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Abstract

The cochlea of the inner ear transforms the incoming sound pressure into neural excitation. Despite extensive
experiments and modeling for the past century, understanding the behavior of the cochlea is far from complete. With
an efficient program (Fast4) for shell of revolution structures, all mechanical (elastic) details of the curved cochlear
cross-section and the organ of Corti can be computed. Based on the known values for the elastic moduli of the protein
fibers and estimates for the geometry, the responses to point and pressure loads have been calculated which are reason-
ably close to the direct measurements. In the present work, the details of the inner hair cell are included, with a fluid gap
between the tip of the cilia and the Hensen stripe of the tectorial membrane. A simple model for the near contact indi-
cates nonlinear response similar to the intracellular recordings. This near contact is included into a more complete elas-
tic model for the organ of Corti that includes three rows of cilia and tip links. The phase of the maximum tension of the
tip link, which causes excitation of the cell, is computed for low frequencies for comparison to measurements. For low
frequencies the fluid motion in the organ of Corti is approximately two-dimensional. The phase is found to be affected
by: (1) geometrical difference between basal and upper turns of the cochlea, (2) initial gap spacing between the tip of the
cilium and the Hensen stripe, (3) initial gap spacing between the tip of the cilium and the tectorial membrane, (4) pres-
ence of an electrode probe constraint on the motion of the inner hair cell, and (5) the stiffness of the tectorial membrane.
The latter is the most significant. For a soft tectorial membrane, the excitation is generally between maximum velocity
and displacement of the basilar membrane toward scala vestibuli. However, for a stiff tectorial membrane, the phase
changes to an excitation with velocity and displacement toward scala tympani. Thus a possible mechanical reason is
offered for the auditory nerve excitation in the base of the chinchilla cochlea for basilar membrane velocity toward scala
tympani and in the middle and upper turns of the guinea pig cochlea, excitation for velocity toward scala vestibuli.
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1. Introduction

Progress toward understanding the function of the cochlea of the inner ear has continued at a rapid rate
with improved quality and variety of measurement procedures. This study is motivated by the measure-
ments of the inner hair cell (IHC) response by Cheatham and Dallos (1999) in the upper turns of the guinea
pig cochlea and the eighth nerve and basilar membrane (BM) responses in the base of the chinchilla by
Ruggero et al. (2000). For low frequencies, the phase of IHC and eighth nerve responses are synchronized
with the BM. The IHC at the apex behaves as might be expected, with a maximum excitation when the BM
is between maximum displacement and velocity toward scala vestibuli (SV). However, the neural recordings
at the base indicate excitation with velocity toward scala tympani (ST). The objective of this work is to
determine whether or not such behavior is indicated from the computation of a fairly accurate model of
the organ of Corti (OC). For this the details of the flow on the cilia of the inner hair cell are considered,
which may be similar to flow in other organs such as that studied by Weinbaum et al. (2001).

For all the elaborate detail of the OC, it is interesting that the neural response mirrors the motion of the
BM, as shown by Narayan et al. (1998). So the OC does not serve as a ‘‘second filter’’ to improve the tuning
of the BM, but interacts directly with the BM. However, the passive response of the cochlea can be ex-
plained rather well by stripping off the OC. Our computation for this is based on a standard WKB asymp-
totic wave analysis method. Steele and Taber (1979) confirm that this procedure is accurate in computing
models with three-dimensional (3-D) viscous fluid when all the geometric and physical properties are
known in an experimental model. The direct numerical integration of the 3-D viscous equations by Givel-
berg and Bunn (2003) shows promise, but requires considerable computing time, hours on a high-speed par-
allel computer (compared to seconds for WKB on a desktop computer for a given frequency). Their
‘‘complete’’ cochlear model does not include the organ of Corti (OC).

The OC obviously adds an important active sharpening of the response. Various models for this use an
active mechanical system added to the BM. For most, the model parameters are difficult to relate to the
physical features of the OC. However, a physically based, cochlear model consisting of a basilar membrane
with a simplified representation of the OC in a three-dimensional fluid (3-D), using a WKB-numerical
approximation, simulates the passive, active, transient and nonlinear behavior surprisingly well (Lim
and Steele, 2003).

Nevertheless, the elaborate details of the OC exist for a reason, namely to deliver the correct fluid forces
against the cilia of the inner hair cell (IHC). Several laboratories are improving the computation for the
cochlea with the OC. Kolston (1999) presents an extensive 3-D finite element model with the OC approx-
imated with rectangular frames and inviscid fluid. Bohnke and Arnold (1998) model the actual anatomy,
but only in a restricted region. Cai and Chadwick (2002) use a finite element solution for the cross-section
of the OC treated as a continuous medium, combined with WKB for the longitudinal waves, and Andoh
and Wada (2003) include the details of the cilia of the outer hair cells (OHC).

