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1. Introduction and notations

A body is a compact set with nonempty interior. For a body K which is star-shaped with
respect to the origin its radial function is defined by

ρK(u) = max{λ � 0: λu ∈ K} for every u ∈ Sn−1.

A body K is called a star body if it is star-shaped at the origin and its radial function ρK is positive
and continuous. The Minkowski functional ‖ · ‖K is defined by ‖x‖K = min{λ � 0: x ∈ λK}.
Clearly, ρK(u) = ‖u‖−1

K , for u ∈ Sn−1. Moreover, we can assume that this identity holds for all
u ∈ R

n \ {0} by extending ρK from the sphere to R
n \ {0} as a homogeneous function of degree

−1.
In [35], Lutwak introduced the notion of the intersection body IK of a star body K . IK is

defined by its radial function

ρIK(u) = ∣∣K ∩ u⊥∣∣, for u ∈ Sn−1.

Here and throughout the paper, u⊥ denotes the hyperplane perpendicular to u, i.e. u⊥ =
{x ∈ R

n: x · u = 0}. By |A|k , or simply |A| when there is no ambiguity, we denote the
k-dimensional Lebesgue measure of a set A.

We refer the reader to the books [15,28,29] for more information on the definition and proper-
ties of intersection bodies, and their applications in convex geometry and geometric tomography.

In this paper we are interested in the properties of the operator I that assigns to a star body K

its intersection body IK. One of the well-known results is the classical Busemann theorem ([10],
see also [4,3,38]).

Theorem 1. Let K be an origin-symmetric convex body in R
n. Then its intersection body IK is

convex.

Recently, a new proof of Busemann’s theorem was established by Berck [7], who also gen-
eralized the theorem to the case of Lp intersection bodies (see [16,21,41] and [28] for more
information on the theory of Lp intersection bodies).

The development of the theory of intersection bodies shows that it is not natural to restrict
ourselves to the class of convex bodies, and in fact, in many situations one has to deal with
bodies which are not necessarily convex. How does I act on these bodies? In this paper we will
answer this question for the class of p-convex bodies.

Let p ∈ (0,1]. We say that a body K is p-convex if, for all x, y ∈ R
n,

‖x + y‖p
K � ‖x‖p

K + ‖y‖p
K,

or, equivalently t1/px + (1 − t)1/py ∈ K whenever x and y are in K and t ∈ (0,1). One can see
that p-convex sets with p = 1 are just convex. Note also that a p1-convex body is p2-convex
for all 0 < p2 � p1. There is an extensive literature on p-convex bodies as well as the closely
related concept of quasi-convex bodies, see for example [1,5,6,11,17,18,20,23,25,24,30–34,37]
and others.

The first question that we consider is the following. Let K be an origin-symmetric p-convex
body. Is the intersection body IK necessarily q-convex for some q?
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In Section 2, we prove that if K is p-convex and symmetric then its intersection body IK is
q-convex for all q � [( 1

p
− 1)(n − 1) + 1]−1. Furthermore, we construct an example showing

that this upper bound is asymptotically sharp.
Another important question about the operator I comes from works of Lutwak [36] and Gard-

ner [15, Prob. 8.6, 8.7] (see also [19]). It is easy to see that the intersection body of a Euclidean
ball is again a Euclidean ball. A natural question is whether there are other fixed points of I . In
order to measure the distance between star bodies we will be using the Banach–Mazur distance
dBM(K,L) = inf{b/a: ∃T ∈ GL(n): aK ⊂ T L ⊂ bK} (see [39]). In [12] it is shown that in a
sufficiently small neighborhood of the ball (with respect to the Banach–Mazur distance) there
are no other fixed points of the intersection body operator. However, in general this question is
still open. In view of this it is natural to ask the following question.

Does IK have to be closer to the ball than K?
In Section 2 we show that the answer is “No”. There are p-convex bodies for which the

intersection body is farther from the Euclidean ball.
It is worth noting that, in the convex situation, there exists an absolute constant C > 0 such

that dBM(IK,Bn
2 ) < C for all origin-symmetric convex bodies K (see [22,4,3,9,38] or Corol-

lary 2.7 in [28]). The example in Section 2 shows that this statement is wrong if we only assume
p-convexity for p < 1, and dBM(IK,Bn

2 ), for a p-convex body K , can be as large as Cn
p , where

Cp > 1 is a certain constant that depends only on p.
In recent times a lot of attention has been attracted to the study of log-concave measures.

These are measures whose densities are log-concave functions. The interest to such measures
stems from the Brunn–Minkowski inequality, and many results known for convex bodies are
now generalized to log-concave measures, see for example [4,3,2,27,13,40] and the references
cited therein.

