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A system of equations in the A-calculus is a pair (I, X), where I" is a set of
formulas of A (the equations) and X is a finite set of variables of A (the unknowns.)
A system & = (I, X) is said to be solvable in the theory T (T-solvable) iff there
exists a suitable simultaneous substitution for the unknowns that makes the
equations of & theorems in the theory T. For any finite system and within any
semisensible (sms) theory T (e.g., f, fn, # *) a necessary condition for T-solvability
is proved. A class of systems for which this condition also becomes sufficient is
shown and the sufficiency is proved constructively. This class properly contains the
systems & = (I, {x,, .., x,.}) that satisfy 0, 1 or 0, 2 of the following hypotheses:

Hp0. (0) If @ is a proper subterm of a LHS term of an equation and the
head of Q is an unknown then the degree of Q is not o0 large.
(1) The initial part of a LHS term never collapses with another LHS
term.

Hp.1. The equations of S have the shape xM,---M,=yx,---x, M,---M,,
where xe {x|, .., x,.} and » does not occur in the LHS terms of the equations of #.

Hp.2. Theequations of & have theshape xM, .- M, = N,where x € {x,, .., x,,}
and N is a fn-normal form whose free variables do not occur in the LHS terms of
the equations of .

With some caution we can also mix equations having the shape in Hp.1 with equa-
tions having the shape in Hp.2. A typical result is the constructive characterization
of the T-solvability (T sms) of systems having the shape & =({xx=N,,
XM =N, ., xM,=N,}, {x}), where M|, .., M, are closed A-terms and Ny, .., N,
are fn-normal forms which do not contain the unknown x. When the equations of
a system & = (I, X) have the shape M= y, with the RHS variables fresh and
pairwise distinct, we have te X-separability problem for the LHS terms. For a class
of A-free sets (see Hp.0) the X-separability is constructively characterized within any
sms theory. A single equation can be solved via a system of equations. Using this
idea we characterize the fn-left-invertibility for a class of i-terms.  © 1991 Academic

Press, Inc.
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2 BOHM AND TRONCI
0. MOTIVATIONS

A lot of problems that arise in an equational theory, such as the
A-calculus, can be recast as the solution of systems of equations.

0.0. ExamMpLE. The search for a singleton basis (4) of A° (the set of
closed i-terms) can be transformed into the search for solutions of a
suitable system of equations. It is known [Bar 84, p. 184] that 4 A4 s.t.
44 =;K and 4K =8 is a singleton basis for A4° (see 2.0 for the definition
of K, S, U”, Q). A solution, e.g., 4 =4 At -t (tU3(U]K) Q QS) Q, is known,
but no systematic method is given in the literature to solve these kinds of
equations.

The set of A-terms modulo fig-convertibility forms a monoid with I as an
identity and composition defined by M- N=BMN (where B is defined
in 2.0) [Chu37]. The pu-invertibility problem was first raised in
[CFC 58, pp. 167, 168] and solved in [Dez 76, BK 80]. The one side
py-invertibility problems (left and right) are still open. The py-left-inver-
tibility problem can be presented as a system of equations. Self-application
is widely involved in this problem.

0.1. ExaMPLE. Let M e A; we wish to find Le 4 s.t. L(My)=, y (where
y does not occur in LM). Let M = Ayx - y(xp(Ar - x(xt)))x(xxxx)
(At - x(xx))(x(x€2))). We transform the equation L(My)=, y into a system
of equations. Let C[ 1=(4x-[ ]) 4e4[ ] (see Section 2 for A[ J) s.t.

Clxy(Ar - x(x) 1=, y1,  CLx(exxx)(Ar - x(xx))(x(xQ))] =, y,

(self-application occurs on x). If we set L= Aty y,-t4 then it is easy to
verify that L(My)=, y. A possible choice for 4 is

4=D[y,:=U]y,1ly,:=Ulr.],
D=t t,- (U y Ndabed - c(Aabed - cQ(US y,))) £11,.

0.2. ExaMPLE. Let # be a subset of A. We say that 4e A4° is a right
identity for & iff YM e F MA =, M. A right identity for a set & does not
always exist. It is easy to verify that the set (ix-x, Ax-x€2) does not have
a right identity. Let &% = {M,, M,}, where M, =Aix xa,(i-x(xt)),
M, = Ax - xQ(it - x(xx))(x(xa,)). We must find 4€ A° s.t.

MA=,M, i=12
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If we are able to find Qe 4 s.t.

M, Q=4 Qa(it-Q(Q1)) =4 y,ai(Ar- Q(01)),
M,Q =, 0Q(1r- Q(QQ))(Q(Qa))
=5 Y24, Ut - Q(QQINQ(Qas)),

then it is sufficient to replace the variables y,, y, by suitable combinators
that reconstruct the terms M,, M,. We have

A4=0[y,:=rabx - xa(At - x(xt))][ y, := Aabedx - xQ(At - x(xx))(x(xa))].
It is easy to verify that A4 is a right identity for . We can set (D as in 0.1)
Q=D[y,:=4abc-y,(Ec)abc],

E= (U3, UD.

A system of equations can be viewed as the specification of a functional
in an equational programming language. The solution then is just a
program that satisfies the equations. In this respect a theory of systems of
equations can be regarded as a theory of compilers for equational
programming languages. For this topic we refer the reader to [O’D 85].

0.3. ExaMpLE. Find a program f s.t.

(0) f0=yo,
(1) flsa)=y,af,
(2) ff=K,
(3) fK=S,

where 0=A4xy -y and s= lax - xax (the numeral system (0, s) was intro-
duced in [Ber 83]). Equations (0)-(3) amount to saying that f is a certain
recursive function on the numeral system (0, s) (Eq. (0), (1) and fis a
singleton basis for 4° (Eq. (2), (3)). A possible solution for the system of
Eq. (0)—(3) is

G=Aat,t, - 1,P3(U] yo)(Auy - - ug - yyuy (u7u7))(UPK) QUSS) 1, 1,
F=GG =gt -tPy(U] yo)(Au; -+ ug -y, u,(u7u,) (U K) Q(USS) Gr.
The major difficulty that we have had to surmount has been the treat-
ment of self-application (see Examples 0.1, 0.2, and 0.3). This has been

transformed into the search for a common solution of suitable separability
problems (in the sense of [CDR 787).
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1. SUMMARY

In this section we describe the structure of the paper.

Section 2 gives some notions about the A-calculus. For an exhaustive
treatment the reader is referred to [Bar 84]. Section 3 introduces an equiv-
alence relation that models the indistinctness between pairs of A-terms in a
finite set &. This relation will be a fundamental tool for stating a necessary
condition of solvability for finite systems of equations (Section 5).
Section 4 shows that substitutive contexts that preserve the relation
introduced in Section 3 are the core of the solution strategy for a class of
systems of equations (Section 6). Here a family of such contexts is
constructed. Section 5 gives the notion of a system of equations and some
of its easy properties. A necessary condition for the T-solvability (T sms)
of a finite system of equations is proved. Sections 5.0-5.6 may also be read
independent of Sections 3 and 4. Section 6 constructively proves for a class
of systems a necessary and sufficient condition for T-solvability (T sms).
Section 7 presents an application of the results of Section 6 to the
X-separability problem. Finally, Section 8 applies the result of Section 7 to
the fn-left-invertibility probiem.

2. THE A-CALCULUS

Syntax. The A-calculus is a formal theory whose language we denote by
A. The elements of the set V= {v,,v,, ..} are said to be variables (of A).
The symbols x, y, z, ... denote arbitrary variables. The set A is the least set
Ust. VeU;, MeU=(AxM)e U, M,Ne U= (MN)e UWe call A-terms
the elements of A. The symbols M, N, L, ... denote A-terms.

We adopt the following conventions: the symbol = denotes the syntactic
equality; X=x,, X, .., X3 {X} = {x|, X3, ey X, }; | X| =m; AR - M=2x,x,---
X, M= (Ax(Axy - (Ax,M)); M\M ;M5 - - M, =(--- (M, M;) M3)--- M,).
We give some examples of A-terms.

