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SUMMARY

2-Heptyl-3-hydroxy-4(1H)-quinolone (PQS) is a
quorum-sensing signal molecule used by Pseudo-
monas aeruginosa. The structural similarity between
3-hydroxy-2-methyl-4(1H)-quinolone, the natural
substrate for the 2,4-dioxygenase, Hod, and PQS
prompted us to investigate whether Hod quenched
PQS signaling. Hod is capable of catalyzing the con-
version of PQS to N-octanoylanthranilic acid and
carbon monoxide. In P. aeruginosa PAO1 cultures,
exogenously supplied Hod protein reduced expres-
sion of the PQS biosynthetic gene pqsA, expression
of the PQS-regulated virulence determinants lectin A,
pyocyanin, and rhamnolipids, and virulence in
planta. However, the proteolytic cleavage of Hod by
extracellular proteases, competitive inhibition by the
PQS precursor 2-heptyl-4(1H)-quinolone, and PQS
binding to rhamnolipids reduced the efficiency of
Hod as a quorum-quenching agent. Nevertheless,
these data indicate that enzyme-mediated PQS inac-
tivation has potential as an antivirulence strategy
against P. aeruginosa.

INTRODUCTION

Pseudomonas aeruginosa is an important opportunistic human

pathogen found in soil and water habitats. It is one of the leading

causes of nosocomial infections and the predominant respira-

tory pathogen in cystic fibrosis (CF) (Lyczak et al., 2002). In

common with many pathogenic bacteria, the production of colo-

nization, survival, and virulence factors in P. aeruginosa is coor-

dinated in a growth- and cell density-dependent manner via cell-

to-cell communication or quorum sensing (QS) (Williams et al.,

2007). The hierarchical QS system of P. aeruginosa consists of

an interdependent and overlapping regulatory network using

N-acylhomoserine lactone (AHL) and 2-alkyl-4(1H)-quinolone

(AQ) QS signal molecules (Venturi, 2006; Diggle et al., 2006;

Williams and Cámara, 2009). With respect to the latter, P. aeru-

ginosa produces over 50 different AQ congeners that differ

mainly in the length of the 2-alkyl side chain (C5 to C13), which

can be saturated or unsaturated, and in the presence or absence
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of a 3-position hydroxyl substituent (Lépine et al., 2004). AQs

are known to possess antibacterial, anti-algal, iron-chelating,

and immune modulatory activities. Among these, 2-heptyl-3-

hydroxy-4(1H)-quinolone (the P. aeruginosa quinolone signal,

PQS; Figure 1A) was identified by Pesci et al. (1999) as a QS

signal molecule. PQS is now known to be involved in biofilm

development and in the regulation of many virulence factors

and secondary metabolites including the galactophilic lectin

LecA, pyocyanin, elastase, rhamnolipids, and the MexGHI-

OpmD multidrug efflux pump (Diggle et al., 2003; Allesen-Holm

et al., 2006). A study of the global transcriptional profile of P. aer-

uginosa in response to PQS revealed a significant upregulation

of genes involved in the oxidative stress response and high-

affinity iron acquisition (Bredenbruch et al., 2006; Diggle et al.,

2007). PQS also functions as an iron trap, sequestering iron

from the growth environment and retaining it as the iron(III)-

PQS complex in association with the cell surface of P. aerugi-

nosa (Diggle et al., 2007). In addition, PQS has been suggested

to balance life and death in P. aeruginosa populations by

inducing a protective response in some cells while eliminating

other, damaged cells via pro- and antioxidant activities (Häussler

and Becker, 2008).

The biosynthesis of AQs occurs via the ‘‘head-to-head’’

condensation of anthranilate and a 3-oxo-fatty acid (Ritter and

Luckner, 1971; Bredenbruch et al., 2005) and requires the phnAB

operon or the kynABU genes for providing anthranilate, together

with the pqsABCD operon and the pqsH gene (Gallagher et al.,

2002; Farrow and Pesci, 2007). The latter gene product is a

putative monooxygenase that oxidizes 2-heptyl-4(1H)-quinolone

(HHQ; Figure 1A) to PQS. PqsA is an anthranilate CoA ligase,

which primes anthranilate for entry into the PQS biosynthetic

pathway (Coleman et al., 2008), whereas PqsD was identified

as a condensing enzyme that may either catalyze the head-to-

head condensation of anthranoyl-CoA with a 3-oxo acid or

may be involved in the formation of a 3-oxo acid precursor

(Zhang et al., 2008). PqsB and PqsC are highly homologous

to 3-oxoacyl-(acyl-carrier-protein) synthases and while their

precise contribution to AQ biosynthesis is not known, they are

probably involved in fatty acid recruitment and condensation

(Gallagher et al., 2002). The fifth gene in the pqs operon, PqsE,

is not required for AQ biosynthesis but instead is an effector of

the PQS response (Gallagher et al., 2002; Diggle et al., 2003;