In Section 3 we study intersection bodies in spaces with log-concave measures. Namely, let
μ be a log-concave measure on R

n and μn−1 its restrictions to (n − 1)-dimensional subspaces.
Define the intersection body IμK of a star body K with respect to μ by

ρIμK(u) = μn−1
(
K ∩ u⊥)

, u ∈ Sn−1.

We show that if K is an origin-symmetric p-convex body and μ is a symmetric and log-concave
measure, then IμK is q-convex for all q � [( 1

p
− 1)(n − 1) + 1]−1. The proof uses a version

of Ball’s theorem [4,3] for p-convex bodies. Namely, we show that if f is an even non-negative
log-concave function on R

n, k � 1, and K is a p-convex body in R
n, 0 < p � 1, then the body L

defined by the Minkowski functional ‖x‖L = [∫ ‖x‖−1
K

0 f (rx)rk−1 dr]−1/k , x ∈ R
n, is p-convex.

If the measure μ is not symmetric, the situation is different, as explained at the end of Section
3. L defined above does not have to be q-convex for any q > 0. However, if we consider s-
concave measures, 0 < s < 1/n, that are not necessarily symmetric, then the above construction
defines a body L that is q-convex for all q � [( 1

p
− 1)( 1

s
− n) 1

k
+ 1

p
]−1. We also show that this

bound is sharp. This is the content of Section 4.

2. p-Convexity and related results

Here we prove a version of Busemann’s theorem for p-convex bodies.

Theorem 2. Let K be a symmetric p-convex body in R
n, p ∈ (0,1], and E a (k −1)-dimensional

subspace of R
n for 1 � k � n. Then the map
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u 	−→ |u|
|K ∩ span(u,E)|k , u ∈ E⊥

defines the Minkowski functional of a q-convex body in E⊥ with q = [(1/p − 1)k + 1]−1.

Proof. We follow the general idea of the proof from [38] (see also [15, p. 311]). Let u1, u2 ∈
E⊥ \ {0} be non-parallel vectors. Denote u = u1 + u2, and

ρ(u1) = |K ∩ span{u1,E}|
|u1| =

∞∫
−∞

∣∣K ∩ (ru1 + E)
∣∣dr,

ρ(u2) = |K ∩ span{u2,E}|
|u2| =

∞∫
−∞

∣∣K ∩ (ru2 + E)
∣∣dr.

Define the functions r1 = r1(t) and r2 = r2(t) by

t = 1

ρ(u1)

r1∫
0

∣∣K ∩ (ru1 + E)
∣∣dr

= 1

ρ(u2)

r2∫
0

∣∣K ∩ (ru2 + E)
∣∣dr, t ∈ [0,1/2].

Let r = (r
−p

1 + r
−p

2 )
− 1

p , λ1 = r
−p
1

r
−p
1 +r

−p
2

and λ2 = r
−p
2

r
−p
1 +r

−p
2

. Then

dr

dt
= − 1

p

(
r
−p

1 + r
−p

2

)− 1
p

−1
(

−p r
−p−1
1

dr1

dt
− p r

−p−1
2

dr2

dt

)

= r

[
λ1

(
1

r1

dr1

dt

)
+ λ2

(
1

r2

dr2

dt

)]

� r

(
1

r1

dr1

dt

)λ1
(

1

r2

dr2

dt

)λ2

=
(

λ
1/p

1
dr1

dt

)λ1
(

λ
1/p

2
dr2

dt

)λ2

= (
λ

λ1
1 λ

λ2
2

) 1
p

(
ρ(u1)

|K ∩ (r1u1 + E)|
)λ1

(
ρ(u2)

|K ∩ (r2u2 + E)|
)λ2

.

On the other hand, since r u = (r
−p

1 + r
−p

2 )
− 1

p (u1 + u2) = λ
1
p

1 r1u1 + λ
1
p

2 r2u2, we have

K ∩ (r u + E) ⊃ λ
1
p

1

(
K ∩ (r1 u1 + E)

) + λ
1
p

2

(
K ∩ (r2 u2 + E)

)
= λ1

(
λ

1
p

−1
K ∩ (r1 u1 + E)

) + λ2
(
λ

1
p

−1
K ∩ (r2 u2 + E)

)
.
1 2
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Thus, by the Brunn–Minkowski inequality (see, for example, [14]), we get

∣∣K ∩ (ru + E)
∣∣ �

∣∣λ 1
p

−1

1 K ∩ (r1u1 + E)
∣∣λ1

∣∣λ 1
p

−1

2 K ∩ (r2u2 + E)
∣∣λ2

= (
λ

λ1
1 λ

λ2
2

)( 1
p

−1)(k−1)∣∣K ∩ (r1u1 + E)
∣∣λ1

∣∣K ∩ (r2u2 + E)
∣∣λ2 .