20. ExampLE. The following are A-terms: Uf=Ax -.-x,-x;, with
nmieN* and i<n; I1=U}; K=U?; S=Axyz-xz(yz); B=Axyz-x(yz);
w=ix-xx; Q= ow; W=Axy - xyy; P, =Ax, X, X, 1 X 41X - X, With
geN;, M,,..M,>=P ,M,---M, withneN and M,,... M, e

A subterm of M is a string which occurs in M and belongs to A. The
variable x is said to be bound in M if it occurs in the scope of a Ax; x is
said to be free otherwise. FV(M) is the set of the free variables of M. If
FV(M) = we say that M is closed (or M is a combinator). Let X< V;
we define A°={MeA|FV(M)=J}, A%X)={MeA|FV(M)c X}.
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We identify A-terms that are different only with regard to bound
variables (i.e., a-convertible A-terms). If M, ..., M, are i-terms occurring in
a mathematical context we suppose that all the bound variables in them
are (or have been made) mutually distinct and differ from all the other
variables occurring in that context.

We denote M[x := N] as the A-term obtained from M by substituting N
for all the free occurrences of x in M.

A context is a A-term with holes. More precisely the set A[ ] is the least
set Ust. VeU; [ JeU; C[ JeU=(Ax-C[ ])eU; C[ ], D[ JeU=
(C[ 1D[ D eU. The elements of A[ ] are called contexts. The symbols
C[ ]}, DL1],.. denote contexts. Let C[ JeA[ ] and MeAd-C[M] is
obtained from C[ 1 by substituting M for any occurence of [ Jin C[ 1.
Let F < 4; we define C[F 1= {C[M] MeF}.

Theories. Let I'c A; we set Form(I')={M=N|M,NeTl'}. We call
formulas (of A) the elements of Form(A). A theory T is a subset of
Form(A). If T is a theory and M =NeT we also write M =, N.

The theory A (we also write 8) is axiomatized by the following axioms
and ruless M=M; M=N=N=M, M=N, N=L=>M=L, M=N=
MZ=NZ, M=N=ZM=ZN; (Ax- MYN=M[x:=N]; M=N=1x-
M=4ix-N.If M=Nek we also write M=, N, but never M=N.

The theory An (we also write fn) is obtained by adding to the axioms
and rules of A the axiom schema Ax-Mx= M, where x ¢ FV(M). We also
write M=, N for M=,, N. We say that Ax-Mx with x¢ FV(M) is an
n-expansion of M. We denote with AT (AyT) the theory obtained by
adding to the axioms and rules of & (An) the formulas of T. A theory T is
called a A-theory if T s Form(A°) and T =AT. In the following, unless
otherwise stated, we consider A-theories.

Semisensible Theories. We say that M € A is: a f-normal form (-nf) if it
does not have subterms of the shape (ix-P) Q; a fn-normal form (fBy-nf)
if it does not have subterms of the shape (ix-P)Q or (ix-Rx) with
x¢ FV(R). We say that M e A has f-nfif INe A (M =4 N and N is a f-nf),
and fn-nf if INeAd (M=,N and N is a fn-nf). We define HNF =
{AZ-yM\M,---M,,| M, M,, .., M, e A}. The elements of HNF are called
head normal forms. We define SOL={Me A|INeHNF M =, N}. The
elements of the set SOL are called solvable. If M ¢ SOL then M is called
unsolvable. An example of an unsolvable term that we frequently use is Q.
A theory T is called semisensible (sms) iff TSA#* where #*=
{M=NeForm(A°)|VC[ JeA[ J(C[M]eSOL iff CTN]1eSOL)}. We have

(0) A, An, A#* are A-theories;
(1) P> =r*

We write M= ,. N for M=, ,. N. We observe that § and fn are semi-
sensible theories.
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Béhm trees. We define the Bohm tree (BT) of a A-term M. We set

BT(M)= L if M¢SOL;
BT(M)=ix;x;,---x,-y if M=pAxx;---x,-yM;---M,,.

/N

BT(M,) --- BT(M,,)

We say that a i-term is L-free if its BT does not have any node with label
1. To any node in BT(M) it is possible to bind, in the usual way, a
sequence of positive integers a (a € Seq) ({ ) corresponds to the root of the
tree, (1) corresponds to the most left son, and so on). If xeSeq
corresponds to some node in BT(M) we write a € BT(M). We denote with
* the concatenation symbol for sequences.

2.1. DerFINITION [Bar84]. (0) Let M, Ne A, # < A, and a € BT(M).
The i-term M, is recursively defined by M, =M if M¢SOL; M, ,= M,
M ., =M), f M=gAx,x,---x,-yM,---M, and i<m.

(1) We write f<afor I #( D f*é=a.

(2) We write a e, BT(M) for VB <a (fe BT(M)= M;e SOL).

(3) We write ae, BT(#) for YMe F (e, BT(M)).

(4) If ae, BT(M) then M* is the least n-expansion of M s.t.
o€ BT(M*).

(5) Let xe, BT(M). We define M, =(M"),.

(6) If ae, BT(#) then we set &, =(M,|MeF} (analogously for
F*).

(7) We write M|a] for (xc, BT(M) and M, e SOL, M|aT otherwise.

(8) We write #F|a] for YMeF Mal, F|a] otherwise.

(9) We define the functions deg, ord, head.
f M=gix;xy---x, - yM M,---M, we set deg(M)=m; ord(M)=n;,
head(M)= y. If M ¢ SOL we set deg(M)=0; ord(M)=0; head(M)T.
(10) M~ N iff (M, N¢SOL or (M, NeSOL and head(M) = head(N)
and deg(M) — ord(M) = deg(N)— ord(N))) [Boh 68; Bar 84, Sect. 10.2.19].
(11) M~,N iff («¢, BT(M), BT(N) or (ae,BT(M), BT(N) and
M,~N,)) [CDR 78; Bar 84, Sect. 10.2.21].
(12) (0) M= N iff BT(M)=BT(N).
(1) M=<,Niff VaeSeq M ~, N.
(2) M C N iff BT(M)< BT(N).
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2.2. THEOREM [Bar84]. (0) M=, Niff M=,.N.
(1) VC[ ]eA[ ]V¥M,NeA (MEN=C[M]Z C[N]).

(2) If C[M]=4N and N has f-nf then VQed (MT Q=
C[Q]=/fN)-

Note that for all Ne A it holds that Q & N.

Separability and Distinction. The relations USF and AGT and the
notions of distinction and separability for a set of A-terms have been intro-
duced in [CDR 78] (also see [Bar 84, pp. 256 et seq.]).

2.3. DeFINITION.  Let o €Seq, # = {M,, .., M,} = A and T be a theory.

(0) We say that « is useful for # ((£, a)e USF) iff

Flal and IM, Ne F (M +,N).
(1) We say that & agrees up to o ((%, a)e AGT or « is agt for &)
iff
VM, Ne FVf<a (M~4N).
(2) We say that & is distinct iff
Card(#F)=1 or
Jo e Seq (« is useful for & and VP e F/~, 2 is distinct).
(3) We say that & is T-separable iff 3C[ 1e A[ ] s.t.
Vie{l,..,n}  C[M;,]=1y,e(V-FV(F));
Vi, je{l, .., n} (yi=y,=i=j)

24, TueoreM [CDR 78], Let F ={M,,..M,} <A and T be a sms
theory.
(0) & is T-separable iff &F is distinct.
(1) Let aeSeq with F|a| and (F,a)e AGT. Then AC[ Je A[ ] s.t.
Vie{l,..n} CIM;1=py.€(V—-FV(F));
VM,NeF  (C[M]=,C[N]iff M~,N).

3. % -INDISTINCTNESS

Generalizing the concept of non-distinction for finite sets [CDR 78] we
introduce an equivalence relation that models the indistinctness of pairs of
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A-terms in a finite set. The principal feature of this relation is that it cannot
be refined by any context (Theorem 3.4.0). This relation is a fundamental
tool for stating a necessary condition for solvability of finite systems of
equations.

We write Ac;B for Ac B and 4 is finite. In the following, unless
otherwise stated, & and £ denote finite subsets of A.

3.0. DeFiNiTION.  The relation ~ ;. % x & is defined as follows:
P~_,Q iff VaeSeq ((F,a)e USF n AGT
=>(P~,Qand P~ 5 y..p Q))
If P~ , Q we say that P and Q are #-indistinct.

It is easy to verify that the relation ~ , is well defined.
Note that Card(F/~ ;) =1 iff there does not exist any « useful for &#.