We are using an alternate approach with a computer program (Fast4) developed for the computation of
axisymmetric shell structures. This uses a combination of asymptotic and direct numerical methods (Steele
and Shad, 1995), that is efficient in comparison with standard finite element methods and requires minimal
input. Specifically, the mesh required is generated in the program. With this program most of the mechan-
ical detail of the OC can be included. Preliminary work has begun (Steele, 1999) on an efficient procedure
for handling both the fluid waves and the detailed OC for the high frequency response.

The present work is apparently the first to model the mechanical environment of the cilia of the inner
hair cell (IHC) in a full OC and fluid environment. Preliminary results are given by Steele and Puria
(2003). Since the phase locking of the neural response occurs only for low frequency, this provides an excel-
lent motivation to get the geometry, stiffness, and viscous fluid treated properly, with a 2-D treatment of the
cross-section and without the concern for the one or more modes of longitudinal traveling waves that are
certainly significant for higher frequencies.
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2. Methods

2.1. Geometry

Such basic features of BM length, width distribution, and transverse fiber density are reasonably well
established. This study, however, requires much more detail of the anatomy of the OC. Kelly (1989) pro-
vides such detail for the cross-section at the apex of the GP cochlea, about 17 mm from the stapes, averaged
over a number of animals. His values for the geometry are used in our model for the apical section shown in
Fig. 1, in which some of the important components of the structure are labeled. Other components are de-
fined in the caption of Fig. 1.

This detail is not available for other locations. Consequently, the specific dimensions for the cross-sec-
tion near the base of the cochlea, say at 3.5 mm from the stapes, are taken from a micrograph by Dunnebier
et al. (1998). The model representation is shown in Fig. 2. In addition, Ulfendahl and colleagues (personal
communication) have furnished micrographs of the entire GP cochlea. Zetes et al. (2004) summarize details
of the fiber density and lengths for the hair cells, pillar cells, Deiter rods, and phalangeal processes at dif-
ferent locations in the GP.

The unfixed preparation of the gerbil cochlea used by Edge et al. (1998) is particularly important. This
indicates that the Hensen stripe (HS) on the lower surface of the TM is close to the tips of the IHC cilia.
Because of the shrinkage of the TM in the usual preparation, this stripe is normally seen at some distance
from the IHC cilia. A closer view of the cilia of the IHC in the model is in Fig. 3. The three rows of cilia and
the tip links are included. The dashed lines show the unloaded position, with the tip of the tallest cilia near
the intersection of the Hensen stripe and the TM. The exact location of the stripe remains under investiga-
tion at different laboratories, so different initial gaps are considered in the present study. The tips of the
Fig. 1. Elastic Fast4 shell model for organ of Corti in apical turn of guinea pig. The loading is static pressure on the basilar membrane
with no effect of the fluid. The dashed and solid lines show the undeformed and deformed configurations, respectively. The labels are
for the tectorial membrane TM, outer hair cells OHC, basilar membrane BM, inner hair cells IHC, and Hensen strip HS. The fluid
regions are scala vestibuli SV, the region under the tectorial membrane L1, the scala tympani ST, and the inner sulcus IS. The
additional fluid region is the Cortilymph (C) located in the inner tunnel region. Not labeled are the following components. The bottom
of the triangular region C is the arcuate zone of the BM, the left side is the inner pillars (IP) and the right side the outer pillars (OP) of
the arches of Corti. The Cortilymph extends through the spaces between the OP and surrounds the OHC. The membrane in which the
upper end of the OHC, IHC and pillar head is embedded is the recticular lamina (RL). On the right of the OHC are the Hensen cells.
The fluid bounded by the TM and RL, between the first and second OHC is L2, and that between the second and third OHC is L3. The
Deiter rods are the links between the lower ends of the OHC and the BM. The radial distance is from the axis of the cochlea, and the
axial distance is from the plane of the BM, both in millimeters.



Fig. 2. Elastic Fast4 shell model for organ of Corti in basal turn of guinea pig. The dashed lines show the unloaded and the solid lines
the deformed configuration due to a static pressure in SV. The radial and axial distances are in millimeters.

Fig. 3. Close-up view of inner hair cell (IHC) cilia and Hensen stripe (HS). The cross-section of the model Hensen stripe is the triangle
that appears to be floating, but is actually attached to the TM located above. The three rows of cilia and the tip links are included in the
calculation. The amplitude of displacement is greatly exaggerated, which makes it appear that the tall cilium penetrates the TM.
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tallest IHC are not attached to the overlying TM. However, there exist filaments that connect the top of the
IHC to the TM that have not been included in the present study. We presume that these do not affect the
fluid flow near the tips of the cilia.

2.2. Elasticity

The objective is to use stiffness values for the components of the OC that are consistent with the micro-
structure and with direct stiffness measurements. The following summarizes the current assumptions.