Finally, we have the following:

ρ(u1 + u2) =
∞∫

−∞

∣∣K ∩ (ru + E)
∣∣dr = 2

1/2∫
0

∣∣K ∩ (ru + E)
∣∣dr

dt
dt

� 2

1/2∫
0

(
λ

λ1
1 λ

λ2
2

)( 1
p

−1)(k−1)+ 1
p ρ(u1)

λ1ρ(u2)
λ2 dt

� 2

1/2∫
0

[(
λ1

[
ρ(u1)

]q)λ1
(
λ2

[
ρ(u2)

]q)λ2
]1/q

dt

� 2

1/2∫
0

[
λ1

λ1[ρ(u1)]q + λ2

λ2[ρ(u2)]q
]−1/q

dt

= [[
ρ(u1)

]−q + [
ρ(u2)

]−q]−1/q
.

Therefore ρ(u) defines a q-convex body. �
As an immediate corollary of the previous theorem we obtain the following.

Theorem 3. Let K be a symmetric p-convex body in R
n for p ∈ (0,1]. Then the intersection

body IK of K is q-convex for q = [(1/p − 1)(n − 1) + 1]−1.

Proof. Let L = IK be the intersection body of K . Let v1, v2 ∈ span{u1, u2} be orthogonal to u1
and u2 correspondingly. Denote E = span{u1, u2}⊥. Then

ρL(v1) = ∣∣K ∩ span{u1,E}∣∣ = ρ(u1),

and

ρL(v2) = ∣∣K ∩ span{u2,E}∣∣ = ρ(u2).

Using the previous theorem with k = n − 1, we see that L is q-convex for q =
[(1/p − 1)(n − 1) + 1]−1. �
Remark 1. Note that the previous theorem does not hold without the symmetry assumption. To
see this, use the idea from [15, Thm. 8.1.8], where it is shown that IK is not necessarily convex
if K is not symmetric.



J. Kim et al. / Advances in Mathematics 226 (2011) 5320–5337 5325
A natural question is to see whether the value of q in Theorem 3 is optimal. Unfortunately,
we were unable to construct a body that gives exactly this value of q , but our next result shows
that the bound is asymptotically correct.

Theorem 4. There exists a p-convex body K ⊂ R
n such that IK is q-convex with q �

[(1/p − 1)(n − 1) + 1 + gn(p)]−1, where gn(p) is a function that satisfies

(1) gn(p) � − log2(n − 1),
(2) limp→1− gn(p) = 0.

Proof. Consider the following two (n − 1)-dimensional cubes in R
n:

C1 = {|x1| � 1, . . . , |xn−1| � 1, xn = 1
}

and C−1 = {|x1| � 1, . . . , |xn−1| � 1, xn = −1
}
.

For a fixed 0 < p < 1, let us define a set K ⊂ R
n as follows:

K = {
z ∈ R

n: z = t1/px + (1 − t)1/py, for some x ∈ C1, y ∈ C−1, 0 � t � 1
}
.

We claim that K is p-convex. To show this let us consider two arbitrary points z1, z2 ∈ K ,

z1 = t
1/p

1 x1 + (1 − t1)
1/py1, z2 = t

1/p

2 x2 + (1 − t2)
1/py2,

where x1, x2 ∈ C1, y1, y2 ∈ C−1, and t1, t2 ∈ [0,1].
We need to show that for all s ∈ (0,1) the point w = s1/pz1 + (1 − s)1/pz2 belongs to K .
Assume first that t1 and t2 are neither both equal to zero nor both equal to one. Since C1 and

C−1 are convex sets, it follows that the points

x̄ = s1/pt
1/p

1 x1 + (1 − s)1/pt
1/p

2 x2

s1/pt
1/p

1 + (1 − s)1/pt
1/p

2

and ȳ = s1/p(1 − t1)
1/py1 + (1 − s)1/p(1 − t2)

1/py2

s1/p(1 − t1)1/p + (1 − s)1/p(1 − t2)1/p

belong to C1 and C−1 correspondingly. Then w = αx̄ + βȳ, where

α = s1/pt
1/p

1 + (1 − s)1/pt
1/p

2 and β = s1/p(1 − t1)
1/p + (1 − s)1/p(1 − t2)

1/p.

Note that αp + βp � st1 + (1 − s)t2 + s(1 − t1) + (1 − s)(1 − t2) = 1. Therefore, there exists
μ � 0 such that (α + μ)p + (β + μ)p = 1 and

w = (α + μ)x̄ + (
βȳ + μ(−x̄)

) = (α + μ)x̄ + (β + μ)
βȳ + μ(−x̄)

β + μ
.

Since ȳ ∈ C−1 and −x̄ ∈ C−1, it follows that

ỹ = βȳ + μ(−x̄)

β + μ
∈ C−1.