Déziel et al., 2004; Farrow et al., 2008). The major AQs found in

P. aeruginosa cultures are the C7 and C9 congeners of PQS
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Figure 1. Structures of AQs and Mode of Dioxygenase-Catalyzed

PQS Cleavage

(A) Structures of MPQS, PQS, HHQ and HQNO.

(B) 2,4-Dioxygenolytic cleavage of PQS to carbon monoxide and N-octanoyl-

anthranilic acid, catalyzed by Hod from Arthrobacter nitroguajacolicus Rü61a.

See also Figure S1.
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and HHQ together with the N-oxides of HHQ (Figure 1A) and

2-nonyl-4(1H)-quinolone (HNQ).

In AQ signaling, both PQS and its precursor HHQ function as

autoinducers that drive expression of the pqsABCDE operon

through an interaction with the LysR-type transcriptional acti-

vator PqsR (MvfQ) (Déziel et al., 2005; Diggle et al., 2007;

Wade et al., 2005). Consequently, when added exogenously to

a P. aeruginosa pqsA mutant, both PQS and HHQ effectively

drive the expression of a pqsA::lux fusion in a pqsR-dependent

manner (Fletcher et al., 2007). However, in P. aeruginosa,

PAO1, HHQ, in contrast to PQS, does not efficiently restore

the expression of key downstream virulence genes such as

lecA (Diggle et al., 2007). The N-oxides of HHQ and HNQ have

little or no activity in these assays and their signaling functions,

if any, have yet to be established.

PQS and other AQs are present in the sputum and bronchoal-

veolar lavage fluid from CF patients infected with P. aeruginosa

(Machan et al., 1992; Collier et al., 2002). Strains isolated from

infants with CF also showed increased production of PQS (Guina

et al., 2003). Inactivation of AQ signaling by mutagenesis of either

AQ synthesis (e.g., pqsA) or signal transduction genes (pqsR and

pqsE) inhibits virulence gene expression and attenuates patho-

genicity in experimental infection models (Cao et al., 2001; Dig-

gle et al., 2003; Déziel et al., 2005). Furthermore, halogenated

anthranilate analogs that inhibited AQ biosynthesis and signaling

in laboratory cultures also restricted P. aeruginosa systemic

dissemination and mortality in mice without perturbing bacterial

viability (Lesic et al., 2007). Taken together, these observations

suggest that PQS and hence AQ signaling makes an important

contribution to pathogenesis and so constitutes an attractive

antibacterial target. Quorum quenching and attenuation of

P. aeruginosa virulence by enzymes that catalyze cleavage of

signal molecules has been reported for AHL lactonases (Reim-
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mann et al., 2002) and AHL acylases (Lin et al., 2003; Sio et al.,

2006). However, an enzyme that inactivates the PQS molecule

and is capable of inhibiting AQ signaling has not been described.

3-Hydroxy-2-methyl-4(1H)-quinolone 2,4-dioxygenase (Hod,

‘‘1H-3-Hydroxy-4-oxoquinaldine 2,4-dioxygenase’’) of Arthro-

bacter nitroguajacolicus strain Rü61a is a cytoplasmic enzyme

involved in the pathway of 2-methylquinoline (quinaldine) utiliza-

tion, catalyzing the cleavage of 3-hydroxy-2-methyl-4(1H)-

quinolone (MPQS, i.e., the C1 congener of PQS) to carbon

monoxide and N-acetylanthranilic acid. Hod is a monomeric

protein with an a/b-hydrolase fold (Fischer et al., 1999; Frer-

ichs-Deeken et al., 2004; Steiner et al., 2007). It contains an intra-

molecular disulfide bond, which is important for stability and the

rather unique ability of Hod to re-fold to the catalytically active

native state after thermal denaturation (Beermann et al., 2007;

Boehm et al., 2008). Hod, in contrast to most other known oxy-

genases, neither contains nor requires a metal ion or organic

cofactor for catalysis (Fetzner, 2002). The hod gene together

with the other genes coding for 2-methylquinoline conversion

to anthranilate are clustered on the linear conjugative plasmid

pAL1 of strain Rü61a (Overhage et al., 2005; Parschat et al.,

2007). Interestingly, linear pAL1-like plasmids have been found

in several other Arthrobacter spp. isolated from soil (Overhage

et al., 2005), suggesting that the ability to degrade 2-methylqui-

noline and MPQS, or even other AQs, is not uncommon in soil

bacteria.