1. Each component is a shell of revolution (Figs. 1 and 2) for which the linear elastic response is efficiently
calculated with the Fast4 program. This program has been subjected to extensive validation with closed
form solutions and finite element solutions over the past 15 years. The input for the cochlea is a file with
the parameters of the cochlear cross-section at various distances from the stapes, as described in some
detail in Steele (1999). The parameters consist of the geometric details and the elastic moduli of the com-
ponents, about 70 in all.
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2. Most components are orthotropic, i.e., have small to zero stiffness in the direction perpendicular to the
cross-section. These are hair cells, cilia, pillar cells, and BM fiber layers. In a change from Steele (1999),
the recticular laminar (RL), which is the membrane in which the tops of the IHC and OHC are embed-
ded, and the pillar head are now also considered to be orthotropic.

3. Isotropic components are the tectorial membrane (TM), the BM ground substance, and the Hensen cells.
4. All tissue in the cochlear cross-section is linearly elastic.

Generally, the elastic moduli in Steele (1999) are consistent with the microstructure and the fairly well
known measurements of OHC stiffness, volume compliance, and point loads in the GP. The significant
modification is from the measurements of Tolomeo and Holley (1997) for the bending stiffness of pillar
cells. The interior of these cells contains evenly spaced microtubules with cross-linking. When the cross-
linking is removed, the increase in bending stiffness is only a factor of four. Since there are some 40 layers
of microtubules for one plane of bending, strong cross-linking would give an increase of a factor of 1600.
Therefore, the actual increase of four indicates that the effective transverse shear modulus of the cross-
linking is rather low, around 300 Pa, compared to the longitudinal stiffness of the filaments of the micro-
tubules of 2 GPa. Thus the pillar cells, as well as the Dieter rods, seem to be designed to have high
longitudinal stiffness, but little bending stiffness. In addition, Tolomeo (personal communication) indicates
the heads of the pillars can separate fairly easily, which corresponds to a small stiffness in the direction per-
pendicular to the cross-section.

This is relevant when considering the measurements of Ulfendahl et al. (2002), and Fridberger et al.
(2002), which provide quantitative radial and axial components of displacement at various points in the
OC cross-section of the GP upper turn for quasi-static pressure loading. Notable is that the displacements
for pressure toward ST are substantially larger than those for pressure toward SV. From the calculations of
the model (Fig. 1), it appears that this may be explained by mechanical buckling of the pillars. For pressure
towards ST, the IP is in compression. Since this is not the focus of the present study, we merely summarize
by saying that the elastic model is reasonably consistent with the measurements of Ulfendahl et al. (2002)
when the low shear modulus of Tolomeo and Holley (1997) is used for the pillar cells and Deiter rods. The
stiffness of OHC is from Spector et al. (1999). It appears that the model is also consistent with the measure-
ments of RL motion by Hemmert et al. (2000), and Khanna et al. (1989).

Hornera et al. (2004) point out that a simple beam model for the BM can simulate the shape of the dis-
placement observed by Cooper in the GP at all frequencies. The beam is loaded by uniform pressure and
consists of different thicknesses in the pectinate and arcuate zones of the BM. For their beam, the left edge
(at the primary spiral osseous lamina) is simply supported (i.e., hinged), and the right edge (at the spiral
ligament) is clamped. Fig. 4 shows that our result, from the considerably more elaborate model of the
cross-section at the base (Fig. 2) for the BM displacement under static pressure, compares well with
Cooper�s profile. For our calculation, both edges are clamped. We agree with Hornera et al. (2004) that
the clamping on the right edge is important for GP.

The more elaborate model also agrees fairly well with point load measurements, for which the ortho-
tropy of the structure is important. From our experience, it seems that a simple beam model cannot sim-
ulate both the Cooper profile with uniform pressure and the point load measurements in the GP. The actual
orthotropic structure of the pillars must be considered.

There is always the question whether or not stiffness values from static tests are valid for the acoustic
frequencies. Therefore the measurements of Scherer and Gummer (2004) are of considerable interest since
the point impedance is measured for frequencies in the range 0.5–40 kHz. Points across the RL were
measured in a GP preparation at different distances from the stapes. The BM was constrained and the
TM removed, so just the properties of the OC are obtained. They used a curve fit with various visco-
elastic parameters, one of which can be identified as the static point load stiffness. A comparison with
the elastic model with BM constrained and TM removed is in Fig. 5. This calculation is preliminary, for



Fig. 4. Comparison of shape of BM displacement at the base. The solid curve is calculated at the base for pressure loading, and the big
dots give the general shape measured by Cooper (Hornera et al., 2004). The small dots give their upper and lower bounds. The radial
distance and calculated displacement for static pressure of 1 Pa are in microns.

Fig. 5. Comparison of point load stiffness (N/m) at points across the RL for different distances from the stapes. The measurements are
the static stiffness components of the curve fits of the impedance curves in Scherer and Gummer (2004). The calculated values are from
the elastic model.
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an axisymmetric line load with the point load presumed to act on a section 8 lm wide, corresponding to the
pillar width. However, the general agreement indicates that the linearly elastic model is valid for acoustic
frequencies and that the OC structure simulation is reasonable.