Therefore w is a p-convex combination of x̄ ∈ C1 and ỹ ∈ C−1.
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If t1 and t2 are either both zero or one, then either α = 0 or β = 0. Without loss of generality
let us say α = 0, then w = βȳ. Now choose x̄ ∈ C1 arbitrarily, and apply the considerations
above to the point w = 0x̄ + βȳ. The claim follows.

Note that K can be written as

K = {
r1/px + (1 − r)1/py: x ∈ C1, y ∈ C−1, 0 � r � 1

}
= {

r1/pv + (1 − r)1/pw + [
r1/p − (1 − r)1/p

]
en: v,w ∈ Bn−1∞ , 0 � r � 1

}
= {[

r1/p + (1 − r)1/p
]
z + [

r1/p − (1 − r)1/p
]
en: z ∈ Bn−1∞ , 0 � r � 1

}
= {

f (t)z + ten: z ∈ Bn−1∞ , −1 � t � 1
}
, (1)

where Bn−1∞ = [−1,1]n−1 ⊂ R
n−1 and f is a function on [−1,1] defined as the solution s = f (t)

of

(
s + t

2

)p

+
(

s − t

2

)p

= 1, s � |t |, −1 � t � 1.

Let L = IK be the intersection body of K . Then

ρL(en) = ∣∣K ∩ e⊥
n

∣∣ = (
2f (0)

)n−1 =
(

4

21/p

)n−1

.

In order to compute the volume of the central section of K orthogonal to (e1 + en)/
√

2, use
(1) to notice that its projection onto x1 = 0 coincides with K ∩ e⊥

1 . Therefore

ρL

(
(e1 + en)/

√
2
) = √

2ρL(e1) = 2
√

2

1∫
0

[
2f (t)

]n−2
dt.

Let L = IK be q-convex. In order to estimate q , we will use the inequality

‖√2en‖q
L �

∥∥∥∥en + e1√
2

∥∥∥∥
q

L

+
∥∥∥∥en − e1√

2

∥∥∥∥
q

L

= 2

∥∥∥∥en + e1√
2

∥∥∥∥
q

L

,

that is

√
2

ρL(en)
� 21/q

ρL((e1 + en)/
√

2 )
.

Thus, we have

21/q �
(

21/p

2

)n−1

2

1∫
f (t)n−2 dt.
0
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We now estimate the latter integral. From the definition of f it follows that f (t) � 2
21/p and

f (t) � t for t ∈ [0,1]. Taking the maximum of these two functions, we get

f (t) �
{

2
21/p , for 0 � t � 2

21/p ,

t, for 2
21/p � t � 1.

Therefore,

1∫
0

f (t)n−2 dt �

2
21/p∫
0

(
2

21/p

)n−2

dt +
1∫

2
21/p

tn−2 dt

=
(

2

21/p

)n−1

+ 1

n − 1

(
1 −

(
2

21/p

)n−1)
. (2)

Hence,

21/q � 2

(
1 + 1

n − 1

((
21/p

2

)n−1

− 1

))
,

which implies

q �
[(

1

p
− 1

)
(n − 1) + 1 + log2

(n − 2)( 2
21/p )n−1 + 1

n − 1

]−1

.

Denoting

gn(p) = log2

(n − 2)( 2
21/p )n−1 + 1

n − 1
,

we get the statement of the theorem. �
We will use the above example to show that in general the intersection body operator does not

improve the Banach–Mazur distance to the Euclidean ball Bn
2 .

Theorem 5. Let p ∈ (0,1) and let c be any constant satisfying 1 < c < 21/p−1. Then for all large
enough n, there exists a p-convex body K ⊂ R

n such that

cndBM
(
K,Bn

2

)
< dBM

(
IK,Bn

2

)
.

Proof. We will consider K from the previous theorem. One can see that K ⊂ Bn∞ ⊂ √
nBn

2 . Also
note that for any a ∈ Bn∞, there exist x ∈ C1, y ∈ C−1 and λ ∈ [0,1] such that a = λx + (1−λ)y.

Then we have ‖a‖p
K � λp + (1 − λ)p � 21−p. Therefore, K ⊃ 2

p−1
p Bn∞ ⊃ 2

p−1
p Bn

2 , and thus

dBM
(
K,Bn

)
� 2

1−p
p

√
n. (3)
2
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Next we would like to provide a lower bound for dBM(IK,Bn
2 ). Let E be an ellipsoid such that

E ⊂ IK ⊂ dE, for some d . Then

IK ⊂ conv(IK) ⊂ dE and
1

d
conv(IK) ⊂ E ⊂ IK.