3.1. EXaMPLE. Let F = (Ar-1Q(Aa-xa(xt)), Ait-tx(la-xQxB)), xx,
At-tx(Aa - xx(xQ2)), At-xxQt}. We have F/=~ ;= {{ir-xxQt}, {xx},
{At- 1Q(la - xa(xt)), At - tx(la - xQ(xB)), At - tx(la - xx(x2))} }.

The following proposition states some properties of ~ .

3.2. PROPOSITION. (0) ~ is an equivalence relation on F.
(1) La F<Pc A ThenVP,QeF (Pxgz Q=Px=,0Q).
(2) Let & be a finite set of L-free A-terms. Then YM,Ne F
(M~g Niff M= ,.N).
(3) F is distinct iff Card(F )= Card(F/ ~ ;).
(4) Let g F - A st. VMeF gM)= ,. M. Then VM,QeF
M~gzQ iffg(M):g(y)g(Q))~
(5) Let F={M,,..,M,}cAand C[ JeA[ ].
©0) If Vie {l,..,n}C[M,]1=4y,€(V—FV(F)) and 3i,j €
{1,..n}y,Zy;) then 3 useful for F.
(1) If 3a useful for CLF ] then IE useful for F.

Proof. (0)-(3) By induction on Card(%).

(4) From 22.0 we have VM e %F g(M)~<, M. We proceed then by
induction on Card(#) considering that VaeSeq we have: & |a iff
g(F)lal, YM,Ne F (M ~, N iff g(M) ~, g(N)), (¥,a) € USF iff
(g(#F), «) e USF.

(5.0) Refer to the proof of 14.4.13 in [Bar 84]. (5.1) From 2.4.1 and
50. 1
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3.3. CouNTER EXAMPLE. The converse of 3.2.1 does not hold. In fact let
F = {xy, K} and 2 = {xy, xK, xQ}. We have xy ~, xK, but xp # 5 xK.
This is because x€2 make unuseful (in ) the node {1 that is useful in .

The interest in the relation ~ ; lies principally in Theorem 3.4.0. It
states that no contexts can refine the relation ~ ,, or equivalently, any
context C[ ] is a morphism from (#, ~;) to (C[F ], ~¢49)

34. THEOREM. Let & =, A. Then
(0) VC[]eA[1VP,QeF (Pxg Q= C[P]=c4,CL2])
(1) VC[leAd[ ] Card(F/~z5)2Card(C[F ]/ =~ c157)
Proof. (0) By induction on Card(F). If Card(# )=1 the result is
trivial. Let Card(Z ) > 1. If « useful for C[ # ] does not exist the result is

trivial. Now we suppose that o useful and agt for C[F ] exist (see 2.3).
Then, by 3.2.5.1, & useful and agt for & exist and we have

(P~:Qand P>\ opo,p Q)

Because Card({Me % |M~,P})<Card(#) by inductive hypothesis it
follows that C[P]~ (e r~ p)3 C[Q] Hence from C[{MeZ|
M~ P}1=C[#] and 3.2.1, we have C[P] =, C[Q].

(1) It follows immediately from (0). ||

Intuitively Card(#/ ~ ) represents the dimension of the space spanned by
& . Theorem 3.4.1 states that this dimension cannot be augmented.
The following example shows a typical application of 3.2.4 and 3.4.0.

3.5. ExampLE. Let F = {x(x Q) xK, x(xK) QK, x Q Q(xxxxx)}. There
does not exist C[ ] s.t. C[x(x€2) xK] =, Az - 1yQ(1t) t; C[x(xK) QK] =, W;
C[x Q Q(xxxxx)] =, B. In fact we have

from 3.2.4: At-yQ()Y t#E i g aw.sy W

= C[x(xQ) xK] # o 5, C[x(xK) QK];

from 3.4.0: CLx(x€2) xK] # (5 C[x(xK) QK]
= x(xQ) xK # 5 x(xK) QK.

This is absurd because x(x Q) xK %, x(x K) QK.

Using 3.4.0 we can restate Theorem 2.4.0.
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3.6. THEOREM. Let F ={M,,...M,} <A and T be a sms theory. Then
ACL Je A[ 1Vie {1, ...n} C[M,] =1y (V—FV(F))
iffvi,je {1,.,n} (M~ 5z M,= y,=y).
Theorem 3.6 suggests the following notation.

3.7. Notation. Let & <, A. We denote by F*: F - (V-FV(F)) a
(arbitrary) function s.t.. VM, Ne F (M~ , Niff F#(M)=F*(N)). Ina
given mathematical context we suppose that the variables of &F * (%) are
different from all the others variables occurring in that context. ||

4. F-QUALIFIED CONTEXTS

Substitutive contexts s.t. Card(F/~ ;)= Card(C[F ]/~ 4#;) Play a
fundamental role in finding a solution for a system of equations. In
Sections 4.1-4.4 we construct an infinite family of these contexts. In 4.0 we
illustrate by an example the utility of such contexts.

40. A problem containing self-application can be transformed into a
suitable separability problem. The following example may clarify the
matter.

4.0.0. ExaMPLE. Determine C[ 1=(ix-[ ])deA[ ] s.t.:
Clxx]=pdd4=4y,, Clxwl=z40=4y, (w=At-1).
Note that 4 cannot be {(H,, .., H,) for any ». In fact we have
(H,,..H,>(H,,..H,>)=pHH - -H,H, --H,=4y,,
(Hy, ..H,)o=gHH ---H,=3y,,

which is absurd. We search for a solution having the shape A=, it-
t(4,1) Q with t¢ FV(4,). Note that 4 and w have different shapes. We
have

AA =4 4,4(4,(4,4)) 2,

Ao =5 4,0(4,0) L.
Note that now the self-application (44) is in some sense weakened (4,4

instead of 44). If 4, can separate 4 from @ we have solved our problem.
Unfortunately 4 depends on 4,. We try to eliminate this dependence by
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ignoring it; i.e., we replace 4,¢ by  in 4. This amounts to searching for
aGst

G(At- 1) =4y, and Gw=4y,.

The solution of this problem is well known [Bo6h 68, BDPR 79, CDR 78].
A possible choice for G is

GEit-tUg(U%)ﬁ)yz‘

In order to solve our original problem it is sufficient to replace 4, in 4 by
a variant G* of G able to erase the superfluous information. We have

G*=G[y,:=Uly ][y, :=U]y,] =4 Al - U3(U3 y (U7 ya)s
A=At-1(G*1) Q=4 At 1(1U3(U} y, )(U7 »,)) Q.

The family of contexts {(Ax-[ ]) H|(At-+Q Q) H} contains the solution
and preserves the distinction of the set {x, w}. The discovery of such a
family has been the fundamental step in solving the problem in 4.0.0.
A generalization of this strategy leads to the notion of & -qualification.

4.1. We introduce the notion of qualification and some of its fundamen-
tal properties. A context C[ ] is said to be qualified for a set & if C[ ]
does not lose any information contained in &

4.1.0. DEFINITION. Let chA. C[] is said to be % -qualified
(CL1eQ(F)) it VM, Ne F (C[M]~ (5, C[N]=>=M=; N)

Note that from 340 we have C[ JeQ(F) iff Card(#F/~,)=
Card(C[F ]/ = c157)-

4.1.1. EXAMPLE. Let # = {x, xx}. Then D[ 1= (ix-[ 1) U2e Q(F)
and D'[ 1=(Ax-[ ) U ¢ Q(F).

From a single element of (%) we can obtain an infinite collection of
them.

4.1.2. NotaTioN. (0) Let C[ ], D[ ]JeA[ ] and ze V s.t. z does not
occur (free or bound) in C[ ] or D[ ]. We write C[ ]S D[ ] for
Clz]l1< D[z].

(1) (D[ ])={C[Jeal JIP[ISCL I}

4.1.3. Remark. Let D[ ]JeA[ ]. Then D[ 1e Q(F)=U(D[ 1)<
Q(F).

In order to neutralize the effects of self-application of unknown terms
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which occurs unavoidably in a system of equations, it is important to find
a separator for a set of finite sequences of A-terms (4.1.6.2). Definition 4.1.4
is a tool for stating the assumptions we need to reach the desired goal. The
intuitive meaning of 4.1.4.2 is & € PFR (& satisfies the prefix rule) iff an
initial part of an element of & never collapses with another element of &
This property is related to [BP 88a, 2.1].

