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Abstract

We prove an approximate spectral theorem for non-self-adjoint operators and investigate its
applications to second-order differential operators in the semi-classical limit. This leads to the
construction of a twisted FBI transform. We also investigate the connections between pseudo-
spectra and boundary conditions in the semi-classical limit.
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1. Introduction

In the last ten years the theory of pseudo-spectra has developed rapidly, and has
been shown to give substantial insights into the properties of non-self-adjoint (NSA)
matrices and operatorfl,5,7,11,22,23]. In this paper we focus on its applications
to second-order differential operators. This involves giving a new and more general
definition of pseudo-spectra. Our first reason for extending the concept is that the
standard definition does not provide any link with the geometry of phase space, which
is of great importance in the theory of differential and pseudo-differential operators. By
incorporating the connection into the definitions, we increase the conceptual clarity and
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facilitate the analysis of pseudo-spectra in those situations in which the semi-classical
approximation is relevant.

The second reason for concentrating on pseudo-eigenfunctions rather than pseudo-
spectra is that the former are used[@} to provide a new method of solving evolution
equations approximately. In several dimensions one could not hope to obtain sufficient
pseudo-eigenfunctions by choosing just one for each point of the complex plane. Ques-
tions of spectral multiplicity arise just as they do for ordinary spectral theory, and
indicate that a better parameterization is by points in the classical phase space, not by
complex numbers. We plan to use the results of this paper to extend those of [6] to
more general operators.

The paper has three parts. In the first we prove an abstract approximate spectral
theorem for NSA operators. We find a connection between this and quantization. The
second part relates these ideas to the semi-classical analysis of differential operators via
the semi-classical principal symbol of the operator and what we call interior pseudo-
eigenvectors. Finally, we introduce the concept of boundary pseudo-eigenvectors and
describe how to construct them. We mention that [24] contains results relating the
boundary and interior pseudo-spectra of twisted Toeplitz operators which are parallel
to the ones which we obtain for differential operators. See [9] for related work on the
wave equation.

2. An approximate spectral theorem

In [6] we have shown how to ‘diagonalize’ highly non-normal operators by using
pseudo-spectra. The diagonalization is only approximate, but, in spite of this, it may
be used to solve evolution equations efficiently for some quite singular infinitesimal
generators.

In this paper, we formulate the underlying theorem at a general level, in order to
make it accessible to a wider audience. All the assumptions here are satisfied in the
numerical examples discussed in [6], as we indicate in the next section. The ingredients
are simple. We suppose that is a bounded or closed, unbounded linear operator
acting in a separable Hilbert spac&. We also suppose thak is a multiplication
operator acting in the spade”(Q2, dw) where 1< p < oo; for numerical calculations
the simplest choice i9 = 2, but p = 1 is more natural for some other purposes. We
assume explicitly that

(AY) (@) = a(w)y(w)

for all Y in the maximal subdomain of?(Q), where the ‘symbols : Q — C of the
operatorA is a measurable function andwdis a o-finite measure orf. It is known
that the spectrum of the operatdr equals the essential range of We also assume
that £ : LP(Q) — A is a bounded linear operator such thiatDom(A)) € Dom(A)
and that

IAE — EA| < ¢ (1)
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for a (preassigned, smalf) > 0, in the sense that
IAE) — EAQ < el Pl (2)

for all ¢ € Dom(A).

Theorem 1. Let A be the generator of a one-parameter semi-grdypacting on #
and satisfying

1T < Me” (3)
for all +>0. Suppose also that
Re(o(w)) <y
for all w € Q. Then (1) implies
IT,E — EEN | <etME" (4)

for all +>0.

Proof. Since the operators i) are all bounded it is sufficient to prove the estimate
for all ¢ € Dom(A). We then have

ILE) — EeM |

/0 t ; (Tt_SEeASqS) ds

S

N

t
/ 1T, o(AE — EAYeM ] ds
0
t
< /0 1T lelle™ ¢ ds

t
< f M=) ee | o] ds
0

elloplltMe”. O

If A is a bounded normal operator then the spectral theorem states that one can find
such a representation in whidh is unitary,e = 0 and the essential range Af equals

the spectrum ofA. The point of Theorem 1 is that it may be applied to operators
which are far from unitary and in situations in which the essential rangk o very
different from the spectrum ofi. The explanation of this relates to pseudo-spectral
theory.
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One might try to develop an ‘approximate functional calculus’ based upon the above
theorem. For example, if; = e’ is a contraction semi-group then under suitable
conditions one can prove an analogue of Theofefor T,,; = e~~4" when 0< o <
1; see [6].

In order to compare Theorem 1 with the results in [6] one needs to approxifhate
by an operatorE’ whose range is not contained in Don.

Corollary 2. If in addition to the previous assumptions one hHds— E’|| < ¢ then
ITEd— EMpl<elplL+ M +1M)e" ®)

for all ¢ € L”(Q) and all t>0.

Proof. This follows directly from

ITE'¢— E'eNGll < ITED— EeM |
+HIT,(E — ENll + I(E — ENeMgl. O

The following modification of Theorenl assumes that one is giveh € # and
wishes to approximaté; f.
Corollary 3. If f € # then under the conditions of Theorein

1T f — EENII<IIf — EGIME" + || plltMe”
for all ¢ € LP(Q) andt>0.
Proof. We have
1T f — EENGISITL(f — EQ)Il + ITLEG — EEN ||

each of which is straightforward to estimate.]

The above results can only be usefulMf, + andy are of order 1. There also has to
exist ¢ such that|| f — E¢|| and¢|¢| are small. One cannot simply pygt= E~1f,

since E need not be surjective or invertible.
If p =2, the standard way of solving this problem is to minimize the functional

E) = If — EI?+dldl? (6)

for a suitable value of the regularization parameier 0; see[12]. This is achieved
in the numerical context by putting

¢ =E\(f®0),
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where E : L2(Q) — # @ L%(Q) is defined by
E¢ = E¢p @ 5'%¢. ©)

Also x = G\g is the Matlab notation for the best approximate solutioof a possibly
singular linear equatiolGx = g.
We include the proof of the following well-known proposition for completeness.

Proposition 4. If p = 2, the minimum of(6) is achieved for$ = Fsf, where
Fs = (E*E +01) 1E* (8)
satisfies|| Fs || <6~Y/2. Moreover | EF;|| <1 for all § > 0. One has
lim EFsf = 9
lim sf=1r1 (9)

for all f € o if and only if RanE) is dense inx#’.