The structural similarity of the natural substrate and PQS

prompted us to investigate whether Hod is active against PQS

and other related AQs and so capable of quenching AQ signaling

in P. aeruginosa.

RESULTS

Products of PQS Cleavage by Hod
Hod-catalyzed conversion of PQS resulted in formation of car-

bon monoxide, which was detected spectrophotometrically in

the form of CO hemoglobin (see Figure S1 available online), sug-

gesting that PQS, consistent with MPQS, the physiological

substrate of Hod, undergoes 2,4-dioxygenolytic ring cleavage

(Figure 1B). Electrospray mass spectrometry of the extracted

organic product from enzymatic turnover of PQS indicated

a compound with an ion at m/z of 264.159 for [M+H]+ and

286.141 for [M+Na]+; analysis of authentic N-octanoylanthranilic

acid showed m/z of 264.159 for [M+H]+, consistent with the

chemical composition [C15H22O3N]+, and m/z 286.142 for

[M+Na]+. Fragmentation of [M+H]+ (m/z 264.159) of the product

from PQS cleavage resulted in m/z(%) of 120.044(100) and

138.055(19) and corresponded to the fragmentation pattern of

[M+H]+ of the reference compound of m/z(%) 120.044(100)

[C7H6ON]+ and 138.055(20) [C7H8O2N]+ (Figure S1). The product

from Hod-catalyzed PQS cleavage and authentic N-octanoylan-

thranilic acid eluted in a single peak when co-chromatographed

on a reversed-phase HPLC column.

Mass spectral analyses of the extract of the enzyme assay,

obtained by combined anion exchange/reversed-phase chro-

matography, did not indicate the additional presence of an

a-oxo acid [C16H21O4N] that would result from 2,3-dioxygeno-

lytic cleavage of PQS. To examine the possibility that an oxo

compound might have been formed as side product, but lost
Elsevier Ltd All rights reserved
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during extraction, the aqueous enzyme assays after complete

conversion of the substrate were directly reacted with 2,4-dini-

trophenylhydrazine. Based on calibration of the assay with pyr-

uvic acid hydrazone (detection limit of R4.3 mM), approximately

1.9% of side product would have been detected from the Hod-

catalyzed conversion of 0.23 mM PQS, if the hydrazone of an

a-oxo acid formed from PQS were detected with the same sensi-

tivity as that of pyruvic acid. However, hydrazone formation was

not observed, suggesting specificity of Hod for 2,4-dioxygeno-

lytic cleavage of PQS.

Catalytic Activity of Hod toward AQs In Vitro, in Bacterial
Culture Media, and in the Presence of Iron(III)
or Rhamnolipids
To determine the activity of purified Hod toward 2-alkyl-3-

hydroxy-4(1H)-quinolones, a series of compounds with alkyl

chain lengths ranging from C1 to C11 was synthesized. Notably,

Hod-catalyzed dioxygenolysis of 2-ethyl-3-hydroxy-4(1H)-qui-

nolone was faster than that of MPQS, but further extension of

alkyl chain length impeded the reaction. Compared with the

activity of Hod [in Tris/HCl buffer (pH 8)] toward MPQS of

70 U mg�1 (100%), relative activities of 126%, 60%, 23%, and

�0.009% were observed with 2-ethyl-, 2-propyl, 2-pentyl-, and

2-nonyl-3-hydroxy-4(1H)-quinolone, respectively. Conversion

of the 2-undecyl-substituted congener was not detected. The

catalytic activity of Hod toward PQS was 0.2 U mg�1, i.e., about

0.3% of MPQS activity.

The apparent kcat and Km values of Hod for PQS, determined in

Tris/HCl buffer (pH 8), were 0.16 s�1 and 13.4 mM, respectively.

Since in air-saturated buffer kcat app and Km app of the enzyme for

the physiological substrate MPQS are 38.4 s�1 and 2.7 mM,

respectively, the catalytic efficiency kcat app/Km app of the enzyme

for PQS is about 1200-fold lower than for MPQS. UV/Vis spectral

analyses indicated that HHQ, the precursor of PQS, is not con-

verted by the enzyme. Notably, HHQ acts as competitive inhib-

itor of Hod-catalyzed PQS conversion [Kḿ = Km 3 (1 + [I]/Kic)],

with an inhibition constant Kic of 24 mM. 2-Heptyl-4-hydroxyqui-

noline N-oxide (HQNO; Figure 1A) was neither a substrate nor an

inhibitor of Hod.