4.1.4. DEFINITION. Let X<,V and & <, 4.
(0) Sub(X) = {(Ax;---x,-[DN4,---4,]{x,...,x,} =X and
{4,,.,4,}c4}.
(1) F+={iZ-tM|}Z-tMQ e F with M non-empty }.
(2) PFR={F|Fc, A and VJZ-tM,---M,,---M,e F Ym<n
VNeF N#,. )3 tM,--M,).

4.1.5. ExaMPLE. (0) Let &% ={<{x,x)>, xx,xKx}. Then F/ =
{{xD, {x,x), xx, xK, xKx} and & e PFR.
(1) Let %= {xxx,xQxx}. Then %F; = {xx, xxx,xQ, xQx,
xQ xx} and % ¢ PFR.

Note that if VM, Ne % (head(M)=head(N) = (deg(M)=deg(N) and
ord(M)=ord(N))) then & € PRF. Refer to Example 4.0.0 for an applica-
tion of 4.1.6.1.

4.1.6. LeMMA. Let & —; A and T be a sms theory (see 3.7).
(0) DL1eQ(F) iff IC[1eAl] VA[ JeU(D[]) VMeF
ClA[M]] =, F*(M).
(1) Let D[ 1eA[] st D[F1cA® Then D[ JeQF) iff
AFe AVA[ ]e U (DL )VM e F FAIM] =, F*(M).

(2) LetXc,V,F c;{{M,,..M,>neNand {M,,.,M,} cA}
with % e PFR and D[ ]leSub(X) sit. D[F ) c A’ If D[ 1eQ(F ")
then IGe AVA[ leU (D[ ]) VM, ..M, >eF A[<{M,,..M,>]G=4
Fr(My, ., M) AIM, ] - A[M,,].

Proof. (0) (<) Let M, Ne &. Taking into account 3.4.0 we have
D[M] =pr#) D{N]=C[D[M]] = [p[#]] C[D[N]]
=>F*(M)=F*(N)=>M=~_N.

(=) Because VM, Ne #(D[M] =~ 4, D[N]=>M =~ , N) from
3.6 we have

IC[ 1edA[ IVMeF  C[D[M]]=,F *(M).
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The thesis follows from 2.2.2 and V4 le#(D[ ]) YMe%F (D[M1E
A[M])).
(1) (<) Asin (0) (=). As in (0) observing that now
AC[ Jed[ ]VMeF
C[D[M]]=4(it-C[t])D[M]=4; FD[M] =, F*(M).
(2) By induction on Card(deg(#)).
Case 0. Card(deg(#F))=1.

Case 00. Card(#/~z)=1. We choose G = iz,---z,-
F*(M,, ..M, )z, -z, where (M, ... M, >eF.

Case 0.1. Card(#F/~z)>1. By (1) we have
AFeAVAL JeU(D[ D)VMeF FATM] =, F*(M).

Choose G=pgdz,- -z, - F{z{, . 2,0 21 " 2,

Case 1. Card(deg(#)) > 1. Let m = mindeg(#) and £ =
(M, s M| My s My, s MY e F L
We have Card(deg(#)) = 1, Card(deg(#F — #)) < Card(deg(#)),
D[ ]e@(#*), and D[ JeQ((F —#)"). By inductive hypothesis
G, He A exist s.t.

VA[ 1e %(DL 1) V<M, .. M, eP
A[M o M,Y] G =y P*({M,, ., M,)>) A[M,] - A[M,,];
VAL 1eU(D[ 1)¥{M,, .., M, € (F — P)
ALMy, s MSTH=y (F —P)* (M, s M,>) AIM,] - A M, 1.

We set G*=G[P*(M):=H|Me(#—%)]. Taking into account that
F e PFR it is easy to verify that

VA[ le U (D[ H)V{M,, ..M, >eF
ALM s MDTG* =, FH(M,, .., M, ) A[M,]---4[M,]. ]
4.1.7. CoUNTER EXAMPLE. (0) The hypothesis & € PFR in 4.1.6.2 is

essential. Let F =F * = {{x), {x, x>} ¢ PFR and D[ 1=(Ax-[ ]J) U3e
Q(F *). Then we have

D[{x>1G=5GU; and D[{x,x)]G=,GUU}.

Clearly G € 4 does not exist s.t. GU} =z y, and GUIUZ=,y,.
(1) The converse of 4.1.6.2 does not hold. Let & = {{x),
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(xx, Ky, (xK,x)> and D[ ]=(ix-[ ])U3. Then &F* = {{(x), {x, x),
KD, (o, Ky, (K, x)} and D[F *]={(U3), (U3U3, (UKD,
(U2U2, Ky, (UK, U2)}. Since U2U2=, UK =1 then D[ 1¢ O(F * ).
Now let G=A4z-1(Ui(4ab - by, ysab)) y,t. We have D[{(x)>]G=,y, D[x],
D[{xx,K}]1G=4y,D[xx] D[K], D[{xK,x>]G=,y,;D[xK] D[x].

4.2. According to 4.0 in Sections 4.2-4.4 for any set & we construct an
infinite collection of substitutive # -qualified contexts.

For constructing a subset of Q(% ) we need some results about useful
nodes of #. A node « is adherent for a set & if the number of #-expansions
in & needed to reach o is not too large.

4.2.0. DEFINITION. Let & < A. The node « is said to be & -adherent
((#,0)e ADH) iff (e e, BT(#) and 3IM € Foc BT(M)).

4.2.1. EXAMPLE. Let & = {la-aa, Aab-xa(axbx)}. Then (F, (3))¢
ADH, but (#,<2))eADH and we have & ‘*’>={iab-aab, iab-
xa(axbx)}.

4.2.2. ProposiTION. USF nAGT < ADH n AGT (see 2.3).

Proposition 4.2.2. states that the shortest useful nodes of % are
& -adherent.

It will be useful to know the maximum degree of subterms whose head
is a free variable (tdg) and the maximum degree of subterms whose head
is a bound variable (bdg).

4.2.3. Notation. Let MeA, F <, A, aeSeq, and xeV. We define
(see 2.1, 2.3)

(0) tdg(x, M, «)=max{deg(M;)|B<a and M|B| and head(M,)
x}
(1) tdg(x, #, a)=max{tdg(x, M, )| Me F }.
(2) bdg(M, a)=max{deg(My)|f<a and M|B| and head(M;)¢
FV(M,)}.
(3) bdg(#,a)=max{bdg(M, a)|MeF}.

1l

The & -adherent nodes preserve the value of the functions just defined.

4.24. PROPOSITION. Let (#,4)e ADHNAGT and xeV.
(0) tdg(x, F*, a)=tdg(x, &F, a).
(1) bdg(F°, a)=bdg(F, ).

4.3. We introduce a suitable class of sequence transformations (deforma-
tions) for constructing a subset of Q(#).
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4.3.0. DErINITION.  (0) Let d: 4 xSeq — Seq. We call 4 a deforma-
tion iff:
(0) VM,NeA (({M,N},a)e AGT=>d(M, a)=d(N, a));
(1) YMeAddM, {5)={).
(1) Let (&, 2)e AGT and d be a deformation. We set d(F, a) =
d(M, o) with M e . This notation is legitimate because if (%, «)e AGT
then VM, Ne #F d(M, «)=d(N, o).
(2) Let # < A, aeSeq, and d be a deformation.
(0) FTH(#,a,d) = {C[ JeA[ ]IVM € F(M|a] iff C[M]|
dM,a)l)and VM, Ne F(M~, N iff CLM]~ 411, C[N])}.
(1) FTH(#,d) = N\ {FTH(#,a,d)|a € Seq and IM, N €¢ &
({M,N},x)e USF " AGT}. C[ 1e FTH(#, d) is said to be faithful with
respect to the pair (£, d).

The importance of faithful contexts lies in the following proposition.

4.3.1. PROPOSITION. Let F c,A and d be a deformation. Then
FTH(Z, d)< Q(F) (see 4.1.0).

Proof. By induction on Card(#).