Therefore, 1/d � 1/r , where r = min{t : conv(IK) ⊂ tIK}. Thus,

dBM
(
IK,Bn

2

)
� r = max

{
ρconv(IK)(θ)

ρIK(θ)
, θ ∈ Sn−1

}
� ρconv(IK)(en)

ρIK(en)
.

The convexity of conv(IK) gives

ρconv(IK)(en) �
∥∥∥∥1

2

(
ρIK

(
en + e1√

2

)
en + e1√

2
+ ρIK

(
en − e1√

2

)
en − e1√

2

)∥∥∥∥
2

= 1√
2
ρIK

(
en + e1√

2

)
.

Combining the above inequalities with inequality (2) from the previous theorem, we get

dBM
(
IK,Bn

2

)
�

ρIK( en+e1√
2

)
√

2ρIK(en)
�

(
21/p

2

)n−1 1

n − 1
.

Comparing this with (3) we get the statement of the theorem. �
3. Generalization to log-concave measures

A measure μ on R
n is called log-concave if for any measurable A,B ⊂ R

n and 0 < λ < 1,
we have

μ
(
λA + (1 − λ)B

)
� μ(A)λμ(B)(1−λ)

whenever λA + (1 − λ)B is measurable.
Borell [8] has shown that a measure μ on R

n whose support is not contained in any affine
hyperplane is a log-concave measure if and only if it is absolutely continuous with respect to the
Lebesgue measure, and its density is a log-concave function.

To extend Busemann’s theorem to log-concave measures on R
n, we need the following theo-

rem of Ball [4,3].

Theorem 6. Let f : R
n → [0,∞) be an even log-concave function satisfying 0 <

∫
Rn f < ∞

and let k � 1. Then the map

x 	−→
[ ∞∫

0

f (rx)rk−1 dr

]− 1
k

defines a norm on R
n.
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An immediate consequence of Ball’s theorem is a generalization of the classical Busemann
theorem to log-concave measures on R

n.
Let μ be a measure on R

n, absolutely continuous with respect to the Lebesgue measure m,
and f its density function. If f is locally integrable on k-dimensional affine subspaces of R

n,
then we denote by μk = f mk the restriction of μ to k-dimensional subspaces, where mk is the
k-dimensional Lebesgue measure.

Define the intersection body IμK of a star body K with respect to μ by

ρIμK(u) = μn−1
(
K ∩ u⊥)

, u ∈ Sn−1.

Let μ be a symmetric log-concave measure on R
n and K a symmetric convex body in R

n. Let
f be the density of the measure μ. If we apply Theorem 6 to the log-concave function 1Kf , we
get a symmetric convex body L whose Minkowski functional is given by

‖x‖L =
[
(n − 1)

∞∫
0

(1Kf )(rx)rn−2 dr

]− 1
n−1

.

Then for every u ∈ Sn−1,

μn−1
(
K ∩ u⊥) =

∫
Sn−1∩u⊥

∞∫
0

(1Kf )(rθ)rn−2 dr dθ

= 1

n − 1

∫
Sn−1∩u⊥

‖θ‖−n+1
L dθ

= ∣∣L ∩ u⊥∣∣.
Using Theorem 1 for the convex body L, one immediately obtains the following version of
Busemann’s theorem for log-concave measures.

Theorem 7. Let μ be a symmetric log-concave measure on R
n and K a symmetric convex body

in R
n. Then the intersection body IμK is convex.

In order to generalize Theorem 3 to log-concave measures, we will first prove a version of
Ball’s theorem (Theorem 6) for p-convex bodies.

Theorem 8. Let f : R
n → [0,∞) be an even log-concave function, k � 1, and K a p-convex

body in R
n for 0 < p � 1. Then the body L defined by the Minkowski functional

‖x‖L =
[ ‖x‖−1

K∫
0

f (rx)rk−1 dr

]− 1
k

, x ∈ R
n,

is p-convex.
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Proof. Fix two non-parallel vectors x1, x2 ∈ R
n and denote x3 = x1 +x2. We claim that ‖x3‖p

L �
‖x1‖p

L + ‖x2‖p
L. Consider the following 2-dimensional bodies in the plane E = span{x1, x2},

K̄ =
{

t1x1

‖x1‖K

+ t2x2

‖x2‖K

: t1, t2 � 0, t
p

1 + t
p

2 � 1

}

and

L̄ =
{

x ∈ R
n: ‖x‖L̄ =

[ ‖x‖−1
K̄∫

0

f (rx)rk−1 dr

]− 1
k

� 1

}
.