Proof. The first statement depends upon a routine variational calculation. For the second
we observe that

I(E*E + 0I)"*E*|| <ab,
where
a=|(E*E +0I) Y3 <o Y2
and

b? = |(E*E + o) 2E*|?
I(E*E + 61)"Y2E*. E(E*E + 61)~Y?|

< IE*E + 01) " Y2(E*E + S1)(E*E + 61)~ 12
1.

This calculation also implies that

|EFs| = |E(E*E 4+ 0I)"Y2. (E*E + 61)"Y2E*|
I(E*E + 1) Y2 E*|?
1.

/N
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Since RalE Fs) € Ran(E), (9) implies that Ra6F) is dense. If Ra(E) is dense then
the uniform boundedness just proved implies that (9) holds forfall 7 if it holds
whenever f = E¢ for some ¢ € L?(Q). In this case letP denote the orthogonal
projection onto the closure of the range BfE. Since KefE) = Ker(E*E), we may
assume without loss of generality thBy = ¢. We have

lim EFsf = lim E(E*E +01) " *E*E¢
0—0 0—0

=EPp=E¢p=f
by applying the spectral theorem to the non-negative self-adjoint opefdtbr [

Using Proposition 4 one may ensure tht|| is small by choosing appropriately.
Even if E has dense range, one cannot ensureltliiat E¢|| is small for some particular
0 > 0 without further conditions. One has either to make the a priori assumption that
f lies in some subspace of well-approximable vectors, or observe a posteriori for
particular choices off and ¢ that the minimizing¢ does indeed make this quantity
small enough for the application intended.

3. The connection with pseudo-spectra

Given ¢ > 0, the e-pseudo-spectrum of the closed operatois defined by
Spec(A) = SpecA) U {z : [|[Af —zf |l < ¢l f| for some f € Dom(A)}.

Pseudo-spectral ideas lie at the core of this paper, and we refér5t@,11,22,23] for
background material on this subject. The following theorem is valid fopadl [1, co),
but its main application is fopp = 1. Indeed we conjecture that jf = 2 the first
condition onE can only hold if E is isometric. In the following theoren®; denotes
the operator of multiplication by the characteristic function of thelsetlways assumed
to be measurable.

Theorem 5. Suppose that< p < oo, |EPy| = 1 for all subsets U of2 with positive
measureand ||[AE — EA|| < ¢. Then

SpeeA) < Speg(A).
Proof. Let § € Spe¢A). We choosed > 0 such that

e :=|AE —EA|+d<e



E.B. Davies / J. Differential Equations 216 (2005) 153-187 159
and put
U={weQ:|ow)— p| <o}
If ¢ has support inJ then

IAEQ — BEQI < I(AE — EMNQIl + | E(Ad — )

< &gl

Therefore,

inf{llAf = BfI/IfII:0# f €A} < IN{IAED — BEDI/IEP] : 0% ¢ € LP(U)}
' inf{lplI/IEPI : 0# ¢ € LY (U)}

¢ <e.

N

This implies thatff € Spec(A). O

Theorem 6. Suppose that for eactv € Q there is a unit vector,, € Dom(A) which
depends measurably an, and defineE : L1(Q) — # by

Ef:/ f(w)ey dm.
Q

Then the conditions of Theorefhold if and only if there exists’ > 0 and a setN
of zero measure such that

lAew — openll <él <e

for all w € Q\N, whereag(w) € C.

Proof. The passage from the assumptions of Theo®no the statements of this
theorem is justified by using [10, Theorem VI.8.6]]

If ¢ lies in the maximal domain oA then under the assumptions of Theorem 6
IAE¢ — EAQ|< /Q lp(w)] | Aewy — Twen | do<e'l@ll. (10)

Hence||AE — EA|| <&’ < . The calculations involved would be easy to justify if one
only had to deal with finite sums, or if and A were bounded, but in general they
use limiting processes to define the integrals. Commu#ingnd A with these limiting
processes is justified by the following lemma.



160 E.B. Davies / J. Differential Equations 216 (2005) 153-187

Lemma 7. Let A be a closed linear operator with domain in a Banach spatend
range in a Hilbert space#’. Letc > 0, f,, € Dom(A), || f, — fll— 0, llg. — gl = O
and ||Af, — gull<c for all n, then f € Dom(A) and ||Af — g||<c.

Proof. By applying the Hahn—Banach theorem to the graptiofie see that it is also
weakly closed. Under the stated assumptions we Havg — g|| <c + 1 for all large
enoughn. By the weak compactness of all closed ballsi#y there is a subsequence
fa(y such thatAf,, converges weakly a8 — oco. Denoting the limit byh, the
equations| f,- — f I — 0 andAf,) — h weakly asr — oo imply that f € Dom(A)
and Af = h. Since

Afn(r) — &n(r) — Af -8

weakly asr — oo and [|Afu¢) — gn(y |l <c for all », we conclude thafl Af — gl <c.

If Q has finite measuréQ)|, then L2(Q) is continuously embedded in!(Q), and
all of the theorems of Section 1 hold under the present hypotheses. In the numerical
applications of[6] the spaceQ is taken to be the finite sdtl, ..., N} and dv is the
counting measure. Given unit pseudo-eigenveciprs # of A for 1<n <N, we have

N
Edp=>"¢,en. (11)
n=1

There is no requirement that the vectors should be linearly independent, and indeed
in some of the examples studied [@] they are taken from an overcomplete infinite
sequencee, )2 ;. Equivalently the operatoE need not be invertible, or may have a
large condition number.

4. Quantization

In this section, we make some general comments about the relationship between our
previous results and the notion of quantization.

Let Q be a second countable locally compact Hausdorff space, anddebed a
regular Borel measure of2 with support equal td2. Let # be a separable Hilbert
space and let : Q — 2 be a continuous function. We defirfe: C.(Q) — # by

Eq§=/ P(w)ey, dw.
Q
The following are well-known and elementary.

Lemma 8. The operatorE extends to a bounded linear operatby : L1(Q, dw) — #
if and only if w — |ley| is @ bounded functignin which case

[E1]l = suflllew |l : @ € Q}.
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The operatorE extends to a bounded linear operatdh : L2(Q, dw) — # if and
only if

/Q|<f, ew)2dor<c?| 2 (12)

for somec>0 and all f € 2, in which case| E2| is the smallest such constant
The operatorE* : # — C(Q) is an isometry from# into L2(Q, dw) if and only if

/Q I(f. eo) 2 de = [LF112 (13)

forall f e 7.

Families of vectors{e.,},co Satisfying ((3) are also called continuous resolutions
of the identity and have played an important part in group representation theory and
quantum mechanics for many decades. For their connection with coherent state theory
and the Bargman transform see [2, Chapter 8] and [17, Chapter 3]. If (13) holds then
E\f = E*f for all f € #, but this is not the case under assumption (12), which is
more relevant to this paper.

