as a definition of the index ν for the lattice Dirac operator,
then according to [2] the index ν is given by

ν =
∑

k

sign
(〈k|γ5|k〉), (8)

which is only affected by the real eigenvalues λ, since λ with
Im[λ] �= 0 then 〈k|γ5|k〉 = 0. With the inclusion of the U (1) in-
tegral, Zν for N f = 1 is defined by [8]

Zν(m,a8) =
π∫

−π

dθ exp
(
iνθ + m cos(θ) − 2a2

8 cos(2θ)
)
. (9)

4. The chiral condensate for N f = 1

We are interested in the analytic behavior for one flavor N f =
1 with a �= 0. The chiral condensate is found from the partition
function
Σ
(
m,a2

8, θ
) = ∂

∂m
log

(
Z
(
θ,m,a2

8

))
. (10)

For one flavor using (7) we obtain

Σ
(
m,a2

8, θ
) = cos(θ), (11)

which is exactly as found in [6] in the continuum. This result is in
contrast to the much more complicated condensate for each sector
ν , Σν(m,a8), which is given by

Σν
(
m,a2

8

) =
∫ π
−π dθ cos(θ)exp(iνθ + m cos(θ) − 2a2

8 cos(2θ))∫ π
−π dθ exp(iνθ + m cos(θ) − 2a2

8 cos(2θ))
.

(12)

Making the change θ → −θ in both integrals, it is seen that Σν =
Σ−ν . It is also observed that

Zν(m,a8) =
2π∫
0

eiνθ em cos(θ)−2a2
8 cos(2θ) dθ

=
π∫

−π

eiπνeiνθ e−m cos(θ)−2a2
8 cos(2θ) dθ

= Zν(−m,a8)(−1)ν . (13)

For a2
8 = 0, Zν(m,a2

8) has a zero of ν ’th order in 0. For a2
8 �= 0 it

is observed that these zeros spread out into pairs as just predicted
from Eq. (13). Expanding to first order in a2

8 and ν ’th order in m,
one finds the behavior to be

Zν=2 ≈ m2/8 − a2
8 − a2

8m2/4,

Zν=3 ≈ m3/48 − a2
8m/2 − a2

8m3/16, (14)

where the zeros are found to be linearly dependent on a8. For
larger a8 the dependence becomes quadratic, see Fig. 1.

For larger m and a2
8 than seen in Fig. 1, the zeros become

harder to see in plots as those in Fig. 1. We have therefore plot-
ted for fixed a2

8 = 10,20, . . . ,100,200, . . . ,1000, . . . ,10 000, where
one of these plots is shown in Fig. 2.

It was observed that in all plots, the number of zeros is equal
to the index ν .

We are also interested in finding how each sector adds to the
full chiral condensate

Σ(θ) = ∂

∂m
log

( ∞∑
ν=−∞

eiνθ Zν

)

=
∑∞

ν=−∞ eiνθ ∂m Zν∑∞
ν=−∞ eiνθ Zν

=
∞∑

ν=−∞
eiνθΣν Zν/Z . (15)

This tells us that we should weight each sector ν with the factor
eiνθ Zν/Z , such that Zν cancels the poles. In Fig. 3 we show the
convergence of the sum over ν for θ = 0.

The higher terms cancel the too high values around m = 0,
and this cancellation overshoots, such that Σ at m = 0 oscillates,
though converging towards Σ = 1. We compare this to the a2

8 = 0
case in Fig. 4.

We find that the sector ν = 0, is not too significant, as there is
no contribution to Σ at m = 0, and Σ0 in no way fills up most
of Σ . That Σ0 is almost 1 at m = 1 in Fig. 3 is a coincidence and
is not true for other a2.
8
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Fig. 1. Zeros for Zν . The plot shows a 3d plot for log(Zν ) seen from above for ν = 3
and 7 respectively, where the x-axis is a2

8 and the y-axis is m. The zeros of Zν are
seen as the lines, since the logarithm blows up at Zν = 0.

While we see how different the picture is, it is important to
note that this is mainly if one focuses on the pole behavior around
m = 0. As one passes the poles at around m = 8a2

8, the behavior
quickly goes to that of a2

8 = 0. We show this in Fig. 5.

5. The density with a2
6 and a2

7

For N f = 1, we redefined a2
6 and a2

7 into a2
8, such that Zν was

only dependent on a2
8. For the spectral densities of the Wilson

Dirac operator, this is not the case. As in [2], we expand the parti-
tion function to

Z(2|1)(M, Z ,ai) =
〈

det(DW + m f + z f γ5)det(DW + m + zγ5)

′ ′

〉
,

det(DW + m + z γ5)
Fig. 2. Z 7/Z 0 for a2
8 = 7000. Z 0 is used to normalize, since it is always positive.