One can see that the boundary of K̄ consists of a p-arc connecting the points x1‖x1‖K
and

x2‖x2‖K
, and two straight line segments connecting the origin with these two points. Clearly K̄ is

p-convex and K̄ ⊂ K . Also note that ‖xi‖K̄ = ‖xi‖K for i = 1,2, since x1‖x1‖K
and x2‖x2‖K

are on

the boundary of K̄ , and ‖x3‖K̄ � ‖x3‖K since K̄ ⊂ K . It follows that ‖xi‖L̄ = ‖xi‖L (i = 1,2),
and ‖x3‖L̄ � ‖x3‖L.

Consider the point y = ‖x1‖L̄‖x1‖K̄
x1 + ‖x2‖L̄‖x2‖K̄

x2 in the plane E. The point y
‖y‖K̄

lies on the p-arc

connecting x1‖x1‖K̄
and x2‖x2‖K̄

. Consider the tangent line to this arc at the point y
‖y‖K̄

. This line

intersects the segments [0, xi/‖xi‖K̄ ], i = 1,2, at some points tixi‖xi‖K̄
with ti ∈ (0,1).

Since t1x1‖x1‖K̄
, t2x2‖x2‖K̄

and y
‖y‖K̄

are on the same line, it follows that the coefficients of t1x1‖x1‖K̄
and

t2x2‖x2‖K̄
in the equality

y

‖y‖K̄

= 1

‖y‖K̄

(‖x1‖L̄

t1
· t1x1

‖x1‖K̄

+ ‖x2‖L̄

t2
· t2x2

‖x2‖K̄

)

have to add up to 1. Therefore,

‖y‖K̄ = ‖x1‖L̄

t1
+ ‖x2‖L̄

t2
.

Note also that the line between t1x1‖x1‖K̄
and t2x2‖x2‖K̄

separates x3‖x3‖K̄
from the origin, which means

that the three points t1x1‖x1‖K̄
, t2x2‖x2‖K̄

and x3‖x3‖K̄
are in the “convex position”. Applying Ball’s theo-

rem on log-concave functions (Theorem 6) to these three points, we have

[ 1
‖x3‖

K̄∫
0

f (rx3)r
k−1 dr

]− 1
k

�
[ t1‖x1‖

K̄∫
0

f (rx1)r
k−1 dr

]− 1
k

+
[ t2‖x2‖

K̄∫
0

f (rx2)r
k−1 dr

]− 1
k

.

If we let si = ‖xi‖L̄[∫ ti‖xi‖K̄
0 f (rxi)r

k−1 dr] 1
k for each i = 1,2, the above inequality becomes

‖x3‖L̄ � ‖x1‖L̄ + ‖x2‖L̄ .

s1 s2
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By a change of variables, we get

si = ti‖xi‖L̄

[ 1
‖xi‖K̄∫
0

f (tirxi)r
k−1 dr

] 1
k

� ti‖xi‖L̄

[ 1
‖xi‖K̄∫
0

f (rxi)r
k−1 dr

] 1
k

= ti

for each i = 1,2. The above inequality comes from the fact that an even log-concave function
has to be non-increasing on [0,∞). Indeed,

f (tirxi) = f

(
1 + ti

2
· rxi − 1 − ti

2
· rxi

)
� f (rxi)

1+ti
2 f (−rxi)

1−ti
2 = f (rxi).

Putting all together, we have

‖x3‖L � ‖x3‖L̄ � ‖x1‖L̄

s1
+ ‖x2‖L̄

s2
� ‖x1‖L̄

t1
+ ‖x2‖L̄

t2
= ‖y‖K̄ .

Using the p-convexity of K̄ , we have

‖y‖p

K̄
�

∥∥∥∥ ‖x1‖L̄

‖x1‖K̄

x1

∥∥∥∥
p

K̄

+
∥∥∥∥ ‖x2‖L̄

‖x2‖K̄

x2

∥∥∥∥
p

K̄

= ‖x1‖p

L̄
+ ‖x2‖p

L̄
= ‖x1‖p

L + ‖x2‖p
L,

and therefore ‖x3‖p
L � ‖x1‖p

L + ‖x2‖p
L. �

Corollary 1. Let μ be a symmetric log-concave measure and K a symmetric p-convex
body in R

n for p ∈ (0,1]. Then the intersection body IμK of K is q-convex with q =
[(1/p − 1)(n − 1) + 1]−1.

Proof. Let f be the density function of μ. By Theorem 8, the body L with the Minkowski
functional

‖x‖L =
[
(n − 1)

‖x‖−1
K∫

0

f (rx)rn−2 dr

] −1
n−1

, x ∈ R
n,

is p-convex.
On the other hand, the intersection body IμK of K is given by the radial function

ρIμK(u) = μn−1
(
K ∩ u⊥) =

∫
Rn

1K∩u⊥(x)f (x) dx

=
∫

Sn−1∩u⊥

‖u‖−1
K∫

0

f (rv)rn−2 dr dv = 1

n − 1

∫
Sn−1∩u⊥

‖v‖−n+1
L dv

= ∣∣L ∩ u⊥∣∣ = ρIL(u),

n−1
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which means IμK = IL. By Theorem 2, IL is q-convex with q = [(1/p − 1)(n − 1) + 1]−1, and
therefore so is IμK . �

We conclude this section with an example that shows that the condition on f to be even in
Theorem 8 cannot be dropped.