Given a functionf e C.(Q) we define the multiplication operatdf s by M ¢ = f¢
where ¢ € L?(Q) for some p. We define the quantization of the functighto be the
operatorQ(f) = EMyE* on 2. We may also write

o) = /Qf(w)Pew do,

where P,y = (, a)a; see, for example]2, Section 8.5]. The following lemma is also
standard.

Lemma 9. If f>0thenQ(f)>0.If E is bounded fromL.1(Q) to »# then Q extends
to a bounded linear operator from(Q) to the space7 (#) of trace class operators
on #. If E is bounded fromL2(Q) to # then Q extends to a bounded linear
operator from L*>°(Q) to the space¥ (#) of bounded operators on#’. Given (13),
or equivalentlyEE* = 1, we haveQ(1) = 1.

In quantum theory it is commonplace to refer not to the opergobut to the

positive-operator-valued measur(U) := EM,, E* where y, is the characteristic
function of the measurable sét of Q. The formula

0(f) = /Q F(@)Adw)

implements a one-one correspondence between the two definition§2,skemma
3.1.2). f EE* =1 thenA(Q) = 1 and A(.) is called a generalized observable; for a
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systematic study of POV measures and their relation to coherent statfs, s&wapter
3] or [15]. See [13] for more recent references and a connection with subnormal
operators.

The difference between this method of quantization and the approach of this paper
is now clear. Instead of studyin@(f) = EMyE*, we would like to studyS(f) =
EMfEfl. If this were possiblef — S(f) would be an algebra homomorphism from
L®(Q) to L (). Since E is not invertible in general we compromise by studying
EMyFs, where the regularized inversgs is given by (8) andd > 0 is chosen small
enough to yield numerically valuable results but not so small that the computational
algorithms become unreliable.

The operatorE which we have considered above has much in common with the
Fourier—Bros—lagolnitzer (FBI) transform as defined in [17, Chapter 3]. See also [2,
Chapter 3], where the connection with the Wigner distribution and applications to
quantum theory are explained. In Section 8, we define a distorted FBI transform; the
distortions are introduced to adapt the transform to a given differential operator, and
involve replacing the Gaussian states used in the definition of the FBI transform by
pseudo-eigenfunctions of the operator.

5. The connection with semi-classical analysis
Before describing the connection of the above ideas with semi-classical analysis, we
generalize the notion of pseudo-spectra. Following [7,14,16,21], we define the (gen-
eralized) pseudo-spectra of a family of closed operatars},,co acting from dense
domains DonA,,) in a Banach spacef to another Banach spadég to be the sets
Speg(A) ={w: [|Axfll < el fI for some f € Dom(Ay)},

wheree > 0. Note our unorthodox omission of Sgdg in this definition, explained
below. We have

Speg(A) U Speg(A*) = SpecA) U {a) AZY > g*l} :

where Spe(A) is defined to be the set @f for which A, is not invertible. If dim(%) =
dim(%) < oo then

SpecA) C Spec(A) = Speg(A¥)
for all £ > 0. If dim(#%) < dim(%) < oo then
Speg(A*) = SpecA) = Q

for all ¢ > 0, but Speg(A) may nevertheless be an interesting set. The proof of the
following lemma may be found ifl4].
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Lemma 10. One hasw € Specg(A) if and only if there exists a bounded operator
D : # — € such that|D| < ¢ and

Ker(A(w) + D) # {0}.

Given a differential or pseudo-differential operatbf with domain C2°(X), where
X is a region inRY and’ > 0, we define the operator family

Apue: C2(X) C LA(X) — L? (x C2N+1>

by
Apucf = QO f—u f,Pif =& fiLnf —o(u, &) f), (14)

where (Q/ f)(x) = x/ f(x) and (P; f)(x) = —ihd; f (x). In these equations we assume
thatu € X, £ e RV, 1<j <N anda(u, ¢) is the semi-classical principal symbol of the
operatorLy, as defined below. It follows directly from the definitions that,, , : |l <

el f1l implies

107 f —ul £l < ellfll,
IP;f =& fll < el fl.
ILihf —a@x, OfIl < elfl,

where 1< j < N. It is known that the pseudo-spectra converge to fill a certaiw &k}
if h - 0 ande — 0 simultaneously at suitable rates; see Section 7 for details. Even
in one space dimension a point #{A) may be the image of more than one point
in A, soa(A) may have hidden structure as a subsetCofThis observation applies
with less precision to the numerically determined pseudo-spectra for fixed and
e > 0.

The extension of the above ideas to a manif&ldneeds some care, since the full
symbol a;,(u, £) is not an invariant object in general. It is shown [20] that one
can resolve these problems if the manifold is provided with a linear connection, as
happens if it is Riemannian. The symbej (u, £) is then definable as a function on
the cotangent bundl&*X and A is a certain subset df*X. We do not actually need
the full symbol for our problem: its semi-classical limit is sufficient. The semi-classical
principal symbol is given by

o, &) = lim o, h1é)

and is an invariant quantity, i.e. as a function on the cotangent buridteit does not
depend on the choice of local coordinates.
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The following alternative definition of the semi-classical principal symbolZigf
makes its invariant character clear. Suppose thatX and ¢ is a cotangent vector at
u. Let f be any smooth function oX such that ¢ (u) = . Then

a(u, é) — {lllli)no e—ihflth (elhlf)} (u).

6. The semi-classical spectrum

The theory which we shall describe can be developed at several levels of generality,
and in this section we consider only second-order differential operators actifg’ on
Given i > 0, let L;, denote the operator

(Li f)(x) = —h2a]™ ()0 4 f (x) — ihb] (x)3; f (x) + e (x) £ (x)

acting on functionsf : RN — C, wherea, b, ¢ are sufficiently regular functions whose
values are, respectively, matrices, vectors and scalars with complex-valued entries, and
we use the standard summation convention. Under conditions which we shall impose
the domain ofL;, will contain C°(R"). All considerations in this paper are local, so

no growth bounds at infinity on the coefficients are needed. We allow the coefficients
to be h-dependent so that the class of differential operators is invariant under local
changes of coordinates. The semi-classical principal symbol of this operator is the
complex-valued function

a(u, &) = af )& & + by, + colw) (15)

in which we takeu, & to bereal vectors inR".

Given (u, ) € RN x RY we are interested in finding localized approximate eigen-
functions for the operatol,. We require that they become asymptotically exact as
h — 0.

Ouir first theorem provides the motivation for defining the semi-classical spectrum of
Lj to be the set (RV x RY).