Fig. 3. The oscillating behavior
∑ j

ν=− j ZνΣν/Z for a2
8 = 1.5 and j = 0,1,3,9. The

curve for j = 0 is 0 at m = 0, j = 1 is the largest and j = 9 is almost 1.

Fig. 4.
∑ j

ν=− j ZνΣν/Z for a2
8 = 0 and j = 0,1,3,9. j = 0 is the smallest and the

graphs builds up towards Σ = 1, which is almost true for j = 9.

where we have included the γ5-mass term, which is propor-
tional to Z . We have also defined M = diag(m f ,m,m′) and Z =
diag(z f , z, z′). We have added one extra bosonic flavor and one
more fermionic flavor. The partially quenched condensate is then
defined as

Σν(m f ,m) = ∂

∂m

(
log

(
Zν

(2|1)

(
m f ,m,m′)))∣∣

m=m′ , (16)

where z f = z = z′ = 0 and a2
6, a2

7 and a2
8 are included, but not

shown. It was shown in [2] that spectral densities could be ob-
tained by taking the discontinuity, which for Σν(m f ,m) obey
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Fig. 5. Σ2(a2
8 = 0)/Σ2(a2

8 = 1). The ratio for the chiral condensate between the con-
tinuum and the lattice effective theory for a fixed sector ν = 2, is seen to converge
to 1, when m is away from the area of the poles of Σ2(a2

8 = 1).

ρν
χ

(
λW ,m f

) =
〈∑

k

δ
(
λW

k + λW )
sign

[〈k|γ5|k〉]〉
ν

= 1

π
Im

[
Σν(m f ,m)

]∣∣
m=λW , (17)

where sign[〈k|γ5|k〉] was included for regularization. λW
k are the

eigenvalues of DW . The extra quarks result in an enlarged sym-
metry group, and we therefore need to integrate over the largest
convergent sub-group of GL(2|1) as described in [7]. While the
Grassmann integrations trivially converge, the bosonic integrals
need careful attention. Following [2] we rotate U → iU to make
Zν convergent for positive a2

8, such that

Zν
(2|1) =

∫
dU Sdet(U )ν exp

(
i

2
Str

(
M

(
U − U−1))

+ a2
6 Str

(
U − U−1)2 + a2

7 Str
(
U + U−1)2

+ a2
8 Str

(
U 2 + U−2) + i

2
Str

(
Z
(
U + U−1))). (18)

We choose the parametrization

U =
⎛
⎝ eit+iu cos(θ) ieit+iφ sin(θ) 0

ieit−iφ sin(θ) eit−iu cos(θ) 0
0 0 es

⎞
⎠ exp

( 0 0 α1
0 0 α2
β1 β2 0

)
,

for which the Berezinian becomes J = 4 cos(θ) sin(θ)(1+ 1
3 (α1β1 +

α2β2)) [7] and we define | J0| ≡ 4| cos(θ) sin(θ)|. Plugging U into
the partition function Zν , we find that the φ dependence disap-
pears, and the φ integral simply gives π . The Grassmann integrals
can also be carried out explicitly. This gives

Zν
(2|1)

(
m f ,m,m′, z f , z, z′,a6,a7,a8

)

= π

∞∫
−∞

ds

π∫
−π

dt

π∫
−π

du

π∫
−π

dθ eS f +Sb+S67+(2it−s)ν

×
(

P4 − P11 P22 + P12 P21 − 1

3
(P11 + P22)

)
| J0|, (19)

which was done without a2
6 and a2

7 in [8]. The terms with a2
6 and

a2 are a bit more complicated, but can still be reproduced here
7
S f = cos(θ)
(−m f sin(t + u) − m sin(t − u)

+ iz f cos(t + u) + 4a2
8 cos(2t) cos(2u) cos(θ)

+ iz cos(t − u)
) − 4a2

8 cos(2t) sin2(θ),

Sb = −im′ sinh(s) − iz′ cosh(s) − 2a2
8 cosh(2s),

S67 = 4a2
6

(
2i cos(θ) cos(u) sin(t) − sinh(s)

)2

+ 4a2
7

(
2 cos(θ) cos(u) cos(t) − cosh(s)

)2
,

P11 = i
1

2

(
cos(θ)