Example 1. Let μ be a log-concave measure on R
n with density

f (x1, . . . , xn) =
{

1, if x1 + x2 � 21−1/p,

0, otherwise.

Consider the p-convex body K = Bn
p for p ∈ (0,1). If L is the body defined in Theorem 8, then

‖e1 + e2‖L = 0 and ‖e1‖L = ‖e2‖L > 0, which means L is not q-convex for any q > 0.

4. Non-symmetric cases and s-concave measures

Note that Ball’s theorem (Theorem 6) remains valid even if f is not even, as was shown
by Klartag [26]. On the other hand, as we explained above, Theorem 8 does not hold for non-
symmetric log-concave measures. However, if we restrict ourselves to the class of s-concave
measures, s > 0, then it is possible to give a version of Theorem 8 for non-symmetric measures.

Borell [8] introduced the classes Ms(Ω) (−∞ � s � ∞, Ω ⊂ R
n open convex) of s-concave

measures, which are Radon measures μ on Ω satisfying the following condition: the inequality

μ
(
λA + (1 − λ)B

)
�

[
λμ(A)s + (1 − λ)μ(B)s

] 1
s

holds for all nonempty compact A,B ⊂ Ω and all λ ∈ (0,1). In particular, s = 0 gives the class
of log-concave measures.

Let us consider the case 0 < s < 1/n. According to Borell, μ is s-concave if and only if
the support of μ is n-dimensional and dμ = f dm for some f ∈ L1

loc(Ω) such that f
s

1−ns is a
concave function on Ω .

Theorem 9. Let μ be an s-concave measure on Ω ⊂ R
n with density f , for 0 < s < 1/n, and K

a p-convex body in Ω , for p ∈ (0,1]. If k � 1, then the body L whose Minkowski functional is
given by

‖x‖L =
[ ∞∫

0

1K(rx)f (rx)rk−1 dr

]− 1
k

, x ∈ R
n

is q-convex with q = [( 1
p

− 1)( 1
s

− n) 1
k

+ 1
p
]−1.

Proof. Let x1, x2 ∈ R
n and x3 = x1 + x2. Then, for i = 1,2,

‖xi‖−k
L =

∞∫
1K(rxi)f (rxi)r

k−1 dr
0
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= 1

p

∞∫
0

1K

(
s
− 1

p xi

)
f

(
s
− 1

p xi

)
s
− k

p
−1

ds

= 1

p

∞∫
0

Fi(s) ds

= 1

p

∞∫
0

∣∣{s ∈ (0,∞): Fi(s) > t
}∣∣dt,

where Fi(s) = 1K(s
− 1

p xi)f (s
− 1

p xi)s
− k

p
−1 for each i = 1,2,3. We claim that

2
k
q
+1

F3(s3) � F1(s1)
λ1F2(s2)

λ2

whenever s3 = s1 + s2 and λi = si
s1+s2

for i = 1,2. Indeed, since

s
− 1

p

3 x3 =
(

s1

s1 + s2

) 1
p

s
− 1

p

1 x1 +
(

s2

s1 + s2

) 1
p

s
− 1

p

2 x2

= λ1
(
λ

1
p

−1

1 s
− 1

p

1 x1
) + λ2

(
λ

1
p

−1

2 s
− 1

p

2 x2
)
,

the concavity of f γ , γ = s
1−ns

, gives

f γ
(
s
− 1

p

3 x3
)
� λ1f

γ
(
λ

1
p

−1

1 s
− 1

p

1 x1
) + λ2f

γ
(
λ

1
p

−1

2 s
− 1

p

2 x2
)

�
[
f γ

(
λ

1
p

−1

1 s
− 1

p

1 x1
)]λ1

[
f γ

(
λ

1
p

−1

2 s
− 1

p

2 x2
)]λ2

�
[
λ

1
p

−1

1 f γ
(
s
− 1

p

1 x1
)]λ1

[
λ

1
p

−1

2 f γ
(
s
− 1

p

2 x2
)]λ2

=
([(

s1

s3

) 1
γ

( 1
p

−1)

f
(
s
− 1

p

1 x1
)]λ1

[(
s2

s3

) 1
γ

( 1
p

−1)

f
(
s
− 1

p

2 x2
)]λ2

)γ

,

that is,

s
1
γ

( 1
p

−1)

3 f
(
s
− 1

p

3 x3
)
�

2∏
i=1

[
s

1
γ

( 1
p

−1)

i f
(
s
− 1

p

i xi

)]λi .