Theorem 11. Suppose tha&,{’k(x), b,’; (x) andc¢y, (x) are all locally Lipschitz continuous
in x € RN and i € [0, 1], then for everyu € RN, ¢ e RN and &k e (0, 1] there exists

fn € CX(RY) such that

I full2 = ¢ >0, (16)

107 fi = u! fillz = 0 (h¥?), (17)

IPj fn — & full2

I
Q
oy
=

[

~

N
SN——"

(18)
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1Ln fi = 05, &) fulls = O (h*2) (19)

ash — 0, for all 1<j<N.

Proof. Let ¢ be a non-negative™ function onR”Y which equals 1 ifix| <1 and 0
if |x|>2. Given(u, &) e RN xRN, h > 0 anda = 1/2 define

Fr(x) = h=NU2gh TR =2 — ),

The first three statements of the theorem are routine verifications performed by the
same method as follows:
We verify (19) by using the expansion

Lifo—o,Ofh =g+ri+r2+r3+ra
where
g = {af* ) —ad* W} &
+ {10 = g} & a0 + en ) = o) fix)
and

r1 = =i N2l ) @ Gy (7 o — ),
ra = —ih' N2k () G @ (- ),
r = W22EN2G IR (@ (k= ),

ra = —ih N2 (0@ TN G (- w)).

In these identities the subscripts gndenote partial derivatives. The Lipschitz assump-
tions on the coefficients af;, and the fact that the support ¢f has diameter of order
h* imply that

lgllz2 = O (™)

ash — 0. We also have|r;ll, = O(h1=%) for j = 1,2,4 and|r3llz = O(h?>~ ). The
overall error is minimized by putting = 1/2. O
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7. Constructing the interior pseudo-spectra

The material in this section is based upon the fact that if the coefficients are suffi-
ciently smooth then estimatdq) can be greatly improved by a suitable choicefpf
In the language of Section 5 we replace (14) by

Anuef = (Q7F =l £ Pif = & L " (Lif = o0, E)F}) (20)

wheren > 0. The size ofn depends upon the smoothness of the coefficients, which
for simplicity we assume to b€°. The pseudo-spectral estimatd, , - fl < ¢l fl
then implies

107 f —ul fIl < ellfII,
IPif—Cifll <ellfll,
ILnf —aCx, OfI < kel fl,
where 1< j < N. We repeat the calculations §8,4] for a more general second-order
ordinary differential operator for completeness. The extension to pseudo-differential op-
erators in higher dimensions, [8,25], cannot be formulated in exactly the same manner:

there can be infinitely many different pseudo-eigenfunctions associated with a point in
phase space, and the correct parameterization of these is not obvious. We assume that

(Lnf)(x) = —h%a(x) f"(x) — ihb(x) f'(x) + c(x) f (x)
so that the semi-classical principal symbol is
o, &) = a@)& + bu)é + c(u).

We assume ellipticity, in other words thatx) = 0 for all x € R. Givenu, ¢ € R, we
put

Flu+s)=h"Y40s) expi(s)) (21)

for all s € R, wherey € C2° satisfiesy(s) =1 if |s]<d/2 andy(s) =0 if |s| >4, and
0 > 0 must be small enough; see the proof of Lemb2a We assume that

n

W)= D ", () (22)

m=-—1



E.B. Davies / J. Differential Equations 216 (2005) 153-187 167

for some integem > — 1. This is a non-standard form of the JWKB expansion, and
has the feature that the functioh does not vanish within the interval of interest. A
direct computation shows that

2n+2

Lpf—o,Of = (Z hm¢m) f+Rem (23)
m=0

where Rem= O (h*°) ash — 0 under the conditions which we impose below. Also
$o(s) = —a(u + S)(l//_l(S))2 —ib(u~+ )Y _1(s) +c(u+s)
—a(u)& — b)& — c(u).

.Asls.uming ellipticity, that isa(x) # 0 for all x € R, the eikonal identity¢y = O
implies

wfl(s)mf { M+\/w(u,f,v)}dv,

ol 2au+v)
where

a(u)é? bw)é  bu+v)? e —c(u+v)

wu, & v) = au+v)  au+v)  da(u+v)? a(u +v)

We take the branch of the square root which eqdaish(u)/2a(u) at v = 0. Condition
(24) implies thatdg/0¢ # 0 and hence thatv(u, £, 0) is non-zero; this implies that
w(u, £,v) # 0 for all small enoughv; and hence that the square root is uniquely
determined for all suchv by the requirement of continuity.

Writing y_4(s) = iés + ks?/2 + O(s®) for somek € C, we then obtain

—ik{2a(u)E + b(u)} + a' )& + b’ ()¢ + ¢'(u) = 0.

The requirement that Re) < 0 may be rewritten in the form

and then in the formu, &) € Q where
Q={(u,9:{o1,02} >0} (24)
and

(01, 05} = 20102 _ 001 002
L2 =50 0 T 0F ou
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and o1 = Re&(0), g2 = Im(o). In examples one may find th& is not connected. If

it has components\; then ¢(Q;) may overlap. The multiplicity of a point € o(Q)
may be defined by

mp(z) =#Hu,) € Q: o, & =z}

If the coefficients ofL; are smooth then for any choice @fone may chooséy, ...,
so that¢; =--- = ¢, ., = 0. This is achieved as follows. If{m <n then

¢m+1 = (—Zalle - ib)lp;n + Fm(lp_j_, ceey lﬁm_l).

It follows from (24) that 20}’ ; +ib # 0 if s = 0, and hence that it is non-zero for
all small enoughs. If we definey,, by

I R U2y
‘Pm(s)_/o 2 i

Then |, (s)|<culs| and ¢, 1(s) = 0 for all small enoughs. On making these
choices we obtain a pseudo-eigenfunctign depending om:, n, u and &, for which
Lnf —ou, &f=0Mh""? ash — 0.

The proof of Theoreml3 below is facilitated by introducing the scale of spaces
&7, consisting of all functions which can be written as finite sums of functions of the
form g(s) = h* V4P p(s) exp(y(s)} wherey is given by (22),p € C*® has support
in[—0,0], e R, f€{0,1,2,...} and 2+ f>y. Putting&™ = N,crE” we see that
if, in addition to the above assumptions,vanishes in some neighbourhood of 0, then
g€ é&™”.

Lemma 12. If 6 > 0 is small enough ang € & then there exists such that
lgll<ch?/?

for all 0 < h<1.