2.3. Equations for elastic behavior

In Steele (1999) a table of properties for each cochlear cross-section is the beginning. This is extended to
include the IHC. A special computer program reads the table and generates the input file for Fast4 for each
cross-section. The bookkeeping detail and the extensive validation will not be given here. However, the new
feature is that the tip of the tallest cilium is near both the HS and the TM (Fig. 3). Therefore the forces
acting on the opposing surfaces must be taken into account. In summary, the system vectors of force
and displacement quantities consists of:
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F ¼

pSV
pIS
pC
pL1
pL2
pL3
rqHS

rqTM
sL1
sL2
sL3
sL4

2
6666666666666666666664

3
7777777777777777777775

; D ¼

rASV

rAIS

rAC

rAL1

rAL2

rAL3

gHS

gTM
rcL1
rcL2
rcL3
rcL4

2
66666666666666666666664

3
77777777777777777777775

; ð1Þ
for a total of N = 12 elements. The fluid regions under the TM between the cilia of the hair cells are des-
ignated by L1, . . . ,L4. The p�s are the pressures in the six fluid regions, and the A�s are the area displacement.
The pressure in ST is the reference pressure, taken to be zero. The q�s are the opposing forces on the tips of
the IHC cilium, and the g�s are the gap displacements. The s�s are the opposing shear forces on the surfaces
of the regions L1, . . . ,L4 and the c�s are the corresponding shear strains multiplied by the cross-sectional
area. The possible mechanical valve effect of the outer margin of the TM is not taken into account, so
in the present model there is an independent fluid shear in L4 given by sL4 , but the pressure in L4 is equal
to pSV. Because of the axisymmetric geometry, the force resultants are multiplied by the radius r, and the
area and shear displacements are multiplied by r. Then the product F * D/2 is the work.

Fast4 generates the static elastic response for a unit value of each element of F, which provides a column
of the N · N symmetric elastic flexibility matrix for the structure E:
D ¼ EF. ð2Þ

The calculation is efficient, requiring a few minutes on a laptop computer.

However, the fluid in region C (Fig. 1) is not connected to the fluid of the other regions. Since the fluid is
incompressible, the change in area of this region, given by the element AC in D must be zero. In addition,
the pressure in SV is considered as prescribed, so the area displacement ASV can be eliminated. After the
standard manipulation, the equation becomes a modified version of Eq. (2):
Dred ¼ EredFred þ LEpSV. ð3Þ

In which LE is the reduced first column of E, and the reduced force and displacement vectors are:
Fred ¼

pIS
pL1
pL2
pL3
rqHS

rqTM
sL1
sL2
sL3
sL4

2
666666666666666664

3
777777777777777775

; Dred ¼

rAIS

rAL1

rAL2

rAL3

gHS

gTM
rcL1
rcL2
rcL3
rcL4

2
666666666666666664

3
777777777777777775

. ð4Þ
The compliance matrix Ered is symmetric and nonsingular.
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2.4. Fluid

The present attention is on the constricted fluid region of the IHC cilia and between the RL and TM, the
regions L1, L2, L3, and L4. The assumptions for the fluid are the following.

1. The displacement of fluid within the OC in the direction perpendicular to the cross-section is negligible
for the long wavelengths at low frequencies. The fluid motion in the ST and SV causes a pressure differ-
ence acting on the OC, so we take pSV as prescribed and pST = 0.

2. The flow of fluid between the IHC ciliary tips and the HS and TM is calculated with local Poiseuille flow.
This is valid when the gap is small in comparison with the radius of the tip. No flow passing through the
IHC cilia is considered.

3. The permeability of fluid around the ciliary bundles of the OHC�s is based on experimental model mea-
surements (Frommer and Steele, 1979).

4. The viscous shear resistance of the regions L1, L2, L3, and L4 is included.
5. The fluid has the viscosity of saline at body temperature.
6. Reissner�s membrane is ignored, so there is only one fluid region SV above the OC.
7. The resistance of flow of Cortilymph (C) through the OP and OHC is ignored. Thus the condition on C

is only that the area be preserved.
8. Fluid inertia is neglected for the low frequencies considered.