4.4. Finally we define a particular class of contexts contained in Q(F).
We prove that this class is & -qualified by showing that it is faithful. In
4.42.0 we prove that if ¢ satisfies certain constrains then % (4. [ 1)<
FTH(#, d) for a suitable deformation 4. Then, using 4.3.1, we obtain
U4, [ 1) Q(F) (44.2.1).

4.40. Notation. Let weN™; X=x,.,x,; &{0,1}x{Z} >N,
xe{X}, Fc,4, X, V, and aeSeq (see 4.2.3).
(0) 4., = Aty Lyoxy Lo - Regroy— 1 {1y o Lioy»» Where
Q=--=Q,, ,=Q
(1) 4;.[1=0x-[ D4, -4,
(2) QL(X,#F,a)={ele:{0,1} xX>N* and VYxeX ¢(0,x)>

tdg(x, #,a) and VYxeX &(l,x)>bdg(F,a) and Vx, x'eX (e(1, x)=
el x)=x=x")}.

(3) QL(X, ) = N{QL(X, #, a)|a e Seq and 3IM,N €
F({M, N}, a)e USF n AGT}.

(4) hd(X, ¢): A — Seq is defined as follows:
hd(X, e)(M) =if head(M)=x€ X then {¢(1, x)) else { >.

643/90/1-2
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(5) O(X, €): A xSeq— Seq is defined as follows:

o(X,e)(M,  D)=<{>
O(X, e)(M, (j * ) =hd(X, e)(M) » () * 3(X, e)(M 5, B).

If (#,0)e AGT n ADH then QL(X, #*, a)=QL(X, &, a). The deforma-
tion d(X, ¢) will model the effect of 4. ,[ ] on Me A (44.1.1.0).

44.1. LeMMA. (0) Let F <, A and e€ QL({Z}, F.,{ D).
(0) vA[ Jeu(4. [ 1)VMeF (MeSOL iff AfM]eSOL).
(1) vAa[ Je@u(A. [ )VM,NeF (M~ N iff A{M]~ A[N]).
(1) Let (#,0)e AGT nADH and ¢e QL({X}, #, a).
(0) VAl Je#(4. [ 1) VMeF A[M,] ZﬂA[M]é({f},ﬂ)(M.a)'
(1) w4; [ DSFTH(F, o, 0({%}, ¢))

Proof. (0.0,0.1) By easy computations (as in [BT 87, 1.2.2, 1.2.3]).
(1.0) By induction on the length of « (as in [BT 87, 1.2.5]).
(L.1) From (0.0) and (0.1) using (1.0) (as in [BT 87, 1.2.6]). 1|

Proposition 4.4.1.0 is still valid substituting € for the last component of
4. .. This component becomes important only if in the BT(#) (see 2.1)
nodes of positive length must be considered (4.4.1.1).

Finally, we can produce a class of #-qualified contexts. This result is
essential to the solution (6.11) of a class of systems.

4.4.2. THEOREM. Let F ;A and e€ QL({X}, F) (see 44.0.3).
(0) U(4.,[ 1) sFTH(ZF, o({X}, ¢)).
(1) u4:.[ D<=Q(F)

Proof. (0) From 4.4.1.1.1 and by an easy induction on Card(#).

(1) We have (4. [ 1)sFTH(#, 6({%},¢)) (from (0)) and
FTH(F, 6({%}, ¢)) < Q(F) (from 4.3.1). Hence #(4. [ 1)S Q(F). |

4.5. An interesting consequence of 4.4.1.1.0 is a kind of filtered Bohm-out
[Bar 84, 10.3]. We can Bohm-out a subterm of M e #F through 4{ Je

Q(F).
4.5.0. Notation. Let Me A and ae, BT(M). We set

Te(M,a)={u|M, =44z, ---z,-uQ,---Q, and p<a}.
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4.5.1. PROPOSITION. Let (#,a)e AGT nADH andee QL({X}, F, a).

(0) IC[ Jed[ 1V4A[ Jeu(4;.,[ 1)VMeF:
(0) ClA[M]1]=,4[M,]*
(1) IfFVU[L 1)nFV(F )= then C[A[M]]=,4[M}].
(1) If YMeF(Tr(M, a)nFV(M)< {X}) then IFe A° VA[ Je
U4, [ DVMeF:
(0} FA[M]=,4[M,]*
(1) IfFV(A[ )nFV(F )= then FA[M]=¢,A[M;“] (where
* represents a suitable substitution for the variables (Tt(M, o) — {X})).
Proof. (0) Thesis (0.0) follows from the structure of C[ ] (see
[Bar 84, 10.3.7]). Thesis (0.1) follows immediately from thesis (0.0).
(1) From (0) and the construction of C[ ]. |
4.5.2. Remark. 1If M satisfies the assumptions of 4.5.1.1 then from

M,=zeFV(M) it follows A[M,]* =4 z. Hence 4.5.1.1 gives us a construc-
tive method for extracting, through A[ Je (4. .[ ]), a free variable of M.

4.53. EXAMPLE. Let F = {At-x(Az-z(Aab-xxa(yxtzabK) x)), At-
x(Az -z(Aab - xKxux)), At-x(Az-z(xxx))] and & {0,1}x{x} >N* st
(0, x) =S5, &(1, x)=2. Then (¥, <{1,1,3>)e AGT n ADH and ¢ QL({x},
F, (L, 1L3)). Let A4, [ 1=(Ax-[ 1) 4., 4., S At tt5t,t5-t5 Q1
ts, ty, tsy and F=<ay, a,, as, a;, U3, U3, 1, ag, ay, U3, U3>. We have

FA, [it-x(Az-z(Aab - xxa(yxtzabK) x))]1 =, y4 ., a,laga, K
FA, [At-x(Az-z(Aiab - xKxux))]=,u
FA\?e[it ’ x(/lz : Z(xxx))] =pds.

5. SYSTEMS OF EQUATIONS IN THE A-CALCULUS

In this section we introduce the notion of systems of equations and derive
some of its easy properties.

A system is a set of formulas in which some free variables are considered
unknowns.

5.0. DEFINTION. Let I'< Form(A4) and X <, V.

(0) The pair (I, X) is said to be a system of equations on A in the
unknowns X.

(1) Let & =(I, X) be a system. The formula M = NeI' is said to be
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an equation of &. By abuse of language we often write M = Ne %. Unless
otherwise stated we assume that & is finite.

5.1. ExampLE. Let I'= {xKK = y, xzx =z}. The following are systems:
A= {xh), A= {pz})

5.2. Notation. Let F = A, F'cForm(A), ¥ =([, X) be a system, and
ZcV.
(0) L(IN={P|P=QEel}.
(1) RIN={Q|P=Qel}

(1) Mz:=M1={Plz:=M]=Q[z:=M]|P=Q€el}.

(2) F={M[y:=Q|ye(FV(F)-Z)]|MecF}.

(3) Iz={M[y:=Q|ye(FV(L(IN)—Z)]
=N[y:=Q|ye(FV(LUN-2Z)Y]|IM=Nel}.

4) F=(I'y.z X).

If & = (I, X) we also write L(&) (R(%)) for L(I") (R(I)).

5.3. ExampPLE. Let & =({xaK =y, xzx=z}, {x}). Then we have

&= ({xQK = y, xQx =R}, {x}),
S =({xQK =y, xzx =z}, {x}),
Srowy={xaK=p, xzx=2z}, {x}). |

v

A solution for &= (I, X) in a theory T is a suitable simultaneous
substitution for the unknowns that makes the equations of & theorems in
the theory T.

54. DEFINITION. Let & = (I, X) be a system and T be a theory (see
4.1.4.0).

(0) Sol(&, T)= {4[ 1€ Sub(X)|FV(4[ 1) nFV(L(I'))= & and
YM=Nel A[M]=,4[N]}.

(1) & is said to be T-solvable iff Sol(&, T) # &.
If & is a system and T, = T, are theories then Sol(<, T;) = Sol(<, T,).

55. ExaMpLE. Let &, % be as in 51 It is easy to verify that
(Ax-[ D(Aab-by(Uiab)) e Sol(F;, B); (Ax-[ ])(Aab-by(Utzb)) ¢ Sol(#, B);
Sol(#;, B)=.
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Any system of equations can be transformed in a single equation with
just one unknown (5.6.2).