Proof. It is sufficient to consider the case in whighis one of the terms of the
form assumed in the definition of”. One may rewrite|h/4%g(s)|2 in the form
s?PG(s) exp{—h~1s2F (s)} where F(s) = —2Re(iy_;(s)/s?) is a positive continuous
function on[—¢, d] if & > 0 is small enough and is a continuous function of-9, J].
By Laplace’s method we have

5
/ s?PG(s) exp{—h—lst(s)} ds ~ ch@b+D/2
-6
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ash — 0+, where

_ GOI'(2+1)/2)
- F(O)(2ﬁ+l)/2

The statement of the lemma follows immediately.]
Theorem 13. If the coefficients ofL, are C* and (u, &) lies in the setQ defined

by (24), then for every positive integer there exist functionsf € C>° depending on
h,n,u, ¢ such that

lim || ]| = ¢ >0, (25)

1Qf —ufl = 0", (26)

IPf —Efll = 03, (27)

ILhf — o, & fIl = O(h"+?) (28)

ash — 0.

Proof. We define f by (21) and observe thaf € &°. The asymptotic formula (25)
follows by the method of proof of Lemma 12. We next observe @#t—uf € &* so
(26) follows from Lemma 12.

We have

Pf —Cf =+ pp + s,
where

= —ih"YHY () — iEYy(s) explp(s)} € 62,

pp = —ih¥* {Z hmw:nm} 1(s) exXpl (s)} € 62,

m=0

g = —ih¥4y (s) exply(s)} € .

Therefore,Pf — ¢f € & and @7) follows using Lemma 12.
Since ¢,, = 0 for O<Km <n + 1 it follows from (23) that

2n+4-2

Lif —ow&f = ( 3 h’"¢>m) f+0m0™)

m=n+2
c éaZn+4'

This implies (28) by Lemma 12.00
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Note The orders of magnitude of the errorshnth (26) and (27) cannot be reduced
by a different choice of the functiotf, because of the uncertainty principle.

The following lemma shows that one can approximate the pseudo-eigenfunction by
a Gaussian expression.

Lemma 14. We have
If — gll<ch®/?
ash — 0, where
g +s)=h"Yexplh i + ks?/2)).

Proof. Sinceg — yg = O(h*°) we have to estimate the2 norm of

) (exp{z//(s)} —explh~Yiés + ks2/2)}) .
By virtue of the bound

e — e—b| <la—ble min(Re(a),Re(b))

this is dominated by the absolute value of

u(s) = h4 ’lﬁ(s) —hYiés + ks2/2)] 7(s) exp{—h_lcsz}

for somec > 0. In the following calculations we defing’ in the same way ag” but
with Y (s) replaced by—h~1cs?. We may writeu = uy + u, where

i) = by 6) = haEs + ks ) expl—htes?]

o(s) = h=Y/* (Z h’"wmm) 1(s) exp|~h~tes?]

m=0

Since

W_1(s) — h~1&s + ks?/2)| <c_1hLs)3

~1 . ~1 .
we haveypy € & . Sincey,, (s)|<cu|s| for all s we also haveu, € &. The estimate
of this lemma now follows by an obvious modification of Lemm2. O
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8. A semi-classical transform

We continue with the assumptions and notation of the last section. Theb8m
provides the information needed for the application of Theorem 6. We define the set
Q in Theorem 6 by (24) and take to be the semi-classical principal symbol (15) of
A. In numerical applications, one would, of course, have to restrict to a finite subset
of Q, as described in [6].

We fix n and pute, , : = fuu.c/ll frucll Where f;, , - = f is defined by (21). The
semi-classical integral transford : L1(Q) — L2(R) is then defined by

(Exd)(x) = /Q B, Eep . 00) du dé

and has norm 1 by10, Theorem VI.8.6]. The functiong, , :(x) are very complicated
for large n, and the following approximation may therefore be valuable.

Theorem 15. Givenh, u, &, let

g e = h 4 exp{n2Ee — ) + ko = w0?/2)]. (29)
where
oo (0]t
kye=—i—1—1t . 30
u,é ! o { o¢ } (30)

If (u, &) € Qtheng,, : € L2(R). Define E;, : LY(Q) — L?(R) by

() = [ dtu Oe), 00 i (31)
Wheree;l’u’é = gnu.e/lgnucll. Then|E, || =1 and
lim | Eqp — Ej =0 (32)

for all ¢ € LY(Q). If we replaceQ by a compact subsdf of Q then

lim ||[E, — E}, |l = 0. (33)
h—0

Proof. We start by observing that R, :) < 0 if and only if (u, ) € Q, s0 g ¢ €
L?%(R) under the same conditions. We haye, | = 1 by [10, Theorem V1.8.6].
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Let {Q,};°, be an increasing sequence of compact subse3 whose union equals
Q. If we can prove that the restrictiorns, , and E’ to L1(Q,) satisfy

lim ||Ep, — E,’l =0 (34)
h—0 ?

then @2) and (33) follow by standard procedures.
In Lemma 14 we proved that

”fh,u,i - gh,u,é” = O(hl/z)

for each (u, &) € Q ash — 0. The dependence of the error upané and the
coefficients ofA was given explicitly, and implies that

;I,iLno Suq”fh,u,f - gh,u,f” D (u, 5) € Qn} =0
Taking @5) into account we deduce that
lliinosup| lenus — € cll: @O € Qn] —0

This implies @4). O
Lemma 16. Let £} ;, denote the restriction of} to the subsetU of Q. If U,V are
two compact subsets & which are spatially dISJOInt in the sense that, &) € U

and (v,n) € V impliesu # v then the ranges oft, ny and Eh,V are uniformly
asymptotically orthogonal in the sense that

lim_[|(E}, ))*E} Il = 0.
h—0 ? ’

The convergence is exponentially fast.
Proof. Let W be an open subset & such thatU € (W x R) andV N (W x R) = #.

Let P be the orthogonal projection ih?(R) whose range consists of all functions with
support inW. Then

ICE, o) Ep vl < IER )" = PYE, vl + I(E), )" PE), v

< U = PYE, yll + I1PE}, v .
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We consider further only the first term on the RHS; the other is treated in a similar
manner. If¢ € LY(U) then

I(I = PYE, 9l

H /U (I = P)e}, (u, &) du déH

N

[ 16 = iy et Ot

N

sup{I(1 = P)ej, oIl : . &) € U} 9]

sup{ll( = P)gnucll : (. &) € U}
inf{llgn,ucll : (u, &) € U}

ol

The explicit expression29) for ¢ and the compactness @f ensure that the final
supremum converges to 0 exponentially faskas 0 while the final infimum converges
to a positive limit. O

If we subdivideR into small intervals then the lemma implies th&f (or more
exactly its restriction to any compact subregion @f acts asymptotically indepen-
dently on subintervals which are not adjacent. If each interval is small enough we may
approximateE, in any subinterval by the operator with a frozen valueuof