2.5. Equations for Poiseuille flow—Simple cilium contact model

A simple model (Fig. 6) shows the qualitative nature of the possible effect of the proximity of the tip of
the IHC cilia and the HS. The displacement of the base u represents the relative displacement between the
RL and the TM, and the HS is taken to be parallel to the axis of the cilium, which is an exaggeration. The
flow of fluid between a flat surface and a cylindrical surface with the radius R can be approximated by plane
Fig. 6. Simple model for near contact of cilium and HS. The gap between the cilium and HS is gHS, with the initial resting value gHS0,
the external force on the cilium acting away from HS is Fext, the displacement of the base of the cilium is u, and the radius of the tip of
the cilium is R. When the gap is small, the significant fluid effect is concentrated in the gap region.
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Poiseuille flow (Lagerstrom and Chang, 1962), which provides the relation between pressure gradient and
flow rate:
dp
dx

¼ � 12l

H 3
_QðxÞ. ð5Þ
The pressure is p, the distance along the interface from the point of nearest contact is x, the viscosity of the
fluid is l, the area displacement of the fluid is Q, the dot indicates the time derivative, and the distance be-
tween flat and curved surface is the quadratic H:
HðxÞ ¼ gHSð1þ kx2Þ; ð6Þ
in which gHS is the gap at the point of nearest contact, and the parameter k is:
k ¼ 1

2RgHS

. ð7Þ
For a velocity of opening of the gap, the flow is:
_QðxÞ ¼ _gHSx. ð8Þ
So integrating Eq. (5) yields the pressure distribution:
pðxÞ ¼ � 3l _gHS

ag3HSð1þ kx2Þ2
; ð9Þ
which shows that the pressure decreases rapidly with the distance x from the point of closest contact. There-
fore this may be integrated to obtain the total force from the fluid resisting the motion:
F fluid ¼
Z 1

�1
pðxÞdx ¼ �3

ffiffiffi
2

p
pl _gHS

R
gHS

� �3=2

. ð10Þ
The spring stiffness of the cilium is assumed to be linear, so the equilibrium equation is:
KðgHS � uþ bþ RÞ ¼ F ext þ F fluid; ð11Þ

where b is the half width of the base, which yields the nonlinear differential equation:
1

ð1þ nÞ3=2
dn
ds

þ n ¼ nu þ next; ð12Þ
in which the dimensionless quantities are defined by:
n ¼ ðgHS � gHS0Þ=gHS0;

nu ¼ ðu� gHS0 � b� RÞ=gHS0;

next ¼ F ext=ðKgHS0Þ;
s ¼ t=T ;

T ¼ 3
ffiffiffi
2

p
pl

K
R

gHS0

� �3=2

;

ð13Þ
in which s is the time divided by the decay time T. Eq. (12) has reasonable behavior with the fluid resistance
to motion becoming large as the gap becomes small for n approaching �1 and becoming small as n becomes
large. The equation is most accurate for small gaps when the fluid is most significant. The dimensionless
force of excitation, i.e., the net force bending the cilium is the response U = n � nu.
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2.6. Permeability coefficients

For the full OC model (Fig. 1), fluid provides the relation between the force quantities and the flow rates:
Fig. 7.
the cil
The fo
surfac
dDred

dt
¼ �CFred þ pSVLC; ð14Þ
in which C is the permeability matrix, and LC is considered a load vector that is written separately because
pSV is prescribed. The elasticity matrix Ered (Eq. (3)) is computed numerically and is full, reflecting the
strong elastic coupling of all the regions. In contrast, the permeability matrix C is nearly diagonal, since
the fluid in one region can flow to at most two neighboring regions, and only the fourth element of LC

is nonzero. Thus the nonzero coefficients are:
C ¼

c0 �c0
�c0 c0 þ c1 �c1

�c1 c1 þ c2 �c2
�c2 c2 þ c3

cHS

cTM
cS

cS
cS

cS

2
6666666666666666664

3
7777777777777777775

; LC ¼
c3

2
66666666666664

3
77777777777775

. ð15Þ
For small gaps, the significant fluid response is localized to the regions of the nearest contact, as shown in
Fig. 7. Thus two coefficients are from the reciprocal of Eq. (9):
cHS ¼
1

3
ffiffiffi
2

p
plr

gHS

R

� �3=2

; cTM ¼ 1

3
ffiffiffi
2

p
plr

gTM
R

� �3=2

. ð16Þ
Very close view of tip of tallest cilium for OC model. The HS and TM are considered to be two straight surfaces and the tip of
ium as a semicircle with radius R. The fluid gap between the tip and the HS is gHS and that between the tip and the TM is gTM.
rce due to the fluid is localized to the region of nearest contact and has the resultants qHS and qTM, which act on the opposing
es.
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The coefficients cS describe the fluid shear in the regions L1, L2, L3, and L4:
cS ¼
r �Height of cilia � Length of region

l
. ð17Þ
The flow between a flat and a cylindrical surface can also be approximated by Poiseuille flow Eq. (5), with _Q
constant. Integrating yields the pressure drop:
�Dp ¼ 9pl
g2

R
2g

� �1=2

_Q; ð18Þ
where R is the radius and g is the gap width. For the tip of the IHC cilium, there are two gap regions (Fig.
7), which provide impedance in series. Therefore the total permeability coefficient is:
c0 ¼
r

ffiffiffi
2

p
g5=2TM

9pl
ffiffiffi
R

p 1

1þ ðgTM=gHSÞ
5=2

. ð19Þ
A similar result is used for the permeability of flow around the bundles of the OHC:
c1 ¼
r

ffiffiffi
2

p
g5=2effective

9pl
ffiffiffi
R

p Length of cilium

Diameter of OHC

� �
. ð20Þ
The tallest OHC cilium is attached to the TM, so the flow is through the gap between the ciliary bundles.
Fortunately, the flow in a large scale experimental model of the ciliary bundles has been measured (From-
mer and Steele, 1979). The coefficient Eq. (20) agrees with the measurements if the effective gap is taken to
be:
geffective �
Diameter of OHC