On the other hand, note that

2

s3
= λ1

s1
+ λ2

s2
�

(
1

s1

)λ1
(

1

s2

)λ2

and
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1K

(
s
− 1

p

3 x3
)
� 1K

(
s
− 1

p

1 x1
)
1K

(
s
− 1

p

2 x2
)
,

since s
− 1

p

3 x3 = λ
1
p

1 (s
− 1

p

1 x1) + λ
1
p

2 (s
− 1

p

2 x2). Thus

F1(s1)
λ1F2(s2)

λ2 =
2∏

i=1

[
1K

(
s
− 1

p

i xi

)
f

(
s
− 1

p

i xi

)
s
− k

p
−1

i

]λi

� 1K

(
s
− 1

p

3 x3
) 2∏

i=1

[
s

1
γ

( 1
p

−1)

i f
(
s
− 1

p

i xi

) ·
(

1

si

) 1
γ

( 1
p

−1)+ k
p

+1]λi

� 1K

(
s
− 1

p

3 x3
)
f

(
s
− 1

p

3 x3
)
2

1
γ

( 1
p

−1)+ k
p

+1
s
− k

p
−1

3

� 2
k
q
+1

F3(s3).

It follows that for every t > 0,

{
s3: 2

k
q
+1

F3(s3) > t
} ⊃ {

s1: F1(s1) > t
} + {

s2: F2(s2) > t
}
.

Applying the Brunn–Minkowski inequality, we have

‖x1 + x2‖−k
L = ‖x3‖−k

L = 1

p

∞∫
0

F3(s) ds

= 1

2
k
q
+1

· 1

p

∞∫
0

∣∣{s3 ∈ (0,∞): 2
k
q
+1

F3(s3) > t
}∣∣dt

� 1

2
k
q
+1

· 1

p

∞∫
0

(∣∣{s1: F1(s1) > t
}∣∣ + ∣∣{s2: F2(s2) > t

}∣∣)dt

= 1

2
k
q
+1

(‖x1‖−k
L + ‖x2‖−k

L

)
.

Thus,

‖x1 + x2‖L � 2
1
q

(‖x1‖−k
L + ‖x2‖−k

L

2

)− 1
k

=
[

1

2

(
(‖x1‖−q

L )
k
q + (‖x1‖−q

L

) k
q

2

) q
k
]− 1

q

�
[

1
(‖x1‖−q

L + ‖x2‖−q
L

)]− 1
q

2 2
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�
[

1

2

(‖x1‖q
L + ‖x2‖q

L

2

)−1]− 1
q

= (‖x1‖q
L + ‖x2‖q

L

) 1
q ,

which means that L is q-convex. �
The following example shows that the value of q in the above theorem is sharp.

Example 2. Let μ be an s-concave measure on Ω = {(x1, . . . , xn) ∈ R
n: x1 � 0} for s > 0 with

density

f (x1, . . . , xn) = |x1|1/s−n

and let

K =
{
(x1, . . . , xn): x1 � 0,

∣∣∣∣x1 + x2

2

∣∣∣∣
p

+
∣∣∣∣x1 − x2

2

∣∣∣∣
p

� 1, |xi | � 1 ∀i = 3, . . . , n

}
.

Note that ‖e1‖K = 21−1/p and ‖e1 + e2‖K = ‖e1 − e2‖K = 1. If L is the body defined by K in
the above theorem, then

‖e1‖L =
[ 21−1/p∫

0

r1/s−nrk−1 dr

]− 1
k

=
[

2(1− 1
p

)( 1
s
−n+k)

1
s

− n + k

]− 1
k

and

‖e1 + e2‖L =
[ 1∫

0

r1/s−nrk−1 dr

]− 1
k

=
[

1

s
− n + k

] 1
k

.

If L is q-convex for some q , then the inequality ‖2e1‖L � (‖e1 + e2‖q
L +‖e1 − e2‖q

L)1/q implies

2

[
2(1− 1

p
)( 1

s
−n+k)

1
s

− n + k

]− 1
k

� 2
1
q

[
1

s
− n + k

] 1
k

that is,

q �
[(

1

p
− 1

)(
1

s
− n

)
1

k
+ 1

p

]−1

.

Note that in our construction Ω is not open, as opposed to what we said in the beginning of
Section 4. This is done for the sake of simplicity of the presentation. To be more precise one
would need to define Ω = {(x1, . . . , xn) ∈ R

n: x1 > −ε} and f (x1, . . . , xn) = |x1 + ε|1/s−n, for
ε > 0, and then send ε → 0+.
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