We conjecture that under suitable conditions on the coefficients, dfoth the trans-
forms E;, and E; are bounded fromL2(Q) to L2(R). As evidence for this we treat
the case in which the variable in k, ¢ is frozen at the value. We also assume that
A is a Schrodinger operator, so that its symbol is of the ferm, &) = 52 + c(u).
This implies thatk, : = —1/k¢ where x = 2/ic’(v). Assuming thatk has positive
real part, it is immediate that Rg : < O if and only if £ > 0. We therefore put
RZ ={u,9):ueR, >0}

We define the distorted FBI transfordy, : C.(R2) — L2(R) by
Eng=h2 [ g 8 du (35)
R+
Whereéh,u.ﬁ = gh,u.f/”gh,u,i” and

G c(x) = explicx —u)/h — (x —w?/2hke] (36)

Theorem 17.1f Re(xk) > 0 and & > 0O then operator(35) may be extended to a
bounded operator froan(Ri) to L2(R) whose norm is bounded above uniformly as
h— 0.
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Proof. In this proof we writec, to denote positive constants which depend onlykon
We always takeZ to be positive. We have

el = [ exp{-Re/mx —w?/ne) dr

_ Clhl/zél/z_
Therefore,
RLAELA,

”gh,u,cf” =2

We prove theL? boundedness of} rather than that oft,. We have

(B ), &) = /R K, & h,x) £ () dr, (37)

where

K, & h,x) = h_l/zéh,u,g(x) = Pp.eveu —x),
Brc = eah™ ¥4,
ye(u) = explicu/h — u?/2hKE).

We next take the Fourier transfort of (37) in theu variable, noting that# is a
unitary operator on.2(R2). This yields

IE; £l = lIkll,
where
k(s, &) = Bp,ehe()(F )(s)

and

HO) f expliu(é/h — s) — u?/2hKE} du
) R

= cahY2EL2 exp{—(f/h — s)zh%f/Z} :
We deduce that

IE} fII<es|lZ fIl = esl fIl



E.B. Davies / J. Differential Equations 216 (2005) 153-187

for all f € L2(R) if and only if

sup{ /0 1By 5[ df} <cd.

seR

Our task therefore, is to prove that the function

F(h,s) = /OOO B2/ exp{—ce,(é/h —s)2hf} de

175

(38)

is bounded orR* x R, providedcg > 0. If s<0 then puttingé = 13, we obtain

F(h,s) < F(h,0)

o0

— f h_l/zfl/zexp{—C'6§3/h} dé
0
12 3

= / n"/ exn[—cen ] .
0

which is finite. If s > 0 then puttingé = hsn we obtain
F(h,s) = G(h%s%),

where

o 2
G(t) — / ’,’1/2t1/2e—c6(;7—1) nt d’/”
0

(39)

so we have to prove that is bounded on(0, co). We do this in stages. If 9r<1

then
1/2 )
/ nl/2t1/2e—ce(i1—l) nt d’/l < 1/2
0

because every term in the integrand is less than 121 then

12 , 1/2
/ n2 Y 2ges=12m gy / /21 2gcom /4 g
0 0

< / * yY/2 2ot /4 iy
0

= C7l‘_1 <c7.
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If + > 0 then

4 4
/ n1/2t1/2e—c6(;7—1)2m dp < / 2t1/Ze—c6(11—1)21/2 dy
1/2 1/2

o 2
< / 2tl/ze—cel1 t/2 dV]
—00

= cs.

Finally, if + > 0 then puttingy = {r~1/3 we obtain

* 12,172 1)2 © 12,172 3
/ ;/] / t / e_CG("]_ )nt d;/] g / ’1 / t / e_CSVItd]/’
4 4

o0 .3
< f éfl/Ze—cs&, d&:
0
= cg. U
One cannot expecE; to be isometric, as is the case for the FBI transform, but we
prove that this is asymptotically true in the semi-classical limit, up to a normalizing

constante, which could be evaluated explicitly.

Theorem 18. There exists a positive constantsuch that
lim [|E;fIl =
A IE, fIl =clfl

for all f e L%(R).
Proof. In the proof of Theorenl7 we obtained the formula

e¢]

VELFI? = 10 / Fh, $)|(F ()% ds.

—00

where
O<F(h,s)<cn1

for all > 0 ands € R. By the dominated convergence theorem it suffices to prove
that

; Oo 1/2 3
;I,@oF(h’s)zclz ::f0 n E‘Xpi—cen } dn
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for all s € R. We do this fors > 0, noting that the cases= 0 ands < 0 are similar.
By (39) it suffices to prove that lim,oy G(f) = c12. As t — 0+ we have

e . 2
G(t) — f ’11/2t1/2e—66(1’]—1) nt d;7
0
o0 3
N / n242con’t g
0
= €12

using the change of variable— nr=%3. O

In order to extend Theorem 17 to second-order differential operators other than
Schrddinger operators, it needs to be generalized as follows.

Theorem 19. Let k : (0,00) — C be a continuous functignlet cp, cooc be positive
constants and letp, oo be non-negative constants such that

g 1E™ < Rex(d) < oo™ if 0 <<,
cxlé® < Rek(§) < cool™ i 1<E < 0.

Then the conclusion of Theoret? is still valid if we replace(36) by
B e = explicte —u)/h — (x — /2]

Proof. We make obvious adaptations to the proof of TheorEmup to (38), which
becomes

F(h,s) = /OO hY2(Rex(&)Y? exp{—CG(f/h —9)%h Rex(«f)} de
0
1
< /0 hY2cg/? e/ exp{—ce(é/h - S)th(;lém} de
+ f " 222 exp|—co(¢/h — s)?heter | de.
1

Each of these integrals is estimated by the same method as in Theorernl17.

9. Constructing the boundary pseudo-spectra

When one examines the pseudo-eigenfunctions in several exactly soluble examples,
[5,6,18,19], one sees that they do not conform to the above ideas. They are strongly
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localized at one end of the interval in question, and decrease exponentially as one
moves away from this end.

In this section, we develop the general theory of boundary pseudo-spectra for vari-
able coefficient operators in the one-dimensional context. A partial extension to higher
dimensions and manifolds is described in the next section. We assume that

(L f)(x) = —h%a(x) f"(x) — ihb(x) f'(x) + c(x) f (x)
for x € [0, y]. The semi-classical principal symbol is
o, &) = a@)& + bu)é + c(u).