10
. ð21Þ
2.7. Equations for coupling structure and fluid

The elastic forces from Eq. (3) and fluid forces from Eq. (14) must be the same. Equating these yields the
first order system of equations:
Fred ¼ �C�1 dDred

dt
� pSVLC

� �
¼ E�1

redðDred � pSVLEÞ; ð22Þ
which can be rewritten as:
G
dDred

dt
þDred ¼ pSVðLE þGLCÞ; ð23Þ
where G = EredC
�1 is a matrix whose eigenvalues are decay times for the complementary solutions. For

when the displacement is small in comparison with the initial gap, the matrix G and the right hand side
are constant, so the linear solution is readily computed. For the generalization of the simple model Eq.
(12) to the full OC model, the coefficients in Eqs. (16), (19), and (20) must have the current gap size, rather
than the initial. This makes the matrix G and the right-hand-side of Eq. (23) nonlinear functions of the
elements of D.
3. Results

First the near contact behavior of a cilium tip and a surface is demonstrated with the simple model (Fig.
4). Forward integration of Eq. (12) readily converges to a steady-state solution, so the present results for the
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nonlinear response can be easily verified. The equations for the full model of the OC are substantially more
involved, but the results appear to be ‘‘reasonable’’. At this time only the results for the linear behavior of
the full model are available.

3.1. Simple model

The input we consider is a sinusoidal variation in the external force on the cilia, due to a pressure dif-
ference between the fluid regions IS and L1 (Fig. 1), represented by next and a relative displacement between
the HS and the TM, represented by nu:
Fig. 8.
x. The
which
next ¼ ea cosðxsÞ;
nu ¼ eb cosðxsÞ.

ð24Þ
Forward integration of Eq. (12) for a = 1 and b = 0.2 with the initial condition n(0) = 0 yields the results
shown in Fig. 8 for various values of driving frequency x (columns) and amplitude e (rows). The transients
decay rapidly, within a cycle of input. For small amplitude of input, the response U is also sinusoidal and in
phase with the input for low frequency. As the amplitude of the input e increases in magnitude, the response
U becomes quite nonlinear, with a sharp spike that is more pronounced for the lower frequency. Direct
Nonlinear response of simplified hair cell model. The dimensionless parameters are the amplitude of input e and the frequency
horizontal scale is the time. The solid curve shows the excitation force on the cilium and the dashed curve shows the input,
is a combination of force Fext and base displacement g, given by the parameters a = 1 and b = 0.2.



C.R. Steele, S. Puria / International Journal of Solids and Structures 42 (2005) 5887–5904 5899
measurements of the response of inner hair cells (Mountain and Cody, 1999) in Fig. 9 show rather similar
behavior. The voltage in the scala media on the left shows the sinusoidal pattern with the well-known sat-
uration of the intracellular potential, that mainly squares the sinusoid. The pattern of IHC responses on the
right is clearly different and quite similar to the response of the simple model (Fig. 8). Notice that for a
Fig. 9. Measurements fromMountain and Cody (1999). On the left are voltages recorded in the surrounding fluid (scala media), which
is presumed to reflect the activity of the outer hair cells. On the right are voltages recorded intracellularly from an IHC. The numbers
on each response curve is an approximation for the amplitude of the BM vibration.
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given frequency, the peak sharpens with amplitude, while the peak sharpens with decreasing frequency for a
given amplitude. Not shown is that a saturation model for the IHC transduction smoothes the curves but
does not change the basic behavior.

This appears to be an indication that the near contact of the IHC cilia with the HS (Edge et al., 1998) is
an important feature of IHC excitation in the mammalian cochlea. Therefore, the more accurate model for
the OC using the near contact of cilium tip and HS is warranted.

3.2. Full model

For sufficiently small displacements, the coefficients in the matrices and vectors are constant, so Eq. (23)
is linear. The steady-state solution is:
Fig. 1
norma
second
pSV ¼ Pei-t; Dred ¼ Hei-t; H ¼ P ðGi-þ IÞ�1ðLE þGLCÞ; ð25Þ

which is easily computed for various frequencies of excitation. After the elastic flexibility matrix is com-
puted, the solution of Eq. (25) is fast, so a number of cases of frequency and gap spacing can be analysed
in a second of computing time.