5.6. PROPOSITION. Let & =(I, {x;,...x,}) be a system and T be a
theory. Then:

(0) There exists &' =(I", {u}) st Sol(#, T)# iff Sol(&',T)
# .

(1) There exists P'=({M=N}, {x,.,x,.}) st Sol(&,T)=
Sol(&”, T).

(2) There exists L' =({M=N}, {u}) st Sol(L, TV iff
Sol(&', T) # .

(3) Let Z< V. Then Sol(¥, T)< Sol(#,, T).

Proof. (0) Let u be a fresh variable and I''=ITx,:=uU}]-..
[x, :=uU}]. We set &' =(I"", {u}).
(=) LetA[ J=(ix;---x,.-[ 1)4,---4,eSol(&, T); then

A[I=(Au-[ 1)K4,, ... 4,.> € Sol(&", T).

(=) Let 4T 1=(u-[ ]) 4’ Sol(¥”", T); then
AL 1= 0x - x,, - [ IN4'UY) - (4'UY) € Sol(&£, T).

(1) Let I'={M,=N,|li=1,..,n}. We set M={(M,,..,M,> and
N={(N{, ., N,

(2) From (0) and (1).

(3) Easy considering that if A[ JeSol(¥,T) then FV(4[ ])n
FVIL(N)# . 1

In spite of Proposition 5.6.2 it seems more interesting to transform an
equation into a system of equations rather than the converse. Unfor-
tunately the transformation is not trivial. An example of this technique is
shown in Section 8.

The next theorem states a necessary condition for solvability.

5.7. THEOREM. Let & =(I, X) be a system, T be a sms theory, and
ZcV,

(0) If AL 1€Sol(#, T) then
VM=N,M'=Ne% (M=,5, M =AINT= p,, 4[N']).
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(1) Let L =(,X) be a system with FV(R(FPNnX=g. If
Sol(&#, T)# & then

VM=N,M'=N'e¢¥%, (M=~,, M =N=xg, N

Proof. (0) From 56.3 A[ JeSol(¥#4,T). Let M=N, M'=N'e%,.
From 340 we have (M~ , M = A[M]=~ ;. 4[M']). Besides,
from A[M]=,4[N] and 4[M']=,;4[N'] it follows that A[M]
=« A4[N] and A4[M']=,.4[N']. Hence, from 324, we have
4[N] = ALR(#2)] A[N"].

(1) In this case VA[ ]eSol(¥, T) A[R()]1=R(%). |

5.8. ExaMpLE. (0) The system £ =([xQKxB=K, xxQKB=B,
xKxQB=B}, {x})is not s# *-solvable.

(1) The system & =({xzx=2z, xyx=a}, {x}) is not H# *-solvable
(use 5.7.1 with Z = {z}).

5.9. CounteER EXAMPLE. The converse of 5.7.0,1 does not hold in
general Let & =({x=y,xx=z}, {x}). We have x# ., xx, but
Sol(&, B)= .

6. REGULAR SYSTEMS

There are systems for which Theorem 5.7.1 is a necessary and sufficient
condition for solvability. We call these systems regular systems. In this
section we present a class of regular systems (reg. systems) and construct
a solution (6.11) for them (if it exists).

6.0. DEFINITION.  The system & is said to be T-regular (& € Reg(T)) iff

Sol(&#, T+ & iff VYM=N,M'=N'e%,
(M:L(%)M’:N:R(wa').

A large class of reg. systems can be constructed starting from reg.
systems whose equations have the shape xM,---M,=yM,---M,
(6.1-6.3).

6.1. Notation. (0) Let M e A and {%} <, V. We set M=
M[x:=xX|xe{X}]
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(1) Let #=(I, {X}) be a system. We set (see 3.7)

Pr=([xEMT - M5 = yRMT .- M7 |xM, --- M, € L(#)and x e {¥}
and y=L(%)* ((xM, --- M,)[z:=Q|ze (FV(L(ZL)) - {Z})])}, {%}).

Note that, thanks to the choice suggested by 3.7, &* satisfies the RHS of
Definition 6.0. Hence &°* € Reg(T) iff &#* is T-solvable.

6.2. ExampLE. Let & =({xa=K, xK=B, yx=z}, {x,y}). Then we
have £* = ({xxya=z,xya, xxyK =z xyK, yxyp(xxy)= z,xy(xxy)},

{x,»}).

6.3. THEOREM. Let T be a sms theory and & = (I Iy, {X}) s.t.:

Hp.0. The equations of I'y have the shape xM--- M, = yiM,---M,
with xe {%} and y ¢ (FV(L(&))v {X}).

Hp.l. The equations of I'; have the shape xM,---M, =N, where
xe {X} and N is a pn-nf with FV(N)n (FV(L(¥)) v {X}) = .

Hp2. VYM=Ne(l)y YM' =Ne(l) (Mg, M and
head(N) =head(N’)) = deg(N) # deg(N’) — ord(N")).
Hp.3. &*eReg(T).

Then & € Reg(T).

Proof. From Hpl., 1,2 and 5.7.0 it follows immediately that
S, T)#F=>VM=NM=N'e% (M=, M =>Nxp,, N
Now we prove that

(VM=NM=NeS (M=, 5 M =>N=x=p,,N))=5(F T)+J.

Since £ *eReg(T) then Sol(F* T)# . Let X=x,,..,x, and D[ J=
(Ax;---x,- [ ) D,---D,eSol(&F* T). We define
D*[ 1=(Ax,---x,-[ 1) D¥--- D}
ED[ ][y :=ltl "'%'}’(’1’1 tw)(twtl tu)l.VEFV(D[ ])
and

E[ J=(x,--x,- [ IXD¥D¥---DY)---(DXDF---DY).
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Finally, we define
EoL 1=E[L JIL(L)” (xM,---M,):=y|xM,---M
=yiM,---M,e(ly):]
and
EL]1=E[ 1L (xM,---M,):=U7""*!N|xM,---M,
=Ne(l'))a}
It is easy to verify that E,[ JeSol(%#, T). |

6.4. Remark. It & =({M,=y,,..,M,=y,}, X) satisfies the hypoth-
eses of 6.3 and (y,= y,=i=j) then we have

& is T-solvable iff ({M,=N,,.,M,=N,}, X)is T-solvable,

where N,, .., N, are pairwise distinct closed fn-normal forms.

6.5. ExaMPLE. (0) Let & = ({xx=K, xK = axK, x0Q = bxwQ}, {x}).
We have

F* = ({xx(xx) =y, x(xx), xxK = y,xK, xx0Q = y;x00Q}, {x}).

If &* € Reg(T) then & € Reg(T). We see (6.11) that & * € Reg(f).
(1) Let & =({x(xx)x=y, xxx=z}, {x}). If ¥*eReg(T) then

& is T-solvable  iff ({x(xx)x=8§, xxx=K}, {x}) is T-solvable.
We see (6.11) that &7* e Reg(p).

6.6. COUNTER EXAMPLE. The property stated in Remark 6.4 does not
hold in general. The system ({x=U2, xx=U3}, {x}) is B-solvable (its
solution is D[ 1= (Ax-[ 1) U?), but the system ({x=y, xx=z}, {x}) is
not f-solvable.

So far we have assumed the existence of a class of regular systems. The
next step is to introduce, by a constructive definition, a candidate class for
regularity.

6.7. DEFINTION. Let X<, V. The set & is said to be X-regular
(F ereg(X)) iff:
(0) # <,SOL and & is A-free and head(F) < X;
(1) Fe: X->N* st
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(0) (Vxe X e(x)<mindeg(Me F |head(M)=x}));

(1) (VxM,---M,, --M,eF (M,,eSOL and head(M, )¢
(FV(Me(x))_X)))y

(2) (YMeF VaeSeq (¢#< > and head(M,)e X=deg(M,)<
e(head(M,)))).

Intuitively we can say that & is X-regular iff the internal occurrences in
M e & of the variables in X do not have too many arguments.

6.8. EXAMPLE. % = { xx, xK, xB, xSx, x(4it- txxxx)}ereg({x}) F=
{x, xxx} ¢reg({x}); F={x( xQx ) x, xxxx} ¢ reg({x}); F={x(xQ)x,
xxxx}ereg({x}).

In order to solve a system we may eliminate subterms that do not yield
any essential information.