We will need the fact that the symbol can be analytically continued to compléxt
only assume the coefficients @f,, and therefores, to be C*° in u on [0, y]. Similar
but weaker estimates can be proved if the coefficients are 6filffor somen. We
assume ellipticity, in other words thatx) # 0 for all x € [0, y]. We start by ignoring
the boundary conditions and looking for a pseudo-eigenfunction of the form

£(s) = hY2y(s) exp(s)), (40)
where
Yis) = D h", ().
m=-—1

We assume thay € C*°[0, y] satisfiesy(s) = 1 if 0<s</2 andy(s) = 0 if s>0;
the constand > 0 must be small enough for the proof of Theor@mto be valid. We
put

W_1(s) =i/vS {—Zba((l;)) +vw(, v)} dv,

where

& )_a<0>52 bO)E b2 | c(0) - c(v)
W) = T e T a2 aw)

As before we take the branch of the square root which eqirls(0)/2a(0) at v = 0.
However we now require liGd) > 0, in order to ensure thaf(s) decays rapidly as
increases. We have

Y_1(s) = i&s +ks?/2+ O(s3)

for small s > 0 as before.
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Lemma 20. Let F be a positive continuous function ¢@, 6] and letG be a continuous
function on[0, J]. If m is a non-negative even integer then

)
/ smG(s)exp{—h—lsF(s)} ds ~ ch™*1
0

as h — 0+, where

_GOI'm+1
- F(O)m+1

In the following theorem we putQf)(x) = xf(x) and (Pf)(x) = —ihf'(x) as
before. AlthoughQ is self-adjoint on an obvious domain, we impose no boundary
conditions onP, which is therefore not even symmetric.

Theorem 21. If the coefficients ofL, are C* and Im(&) > 0 then for any positive
integer n there exist functions f which depend/am, ¢ such that

lim || f]| = ¢ >0, (41)

1QfIl = O, (42)

IPf—EfIl = Oh), (43)

ILnf — a0, &) fll = O(h"?) (44)

ash — 0.

Proof. Let f be given by 40). To prove (41) we write
B
712 = 17 [0 explzRapon)ds

J
= h—lf G(s)exp(—h " LsF(s)} ds,
0
where

F(s) = —2Re(y_1(s))/s,
G(s) = x(s)zexp{Z Re(z hmlpm(s)>}.
m=0

This is of the form treated by Lemma 20 & > 0 is small enough to ensure that
F(s) > 0 for all s € [0, d].
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To prove @2) we write

)
10f 112 = ht /O 2G(5) exp—h L F(»)) s

and apply Lemma&0 again.
The proof of (43) uses Lemma 20 and the expansion

Pf —Cf =g+ up + pg,
where

= —ih Y2 (5) — i) x(s) expiv(s)).

py = —ih'/? (Z hmw;,,<s>> 7(s) expli(s)},

m=0

pg = —ihM2y (s) exply(s)}.

The proof of @4) follows in a similar way from the formula

2n+2

Lif —0(0,8)f = ( 3 h'"¢>m> f+0G™). O

m=n+2

We finally assume the boundary conditions
uhf'(0) + wf(0) =0 (45)

for some complex constants, w, both not zero. We say that, satisfies the exit
condition at O if ImM—5(0)/a(0)) > 0. This language is motivated by the example
discussed ir{6], in which L, is the generator of a subMarkov diffusion on an interval.
Given the exit condition at 0, we define the boundary semi-classical pseudo-spectrum
at 0 to be the set

A ={&:0<1Im(&) < Im(=b(0)/a(0))}. (46)

If £, € A andz = ¢(0, ;) then the other solutiord, of ¢(0, &) = z also lies inA.
We haveé; = &, if and only if z = ¢(0) — (0)2/4a(0). The sets(0, A) is the region
inside the parabol& = {d(0,¢) : r € R}.

Those familiar with[5,18,19] will observe the close relationship between the above
and the winding number calculations there. At a qualitative level the given operator
can be approximated near the end of the interval by the operator whose coefficients
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are frozen to the values which they have at the endpoint. Our theorem below provides
quantitative flesh to this idea. It also provides the precise form of the relevant pseudo-
eigenfunction, which is not easy to guess from the constant coefficient case.

Theorem 22. Let L, satisfy the exit condition a and letz lie inside the parabola
P. Assumingz # c(0) — b(0)2/4a(0), let &, & € A denote the two distinct solutions
of (0, =z. Givenh > 0 andn>1, let f, be the boundary pseudo-eigenfunctions
associated withz, n, &, as in (40) and Theoren?1, and let

f=(ué+w)f1— (ué +w) fo. (47)

Then f satisfies the boundary conditi¢4b) at 0 and

ILnf —zfI/Ifl = O(h"+?) (48)
ash — 0.

Proof. The assumptions imply thaf. satisfy the estimates of Theore2i, from which
(48) follows. The proof thatf satisfies (45) depends upon the identitjgg0) = h~1/2
and f/(0) = ih~%2¢,. O

10. Higher dimensions

The extension of the above ideas to higher dimensions needs more machinery. We
are mainly interested in bounded regionsRA with smooth boundary, but since the
proof of our main result depends upon choosing local coordinates around a boundary
point rather carefully, we write down the argument in a manifold context. X dte a
smooth N-dimensional manifold with bounda§X. Let X be provided with a volume
measure dol which has positiveC* density v(x) when restricted to any coordinate
neighbourhood .

The natural differential d C*(X) — C"~1(T*X) is given withinU by

df (x) = (O1f(x), ..., Inf(x))
and the adjoint operator*d C"(T X) — C"1(X) acts on a sectiog € C"(TU) by
d*g(x) = —v(x) 13, (v(x)g! (x)).

The differential operatol.;, is determined by three coefficient functions, all assumed
to be C*> and complex-valued ork; we write T, and 7;* in place of 7, ® C and
T ®C below. We assume that(x) : T;* — Ty, b(x) € T, andc(x) € C for all x € X.
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Givenh > 0 and f € C*°(X) we then put
(L f)(x) = h*d*(a(x) df (x)) — ihb(x)- df (x) + c(x) f (x).

Throughout this section a dot indicates the natural action of a covector on a tangent
vector at some point okX. In the coordinate neighbourhodd the above formula may
be written in the form

(L f)(6) = =P~ (03; (v@)a (003 f () = ihb (1)) () + () £ (x)

using the usual summation convention, or in the form

(La f)(x) = =h%a?* (x)0; 1 f (x) = ihb! (h, x)0; f (x) + c(h, x) f (x), (49)
where

b/ (h, x) = bI (x) + hb](x), (50)

c(h,x) = ¢(x) 4 he1(x) + h?ca(x). (51)

The set of all operators of forn¥49) is invariant under changes of local coordinates.
The symbol ofL; is given by

on(x, &) = h2al* (x)&;& + hb! (h, x)&; + c(h, x)

which is not an invariant expression: both dnd L, depend upon the choice of the
densityv. However the semi-classical principal symbol

o(x, &) = lim an(x, h1E)

= al ()& + b ()& + c(x)

a(x)&- &+ b(x) - S+ clx)

is invariant under changes of local coordinates.