After the solution Eq. (25) is computed, the force in the tip link is calculated. The force is divided by the
height of the cilium for the effective pressure acting on the tip links, with respect to pSV. The amplitude of
the effective pressure for the GP upper turn depends significantly on the initial gap between the cilium tip
and HS and TM (Fig. 10). Because of the restriction of the present model, only the frequencies less than
400 Hz are shown. A two-digit number labels the curves. The first number is ratio gHS/R, the gap between
the cilium and HS divided by the tip radius, expressed as percentage. The second number is the percentage
of gTM/R. The curves for 1% HS gap (11, 14, 17) are about the same, which indicates that the amplitude is
insensitive to the magnitude of the gap with TM. In contrast, the loading of the tip fiber is substantially
reduced when the HS gap is increased to 4% and 7%, even when the gap to TM is small (41, 71, 44, 77).
The phase (Fig. 11) also shows sensitivity to the HS gap but not much to the TM gap. The phase for
low frequency is around 90�, which indicates maximum IHC excitation for BM velocity towards SV.
For higher frequency the phase decreases toward zero, which would correspond to maximum excitation
for BM displacement toward SV. The IHC and auditory nerve fiber recordings for the GP upper turn
(Cheatham and Dallos, 1999), stay near 90� to about 400 Hz before decreasing. So the present model is
0. Amplitude of tension in the tip link of the IHC cilia as a function of frequency at the apex for soft TM. The tension is
lized to an effective pressure, on a linear scale. Various values of the gaps are designated by the two digit labels. The first and
digits indicate the gaps with HS and TM, respectively, expressed as a percentage of the cilium tip radius.



Fig. 11. Phase (in degrees) of tension in the tip link of the IHC cilia as a function of frequency at the apex for soft TM. If the maximum
tip link tension occurs when the BM displacement is at the maximum excursion toward scala vestibuli, the phase is zero. If the
maximum tension occurs when the BM velocity is at the maximum toward scala vestibuli, the phase is equal to 90�. The calculations
are for various values of the gaps as designated by the two digit labels, as before. The lines labeled 11, 14, and 17 show that for a small
gap with Hensen�s stripe, the result is insensitive to the gap to the TM. The phase is between 0� and 90�.
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quantitatively deficient, but provides the qualitative correct tendency. As suggested (Cheatham and Dallos,
1999), the phase depends on the viscoelastic behavior of the fluid and tissue. For lower frequency, the IHC
cilia are dragged through the fluid, and respond for velocity toward SV. For higher frequency, the fluid in
the gap between cilia and HS resists motion, so the cilia are more ‘‘stuck’’ to the HS, and the excitation
occurs for displacement toward SV.

Quite contradictory results are found in the basal turn (Cheatham and Dallos, 1999) and (Ruggero et al.,
2000). The auditory nerve fibers respond to BM velocity toward ST, while the IHC recordings are similar to
those in the apex. A variety of possible causes are suggested by several authors and summarized by Chea-
tham and Dallos (1999) and Ruggero et al. (2000). Two of these can be explored with the present model.
First is the effect of the different geometry in the base (Fig. 2), and second is the effect of mechanical con-
straint caused by the insertion of a microelectrode into the IHC. The ‘‘electrode’’ in Fig. 12 simulates entry
through ST. The electrode is modeled as solid glass, and so is essentially rigid in comparison to the tissue of
the OC, so the point of penetration of the BM and the IHC are essentially fixed. Since the present calcu-
lation ignores variation of tissue or fluid out of the plane, the ‘‘electrode’’ is a sheet, and therefore should
provide more constraint than an actual 3-D probe. Also computations have been made (Steele and Puria,
2003) with the electrode entering the OC parallel to the BM, as used by Cheatham and Dallos (1999).

The results for the simulation of both types of electrodes show no qualitative deviation from the phase in
Fig. 11. However, the amplitude of the excitation in Fig. 10 is substantially reduced by the constraint in Fig.
12. Substantial changes in the values used for the permeability of the flow through the OHC cilia and past
the IHC cilium have little effect on the phase.

Various possibilities for reasonable modifications of the elastic and fluid properties have been consid-
ered. The one found to have a substantial effect is the stiffness of the TM. Fig. 13 shows the results for
the cross-section at the base with the Young�s modulus of the TM ranging over several orders of magnitude,
with all other parameters kept constant. Thus high stiffness causes the phase to be well over 180�. The TM is
the most difficult tissue in the OC to quantify. Abnet and Freeman (2000) measure the deformation due to a
tangential point load on the excised mouse TM. The stiffness for radial load ranges from 0.07 to 1 N/m,
with an average of 0.18 N/m. A careful computation with a simulation of the experimental situation would



Fig. 12. Probe from ST at base. The probe is assumed to stick to the center of the arcuate zone of the BM and the IHC, so the
displacement is constrained at these points. The constraint greatly reduces the effective pressure on the IHC tip link, but does not have
much effect on the phase.