6.9. Notation. Let & <, A. We define (see 2.1.12.2,4.14.2)
T={f(FNF oAt [(VMeF f(M)E M)
and (¥ € PFR = f(#)e PFR)
and VM, Ne F (f(M)~, 4, f(N)=M=, N)}.

6.1.0. ExampLE. Let F = {x(xxxx) Qx, xQxx, xQQ(xx) x, xQOQ(xx)
(xxxx)}. Then

{xQQx, xQxx, xQ(xx) x, xQQ(xx)(XxXXX)} € F ~;
{x(xxxx) Qx, xQxx, xQQ(xx) x, xXQQ(xX) Q} ¢ F ~;
{x(xxxx) Qx, xQxx, xQQQx, xXQOQ(xx)(xXXX)} ¢ F ~.

The next theorem proves that via our candidate class we obtain a class
of regular systems. Moreover, since the proof is constructive, at the same
time we have, for such a class, a method of finding a solution, if any.

6.11. THEOREM. Let & = (I, X) s.t.:

Hp.O. The equations of & have the shape xM,---M,=yM,---M,
with xe X and y ¢ (FV(L(&)) v X).

Hp.l. L(¥;)” nreg(X)nPFR # (J (see 4.14.2, 52.4,6.7,6.9).
Then for any semisensible theory T, we have & € Reg(T).
Proof. From 5.7.0 it follows immediately that

SL, T)EDP=YM=N,M'=N'e%; (M=, M =N, N).
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Hence it is sufficient to prove that
(VM=NM=NeS(M=~,, M =>N=,, N))=Sol(&,T)#J.

Let, wlo.g, ¥ =, L(F)e(reg(X)nPFR) and all the equations of &
have the shape xM,--- M, =L{(¥)* (xM,---M,)M,---M,. If we prove
that Sol(%, ) # (¢, then the thesis follows.

Step 0. We set X={x,,..x,}={X}, F=L(&) and ¢ as in 6.7.1
(e exists since L(&) € (reg(X)n PFR)).

Step 1. For any xe X let
F,={xM,---M,,,---M,eF |head(M,,))e X  and
ord(M.,,,+ e(head(M ,)) — deg(M,,\) =h};
Fop= XMy My M, e F | M,
=gAzy2,-2,0y- @, witha< p}.
It holds that
FounF =0
Let #(x,h)=F° ,0F ', and H(x)={(heN|F(x, h)# B}

Step 2. Let b, =max{max{ord(M,)|xM,---M, , ---M,eF_,}|
he H(x)} and r = max{max H(x), b }. Of course it holds that

VxeX max H(x)<r,.

Step 3. Let ee QL(X, {{M,, .., M,D>|xM,---M, e F})s.t:
VxeX ({0, x)=e(x) and (1, x)>r,) (see 4.4.0.3).

By the assumptions in Step O ¢ exists.
Step 4. Vxe X let

bt 0 =Py

A=Aty LoDt L) - (Dot Lom)-
We define
A*[ ]E(;Lxl “'xw'[ ])Axl "'Axw'

Clearly A*[ Je(4.,[ 1)
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Step 5. Let xM,, ..M, M, 1, .. M, e F. We set

M=M,, ., M,.;
O=M, 15 M5 0td(M,) = p; deg(M,,) = b;
A*[M]=4*[M,], . 4*[M )] A*[0] = A*[M )1 1], - A*[M,];
Vect 0= (4, ,4*¥[M]), .., (4, ,4*[ M]).

Note that F = U,y U,y F(x, h). We have two cases.

Case 0. xMQ ¢ F9,. Let Mo =p Az 2, X' (Nyzy-z,) -
(Nyzy---2,); Vect1 =(4*[N,]Vect0), ..., (4*[N,]Vect0), (4, ,,  A*[M], ...

(Ay pretxr—p4*[M]). We have
A*[xMQ] =5 4,4*[M] 4*[]]

=p A¥[ Mo )(A. A¥[M]) - (4, s 0 A*[M]) 4*[ 0]

=g (,{Zl ...zp.Ax,(A*[Nl] z, ...Zp)...(A*[Nb] z, --'Zp))
(A A*[M]) (A, 1 o A*[M]) 4*[ (]

=54, (4*[N;] Vect0)---(4*[N,] VectO)(AxvaA*[M])
Ay d*[M]) 4*[0]

=5 A0 precer-od* (M4, Vect 1)+ (4, s o Vect 1)
(A psecer—p+ 14X [M]) -+ (A, o1 A¥[M]) 4*[ 0]

Using 4.1.6.2 choose A , . .c)_5 S:t.

A«Y,P*-e(x')'bd.?,s[M] Ql T QE(I,xH—bf p+e(l.x')fzf(x’)A,?,e[Q’]
=, F*(xMQ)4,,[M]4,,[0]

Case 1. xMQeF', We have

A¥[xMQ] =4 4, 4*[M] 4*[ ]
=5 AX[ M, J(4,, A*[M]) -+ (4, o1 0 A*[M]) 4*[ 0]
=5 (,{Zl ...:p.zh(d*[Nl] z, ...gp)...(d*[Nb] z, "'Zp))
(A1 A*[M]) (A o1, 0 4*[M]) 4*[0]
=t,Ax,,,A*[A7](A*[N1] VectQ)--- (4*[N,] Vect 0)
Ay 1 AX[M]) (4,00 A* M) 4*[ 0]
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Using 4.1.6.2 choose 4 s.t.
Ao MR Ry h 4 [01=5 FH(xMQ) 4, [M] 4, ,[0]
Again using 4.1.6.2 we have

VxM=yMe¥  A*[xM]=,4*[yM]. |

6.12. EXAMPLE. Let & = ({xa(it-x(xt})= yya(dr-x(xt)), x(xxxx)(Ar-
x(xx))(x(xQ)) = y,{xxxx)(Ar-x(xx))(x(xQ))}, {x}). Since L(¥) n
reg({x})n PFR # & then & € Reg(p). It is sufficient to solve the system

Q= ({xQ(4r - x(xt)) = y QA - x(x1)),
xQAr - x(xx))(x(xQ)) = p, (At - x(xx))(x(x2))}, {x}).
A possible solution for Q (and &) is
Dl]=(Ux-[DHD with D as in Example 0.1.

The systems studied in 6.11 can be useful for solving other system
schemas. From 4.5.1.1, 6.3, and 6.11 we may state the following corollary.
6.13. COROLLARY. Let ¥ =(I'yu T, {X})s.t.:

Hp.O0. The equations of I, have the shape xM,---M, =
VXM - M)E - (xMy - M)E SM - M, with xe {£], y ¢ (FV(L(S))
VI{X}), * as in 451 (see 450), Vie{l,..,p} (Tr(xM,---M,,a)n"
FV(xM,---M,) < {X}) and Card(!y) = Card(head(R([)))).

Hp.l. The equations of I', have the shape xM ---M, =N, where
xe (%} and N is a Bn-nf with FV(N)n (FV(L(¥)) v {X})= .

Hp.z. VM=N6(F0){;} VM’=N’E(F1){€}

(M ~ L(%)M’ and head(N) =head(N’) = deg(N) # deg(N’) — ord(N")).
Hp3. L(¥)™ nreg({X})nPFR# .
Then for any semisensible theory T, we have & € Reg(T).
Proof. From 5.7.0 it follows immediately that

SlL, TV~ B=VYM=N,M'=N'€%;, (M=, M =N=p,N).
We prove that
(YM=N,M'=NeS (M= gy M =>N=xyy,N))=>Sol(, T)# .

An example is sufficient.
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We solve the system
& = ({xQ(xa) = yaxQ(xa), xQU3 = zxQUZ}, {x}).
Step 0. Using 6.11 we solve

Qo = ({xxQ(xxa) = yxQ(xxa), xxQU?’=zxQU3}, {x}).

Let Qo= Atuv - v(U] y) ztuv; then Dy[ J=(Ax-[ ]) Qo is a solution for Q.
Step 1. Using 4.5.1.1 we solve

Q, = ({xxQ(xxa) = ya(xx) Q(xxa), xxQU3 = z(xx) QU3 }, {x}).

Let Q,=Qoly :=4abc-y({U}) c)aa) bc][z :=1a-z(aa)]; then D[ ]J=
(Ax-[ ]) Q, is a solution for Q, ({U}) extracts a from (xxa)).