The following theorem is a multi-dimensional ‘boundary’ analogue of Theotdm
We expect that there is also a multi-dimensional analogue of Theorem 22. We choose a
point in 0X, label it p, and choose a complex cotangent veciat p. We require that
Im(¢) has zero dot product with any vector atwhich is tangent taX and positive
dot product with any inward pointing vector at If U is a coordinate neighbourhood
aroundp we always assume that is represented by the pointdR”".
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Theorem 23. Let L;, be of form(49) where all of the coefficients i(49), (50), (51)
are C* functions on U Let the complex cotangent vectdrat 0 € 0X satisfy the
conditions of the last paragraph. Then for every sufficiently srha#l O there exists
fn € C*(X) which vanishes outside a neighbourhoodOofvhose radius is of order
h1/2, and satisfies

li = 2
lim | fillz = ¢ > 0. (52)

ILnfin — 60, &) fulz = O(hY?) (53)

ash — 0.

Proof. Let RY denote the set aof € RY for which x¥ >0 and letR}) denote the set
of x for which x¥ = 0. We choose local coordinates around 0 such that

U:{xeRi’:|x|<p}
and put
aU:{xeRS’:IXI<P}

for somep > 0. We writex = (x/, x") wherex’ e R "1 andx" e R. Our assumptions
imply that & = (&, &V) where & is real andy := Im(&V) > 0.

Pute = 1/2 andy = (N +1)/4. Let ¢, be a smooth function oR"~* which equals
1if |x'|<1 and O if |x’| >2. Let ¢, be a smooth function of0, co) which equals 1
if 0<xN <1 and 0 ifxVN >2. Let ¢p(x) = ¢p1(x")po(xV). Then the smooth function

Fa(x) = e R G (h )

on U has support with the required property for all small enoagh 0.
To prove 62) we observe that

o0
||fh||% ~ U(O)h—Zy /';Nil ¢1(h_ax/)2dN_1x/A e—2h*111xN¢2(h—(xxN)2de
oo
= (O AN f STOORE A f e 2 p(h's)? ds
RN-1 0
= v@@n [ hi00?aV 0
RN-1

ash — 0.
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The proof of 63) depends upon writing

7
Lufi =00, fn =Y &m

m=1

where

g1 =077 [al* @) — al O] & g,

g2 = —ih¥ " alk ()& @M g (h ),

g3 = —ih"Tal () G (),

ga = —hZ Vel e g (),

g5 = 7 {6/ (hox) =0 @] &€ ),

g6 = —ih b (h, )€ N (h ),

g7 = h 7 {c(h, x) — O} <X (h~%x).
We estimate thel.? norm of each of these as above, obtainihgl|> = O (k%) for
r=1,57, llglla=0hLY¥?* for r =2,3,6 and|g |2 = O(h?> %) for r = 4. Given

these estimates, the optimal valuecofs 1/2. [

We next impose boundary conditions of the form
hu(x"n@’,0) - df(x’, 0 +wx) f(x',00=0

for all x’ € 0U, where the complex-valued coefficients w are C* on dU; we assume
non-degeneracy of the boundary conditions at 0 in the sense thau@hand w(0)

do not vanish. The real vector field on U is supposed to be smooth and transversal

in the sense that it has a non-zero inward pointing component at every poittf .of

We use the associated flow to construct local coordinates. In other words we choose
local coordinates for which the boundary conditions can be written in the form

hu(x"oy f(x',0) + w(x") f(x',0 = 0. (54)

We say that the complex covectérat O is admissible under the following conditions.
We require that Ini¢) has positive dot product with any inward pointing vector at 0. We
require that the same conditions hold for a second complex covéabn. We require
that z := ¢(0, &) = ¢(0, &) and thaté -+ = & -+ € R for any vectors which is tangent
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to U at 0. In the local coordinates specified above we are fixing E’ e RV-1 and
assuming that the two solutiors, and ¢, of the quadratic equation

a0, (¢, 5) =z

in s € C both have positive imaginary parts. We say thatsatisfies the exit condition
at 0 if the set of admissiblé is non-empty.

Theorem 24.1f & € CV is an admissible covector angd = ¢(0, ¢) then under the
above conditions there exig, € C*°(U) satisfying the boundary conditior(§4) and
also

suppgn) < {x el :|x| < c’hl/z}, (55)
lim llgnllz = ¢ >0, (56)
ILngh — zgnllz = O(hY?) (57)

ash — 0.

Proof. We put

gn(x) = a(x) fr(x) + a(x") fr (x),
where

finr) = W& g2y,

Fule) = ho7eh e Y2y,
In th[s equatigny = (N+1)/4 and¢ is as in the proof of Theore®3. Also¢ = (&, &y)
and ¢ = (&, &y). The coefficientsx, & are to be determined. Before continuing, we
mention that in the case of Dirichlet boundary conditions we gu& f, — f5, that is

a(x’) = —a(x") = 1; most of the calculations below are much simpler in this situation.
It is immediate from the definition that

@n (', 0) = h77 {a() + 3G} & gy (Y20,
hongn(x', 0) = h" fa() ey + By | & gy (mH2Y),

It follows that g;, satisfies the boundary conditions provided

iu (@) {x) ey + 26D | + w4+ 80} = 0.
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This is solved by putting

a(x’) = wx) +iu(x)ey,

a(x) = —w@) —iu(x)Ey.

Sinceéy # EN, both « and & cannot vanish near’ 0
The validity of 65) is immediate. To prove (56) we note that

P s —1% 2
A el N e T R e L G| R
o . 2
~ h / 10" p(h Y2 + 5O p(h V20| w(0) dVx
RN
— h2y(0) f Py (hH2x)2 N Ly
RN-1

0 - v N2
x / |oc(0’)e’h v 4 g0 N | g (h Y22 N
0

=00 [ P
RN-1

*© i z N2
X/[; |O((0/)e‘CNSN + 5((0’)elfNSN ¢2(h1/2SN)2 ds?

o .z N . N2
— v(0) / P (sH?dV ! / \a(o’)elgws +a(0)e v [ dsV
RN-1 0
> 0

ash — 0.
The proof of (57) depends upon writing

Lygn — z8n = k1 + ko + k3 + ka,
where

ki (x) = a(@){Lp fi(x) = 2fn(x)},
ko(x) = &(O) (L fa(x) — 2 fn(x)},
ka(x) = Ly[{o(x') = a(Q)} o ()],
ka(x) = Lp[{a(x") — &(0)} f ()]

and then estimating each term as beforel
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