(
im f sin(t + u) + z f cos(t + u)

) + m′ sinh(s)

+ z′ cosh(s)
) + a2

8

(
2 cos(2t + 2u) cos2(θ)

− 2 cos(2t) sin2(θ)

+ 4 cosh(it + iu + s) cos(θ) + 2 cosh(2s)
)

+ 4a2
6

(
2i cos(θ) cos(u) sin(t) − sinh(s)

)
× (

i sin(t + u) cos(θ) + sinh(s)
)

+ 4a2
7

(
2 cos(θ) cos(u) cos(t) − cosh(s)

)
× (

cos(t + u) cos(θ) + cosh(s)
)
,

P22 = i
1

2

(
cos(θ)

(
im sin(t − u) + z cos(t − u)

) + m′ sinh(s)

+ z′ cosh(s)
) + a2

8

(
2 cos(2t − 2u) cos2(θ)

− 2 cos(2t) sin2(θ)

+ 4 cosh(it − iu + s) cos(θ) + 2 cosh(2s)
)

+ 4a2
6

(
2i cos(θ) cos(u) sin(t) − sinh(s)

)
× (

i sin(t − u) cos(θ) + sinh(s)
)

+ 4a2
7

(
2 cos(θ) cos(u) cos(t) − cosh(s)

)
× (

cos(t − u) cos(θ) + cosh(s)
)
,

P12 = −1

4
sin(θ)

(
m f e−it + meit − z f e−it + zeit)

− 4a2
8 sin(θ)

(
sin(t − is) + sin(2t) cos(u) cos(θ)

)
+ 4a2

6

(
2i cos(θ) cos(u) sin(t) − sinh(s)

)
i cos(t) sin(θ)

− 4a2
7

(
2 cos(θ) cos(u) cos(t) − cosh(s)

)
sin(t) sin(θ),

P21 = −1

4
sin(θ)

(
m f eit + me−it + z f eit − ze−it)

− 4a2
8 sin(θ)

(
sin(t − is) + sin(2t) cos(u) cos(θ)

)
+ 4a2

6

(
2i cos(θ) cos(u) sin(t) − sinh(s)

)
i cos(t) sin(θ)

− 4a2
7

(
2 cos(θ) cos(u) cos(t) − cosh(s)

)
sin(t) sin(θ),

P4 = i

24
cos(θ)

(
im f sin(t + u) + im sin(t − u) + z f cos(t + u)

+ z cos(t − u)
) + 1

12

(
m′ sinh(s) + z′ cosh(s)

)
+ a2

8

(
1

3
cos(2t) cos(2u) cos2(θ) + cos(2t) cos2(θ)

+ 2

3
cos(2t) sin2(θ) + 8

3
cosh(it + s) cos(u) cos(θ)

+ 4

3
cosh(2s)

)
+ 2a2

6

(
1

3

(
2i cos(θ) cos(u) sin(t) − sinh(s)

)
× (

i cos(θ) cos(u) sin(t) + sinh(s)
)

− (
i sin(t + u) cos(θ) + sinh(s)

)(
i sin(t − u)
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× cos(θ) + sinh(s)
) − sin(θ)2 cos(t)2

)

+ 2a2
7

(
1

3

(
2i cos(θ) cos(u) cos(t) − cosh(s)

)
× (

cos(θ) cos(u) cos(t) + cosh(s)
)

− (
cos(t + u) cos(θ) + cosh(s)

)
× (

cos(t − u) cos(θ) + cosh(s)
) + sin(θ)2 sin(t)2

)
, (20)

for which convergence requires 0 > a2
6 + a2

7 − a2
8. Another repre-

sentation can be found in [9]. We numerically solve the rest of
the integrals to obtain the densities. In Fig. 6 we show a couple of
densities for N f = 1.

Fig. 6. The density ρν
χ for sector ν = 2 for m f = −1 compared for different low-

energy constants in the microscopic effective theory. At the right side the largest
is a2

6 = 0.01,a2
7 = 0,a2

8 = 0.04, the 2nd is a2
6 = 0,a2

7 = 0,a2
8 = 0.05, the 3rd is a2

6 =
0,a2

7 = 0.01,a2
8 = 0.04 and the smallest is a2

6 = a2
7 = 0,a2

8 = 0.04.

It is seen how the addition of the a2
6 and a2

7 term changes the
positions of the maxima and changes the values. It should be no-
ticed how the density vanishes at λW = −1, as is required from
the QCD partition function, since ρν

χ is an average of
∑

k δ(λW +
λW

k )Π j(λ
W
j + m f ), which is always zero for m f = λW .