Step 2. Reasoning as in 6.3 we see that D[ J=(Ax-[ INQ,Q,) is a
solution for &. |

Examples 0.2 and 0.3 show an application of 6.13 (in 0.2 the term E
extracts a,). Of course 6.4 holds with & * € Reg(T) replaced by L(¥}) ™ n
reg({X¥})nPFR # .

Corollary 6.14.0 extends [CDR 78] and Corollary 6.14.1 extends
[Boh 681 and its generalization [BDPR 79].

6.14. CoROLLARY. Let T be a sms theory, M,, .., M, € A%, N,, .., N, be
By-nf, and & = ({xx= Ny, xM=N,, .., xM, =N, }, {x}) be a system. We
have:

(0) & eReg(T).
(1} If Ny, .., N, are pairwise distinct then

& is T-solvable  iff {xx,xM,,..,xM,} is distinct.

Proof. Immediately from 6.13, 3.2.2, and 3.2.3. |

6.15. ExaMPLE. The system & =({xx=K,xK=S8, xS=w, xo =y},
{x}) is B-solvable because L(&#;) is distinct. A possible solution is

Dl]l=(x-[ D where
= At 1(1U3(U°K) (U¢ y)(Utw)(U?S)) QQ.
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7. X-SEPARABILITY

The study of the separability by substitutive contexts A[ ]e Sub(X)
leads to the study of systems & = (I, X) with equations of the shape
M=y, where the RHS variables are pairwise distinct. This is the
X-separability problem (7.0) (cf. with the separability introduced in 2.3.3).
This problem is also equivalent to studying the global surjectivity of L($)
with respect to the variables of X [BP 88a, b]. Of course for these systems
Corollary 6.13 applies. However, in this particular case we can drop the
assumption L(¥) N PFR # (.

Proposition 7.1.2 characterizes the X-separability for a class of A-free
sets. Proposition 7.1.3 shows that if a separator for a finite set & exists
then there exists a separator for & that recognizes itself from the objects
that it is separating. (Compare 7.1.3.0 with 2.4.0 or [CDR 78] and 7.1.3.1
with [Boh 68, and BDPR 79].) Example 4.0.0 gives an easy application
of 7.1.3.

70. DEFINITION.  Let X<, V, # ={M,, .., M,} = A4, and T be a theory.
The set & is said to be T-X-separable iff

(34[ JeSub(X)s.t.: (Vie {1, ..,n} A[M,J=1y,e (V-FV(#))) and
(Vi,je {1’ s n}(yi;—yj:i:j)))-

7.1. PROPOSITION. Let T be a sms theory and & = (I, X) be a system
with equations having the shape M = y, where y ¢ (FV(L(&)) v X).
(0) If & is #*-solvable then:
(0) L(¥)<=SOL.
(1) head(L(¥%))=X.
(2) L(¥,)€PFR (see 4.142).
(3) YM=y, M'=y e (M=, 4)M =y=y).
(1) If L) nreg(X)+# J (see 4.1.4.2, 6.7, 69) then & is T-solvable
iff L(F)ePFR and VM =y, M'=y € % (M:L(,.%)M’:y_:_y’).
(2) Let X<,V and F ;A with (Fy)” nreg(X)#S. Then F is
T-X-separable iff (%€ PFR and %, is distinct).
(3) Let F ={xx,xM,, .., xM,}.
(0) If FV(M,---M)n{x}= then F is T-{x}-separable iff
F |y Is distinct.
(1) If M,---M, are closed Pn-normal forms then F is T-{x}-
separable iff M, --- M, are pairwise distinct.
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Proof. (0) Per absurdum. Let D[ Je Sol(¥, #*) and Me L(¥)).

(00) If M¢SOL then D[M] ¢ SOL, which is absurd.

(0.1) Ifhead(M)¢ X then head(M)=head(D[M]) ¢ (FV(L(F}))uX),
which is absurd.

(02) Let N, M=il-xM,--M, - -M,eL(%;) st m<n and
Af-xM,---M, ~ g . N. Then from 340 D[Af-xM,---M ]_,,WW]
D[N]. Hence deg(D[it xM,---M,])—ord(D[Af-xM,---M,,])=0 and
deg(D[M])—ord(D[M]) >0, which is absurd.

(0.3) Immediately from 5.7.1.
(1) From (0) and 6.13.
(2) From (1) and 3.2.3.
(3) The same as 6.14. ||

7.2. ExaMPLE. (0) The systems & =({xxx=y, xQx=y, xQ(xQ) x=z,
xQ(xR) =z}, {x}) is f-solvable. A possible solution is

D[ 1=(Ax-[ 1) D, D=kt - ,(U3z)(U} y)

(1) The set F = {xa(Ar-x(xt)), x(xxxx)(At - x(xx))(x(x€2))} s
B-{x}-separable. A f-{x}-separator is
D[]=(x-[ 1) 4 with 4 as in Example 0.1.

(2) It is possible to find two A-terms each recognizing itself and each
other. Let & = {xlxl, XXy, XX, X;x,} and X={x,x,}. Because
F,ePFR and &, is distinct then & is 8-X-separable. A possible solution
is

D[ 1=(Ax\x; [ 1) D, D,
where
Dlsit-t(G 1); D,=At-t(G,1)Q;
=Gy, :=Uip,)y::=U1 ».);
sz Gy 3=U1 y3lly2 =Uipd;
G=(U3, Ulyy, y1>

8. LEFT-INVERTIBILITY

It is always possible to transform a system of equations into a single
equation with only one unknown (5.6.2). However, if we are searching for
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a solution, it can be more useful to transform an equation into a system of
equations with as many unknowns as possible. Following this idea we
transform a left-invertibility problem (solve the equation ({x(My)=y},
{x})) into an X-separability problem.

8.0. DeFiNITION. Let T be a theory. We set:
0) L(T)={MeA|ILeAVyeV L(My)=1y}. If MeL(T) we say
that M is T — 1 —invertible.
(1) R(T)={MeA|3ReAVyeV M(Ry)=y;y}. If MeR(T) we say
that M is T-r-invertible.

The sets L(f) and R(f) have been characterized in [BD 74, and MZ 83].
The set L(fn) nR(fn) has been characterized in [Dez 76, BK 80]. Here we
characterize (Corollary 8.2) a subset of L(T), where T 2 An is a sms theory.

8.1. THEOREM. Let T2kn be a sms theory and M= AxoX-xoM, ---
M, A. Then

MeL(T) iff {My,..,M,} is T-{X}-separable.

Proof. Let X=x,, .., X,.

(=) Let LeA and y¢ FV(LM) s.t. L(My)=yy. Then

LOAX -yM [x:=y]--M,[xo:=y])=71).
Hence it holds that
L:T}“IOF' to(Lyto7) - (L, toT),

where 7=1,---1, and {1,, T} nFV(L,---L,)= &. Suppose w>r. We have
n=p+w-—r and

L(My)=T}'?tp+l "’tp+er'yA[M1[x0 = ,V]] “'A[Mn[xo = )’]]=TJ’,

whete AL = (2%, - %o - [ DLAMY)T) - (LAMP) ) by 1+ Ly e
Hence Vie{l,.,n} A[M,[x,:=y]]=¢t;, and also Vie {l,..,n}
A[M]=r,t. Then {M, ., M,} is T-{X}-separable. The case w<r is
analogous.

(<) Let A[ 1=(ix,---x,-[ 1) 4,4, st Vie{l,.,n} A[M,]
=, t,. Then L=2At1,---1,-to4,--- 4, is a left-inverse of M. |
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8.2. COROLLARY. Let T2hn be a sms theory and M = ix,X-xoM, -
M, e A with ({M,, ... M,} )~ nreg({¥})# & (see 522, 6.7, 6.9). Then
MeL(T) iff ({M,,..M,} ,, ePFR and {M,, .., M,} ., is distinct). |l

Proof. From 8.1. and 7.1.2.
Refer to 0.1 for an application of 8.2.

9. CONCLUDING REMARKS AND FURTHER DEVELOPMENT

In summary, the results of this paper show how a disciplinated use of
self-application can be employed in the solution of functional equations
without degenerating into infinite computations. The next step seems to be
to try to discover a larger class of regular systems.
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