Fig. 13. Phase of effective pressure on IHC cilia at the base. For this calculation the stiffness of the OC is reasonable, and the initial
gaps with the HS and TM are both equal to 4%. The Young�s modulus of the TM is set to the reasonable value of 30 kPa, and values
orders of magnitude stiffer and softer. The reasonable value gives a phase similar to the neural recordings in the base of the chinchilla
(Ruggero et al., 2000), with the excitation occurring for velocity toward ST (270�) for low frequency and approaching displacement
toward ST (180�) for higher frequency.
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be required to interpret the point load stiffness as a tissue Young�s modulus E. However, our rough approx-
imation is that the point load stiffness of 0.18 N/m corresponds to E = 30 kPa, which in Fig. 13 gives a
phase near 180�, i.e., excitation for BM displacement toward ST. Higher values of E are certainly possible,
considering the roughness of our interpretation and the range of values for the point load stiffness. An in-
crease to 300 kPa, which is still a rather soft material, moves the phase closer to 270�, i.e., excitation for BM
velocity toward ST.

For the base, the displacement of the BM for the higher TM stiffness still is similar to that shown in Fig.
4, i.e., in agreement with Cooper�s profile. For the apex, however, that is not the case. To obtain the agree-
ment in Fig. 4 and agreement with the motion of the OC measured by Fridberger et al. (2002), the TM must
be soft, around 0.3 kPa.

The usual thought is that the BM velocity toward ST will cause the IHC cilia to be pulled through the
fluid, which will bend the tips of the cilia inward, in the inhibitory direction. However, another effect can be
seen in Figs. 1 and 2. For static pressure on the BM toward ST, the area of region L1 increases. When all is
filled with fluid, then fluid is pulled from IS to L1. This causes an outward bending of the cilia, i.e.,
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excitation. For the softer TM, the portion over the IS just accommodates, and the pressure in IS and L1 is
nearly the same. So the relation of the IHC cilia to the HS dominates. However, when the TM is stiff, the
portion of the TM over the IS does not accommodate, the pressure in L1 is lower than in IS, typically
around 5%, which dominates the stress in the tip link.

4. Conclusion

The present effort to simulate the fluid flow between the RL and TM and around the IHC cilia is a step
toward more accurate and informative models of the cochlear function.

The indication (Edge et al., 1998) that the IHC cilia are near the HS is important for the excitation of
the IHC. The present simple, nonlinear, fluid-elastic model shows wave form dependence on amplitude
and frequency that is similar to IHC electrical measurements (Mountain and Cody, 1999). This supports
the inclusion of the near-contact model for IHC cilia into the elaborate elastic model for all the tissue of
the OC.

The results for a soft TM with various gaps between the tip of the cilia of the IHC and the Hensen stripe
and TM are what most would expect. The IHC excitation, which is calculated as maximum tension in the
tip link, occurs roughly for BM velocity toward SV, with shift to BM displacement toward SV as frequency
increases. With higher frequency the effect of the viscosity increases and the tip of the cilia will ‘‘stick’’ more
to the Hensen stripe and the TM. The model indicates that this behavior is robust, i.e., it is not significantly
modified by fairly substantial changes in the elastic and fluid properties. A simulation of the constraint due
to an electrode penetrating the IHC also shows no significant change in the phase of excitation. So the sim-
ulation results are in qualitative agreement with the neural and IHC recordings made in the GP middle and
upper turns and with the IHC recordings made in the base. Ruggero et al. (2000), however, find that the
neural recordings in the base of the chinchilla have the excitation for BM velocity toward ST. The model
has close to this behavior for a TM with a Young�s modulus that appears to be consistent with the point
load stiffness measured by Abnet and Freeman (2000). So all seems to fit with a TM that has a reduction in
collagen fiber density of two orders of magnitude at the apex. This may not be unreasonable, since the BM
and other components have a reduction of one order of magnitude.

The calculations certainly show that the excitation is not locked to a particular point of BM motion, but
depends on the geometry, stiffness and fluid parameters.

The nonlinear solution for the complete model can also be carried out by forward integration, and will
be a next step. In addition, the point is made (Cheatham and Dallos, 1999) that the length of the IHC cilia
is greater than that of the OHC cilia in the base, which correlates with the phase of IHC excitation. For our
present model, the height of both is taken to be the same. This could well affect the pressures in the
L1, . . . ,L4 regions. There are other geometric details that should be improved. Not previously mentioned
is that the model indicates that the shear force on the cilia of the first row of OHC is much larger than
on the others for the soft TM. For the stiff TM in the upper turns, the maximum shear can occur in the
cilia of the second row. Indeed, the shear on the first and second rows can be out-of-phase. One might ex-
pect that the shear on the three rows would be somewhat balanced and in-phase, which is another indica-
tion that the TM must be softer at the apex. The requirements are that stiffness be (1) consistent with the
microstructure, (2) produce OC response consistent with the static point and pressure loads, and (3) defor-
mation consistent with the details of the OC motion now available. This does not leave too much leeway in
tuning the stiffness parameters. Much improvement remains to be achieved, but we have been moderately
successful in satisfying these requirements with the present model.
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