The most important factor in how ρν
χ looks, appears to be the

ratio between m f and the position of the peaks. This is seen from a
series of graphs where we vary m f . For m f away from the maxima,
the picture looks like that in Fig. 6, even though we use a2

8 = 0.2
instead. Around the origin Zν=2 changes sign, and we see a quite
changed picture. We show this in Fig. 7.

When we defined the index ν for the partition function, we
mentioned that the index ν is equal to the average of chirality for
a configuration. For the density ρν

χ this is equal to

∞∫
−∞

ρν
χ

(
λW )

dλW =
∞∫

−∞

〈∑
k

δ
(
λW

k + λW )
sign

[〈k|γ5|k〉]〉
ν

dλW

=
〈∑

k

sign
[〈k|γ5|k〉]〉

ν

= ν. (21)

As a central self-consistency check, it has been verified by numer-
ical integration, that this is true for the values of a2

6, a2
7 and a2

8 in
Figs. 6 and 7.

Finally we also consider the spectral density of the hermitian
Wilson Dirac operator D5 = γ5(DW + m), obtained as in [2] by
Fig. 7. ρν
χ (λW ,m f ) for ν = 2 and a2

8 = 0.2 for m f = −5,−3,−1. We see a com-
pletely different picture when the sign is flipped for m f = −1. The graphs can be
identified from where they cross the x-axis.

Fig. 8. The spectral density ρν
5 for index ν = 0 and m f = 1, compared for differ-

ent terms in the microscopic effective theory. The small variations come from the
graphs with the following values: 1. a2

6 = a2
7 = 0,a2

8 = 0.04. 2. a2
6 = 0.01,a2

7 = 0,a2
8 =

0.04. 3. a2
6 = 0,a2

7 = 0.01,a2
8 = 0.04. 4. a2

6 = 0,a2
7 = 0,a2

8 = 0.05.

ρν
5

(
λ5,m f

) =
〈∑

k

δ
(
λ5

k − λ5)〉
ν

= 1

π
Im

[
Gν

(−λ5,m f
)]

, (22)

where Gν(z,m f ) is the resolvent of D5, obtained as

Gν(z,m f ) =
(

∂

∂z
log Zν

(2|1)

(
m f ,m,m′, z, z′))∣∣∣∣

z=z′,m f =m=m′
.

(23)

z and z′ are the γ5-mass which we included in the graded parti-
tion function, which comes from the term zψ̄γ5ψ . z f is always set
to 0. The effect of including the a2

6 and a2
7 term, is shown in Figs. 8

and 9.
We see that ρν

5 is 0 at the origin as required, since ρν
5 is given

by the average of
∑

k δ(λ5
k − λ5)Π j(λ

5
j ) which will always be 0 at

the origin.
Very recently, two lattice QCD studies [10,11] have demon-

strated that the quenched predictions for the microscopic spectra
from Wilson chiral perturbation theory, can be matched to the lat-
tice data.

6. Conclusion

We have considered the effect of a non-zero lattice spacing, in
the low-energy effective QCD partition function, for one flavor in
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Fig. 9. The spectral density ρν
5 for index ν = 1 and m f = 1, compared for different

terms in the microscopic effective theory. The highest peak is for a2
6 = −0.5,a2

8 = 1,
the 2nd largest is a2

7 = −0.5,a2
8 = 1, the 3rd is a2

6 = −0.3,a2
8 = 1 and the smallest

is just a2
8 = 1, where the value is 0 if not mentioned.

the ε regime. With this we explored the behavior of the chiral
condensate for QCD. We saw that for Zν , the zero at the origin for
a2

8 = 0, coming from the ν zero eigenvalues, were spread out into
ν zeros for a2

8 �= 0. This was tested for a variety of values for a2
8. It

was observed in all plots, that the number of real zeros was equal
to |ν|.

We also explored how the full condensate was build up. This
we compared to the continuous case. For a2

8 �= 0 we observed how
the full condensate started to make a damped oscillation, when we
summed from −ν to ν .

We ended with showing the ε regime spectral densities of the
Wilson Dirac operator, and especially focused on the effect of a2

6
and a2

7. We saw how a2
6 and a2

7 had a very similar effect of shift-
ing the height of the peaks. We have checked that the densities
are zero at the points dictated by QCD. It was also checked that∫ ∞
−∞ ρν

χ (λW )dλW = ν , which shows that the definition of Zν is
consistent with the interpretation of ν as the index of DW .
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