Specific Hod activities toward the physiological substrate

MPQS in bacterial culture media including sterile Luria broth

(LB) (pH 7.4), casamino acids medium (pH 7; Cornelis et al.,

1992), high-iron mineral salts medium (pH 7, with 25 mM FeSO4;

Bredenbruch et al., 2006), and QS selection medium (pH 6.7;

Diggle et al., 2007) were 42 U mg�1, 31 U mg�1, 27 U mg�1, and

28 U mg�1, respectively. Hod has a broad pH optimum at pH 8.0–

10.5 and shows relative activities of 92%, 84%, and 42% at pH

7.5, 7.0, and 6.5, respectively (measured in 10 mM disodium

phosphate/borate buffer). Hence pH may contribute to the

decreased activities observed, as compared with the activity of

70 U mg�1 observed in the standard biochemical assay.

MPQS and PQS were previously shown to form 2:1 and 3:1

chelate complexes with Fe(III) at physiological pH (Diggle et al.,

2007). In P. aeruginosa cultures, the PQS dissolved in the

medium and associated with the cell surface may well exist as

Fe(III) complexes (Diggle et al., 2007). Since binding of Fe(III)

ions to the 3-hydroxyl and 4-oxo groups of MPQS and PQS

might affect substrate recognition and/or turnover by the

enzyme, its activity was determined at different molar ratios of
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FeCl3 to MPQS or PQS. In the Tris-buffered biochemical assay,

>80% of catalytic activity was retained at up to 5-fold molar

excess of Fe(III) over organic substrate (Figure S2), suggesting

that the iron-to-PQS ratios expected to occur in P. aeruginosa

cultures in commonly used media as well as in vivo should not

significantly affect the performance of the enzyme.

When PQS (25 mM) was equilibrated in buffer with P. aerugi-

nosa rhamnolipids, the apparent activity of Hod toward PQS

was decreased to about 65% and 55% in the presence of

10 mg ml�1 and 20 mg ml�1 rhamnolipids, respectively. How-

ever, a further increase in rhamnolipid concentration had

comparatively minor effects, since the enzyme showed about

48% of activity in a mixture of 25 mM PQS with 100 mg ml�1 rham-

nolipids. The activity of Hod toward MPQS was not affected by

the presence of rhamnolipids, excluding the possibility of dena-

turation of Hod by the surfactants (data not shown).

Hod-Dependent Quenching of PQS-Dependent QS
in P. aeruginosa

To determine whether the catalytic activity of Hod was sufficient

to perturb AQ signaling in P. aeruginosa, we first determined the

impact of Hod on PQS-dependent activation of chromosomally

integrated pqsA::lux and lecA::lux fusions, in a P. aeruginosa

pqsA mutant, to circumvent any competitive inhibition due to

the presence of HHQ and in the absence of endogenously

produced PQS. Figure 2A shows that addition of 25 U Hod to

a 0.3 ml culture results in an �4-fold reduction in pqsA::lux

expression when induced by 2 mM PQS. Similar experiments

with the lecA::lux fusion (Figure 2B) and pyocyanin (Figure 2C)

also show that Hod downregulates the production of both of

these PQS-dependent virulence determinants in a pqsA mutant.

When added to cultures of the wild-type P. aeruginosa PAO1

strain, exogenous Hod (25 U/0.3 ml) only reduced pqsA expres-

sion to 70% of the control (Figure 3A), whereas lecA expression

was reduced to 37% of the control (Figure 3B). This finding is in

good agreement with the levels of LecA protein (Figure 3C). While

Hod had little effect on pyocyanin production (Figure 3D), at 50 U

ml�1 it reduced rhamnolipid levels in PAO1 wild-type cultures

by �35% from 4.9 ± 0.4 to 3.2 ± 0.5 mg rhamnolipids ml�1

(Figure 3E).

To gain further insights into the activity of Hod on PQS in P. aer-

uginosa PAO1 wild-type cultures and to determine whether the

efficacy of Hod was reduced in culture, we extracted stationary

phase cultures treated with Hod and quantified PQS and HHQ

levels using LC-MS. Figure 3F shows that Hod reduced PQS

but not HHQ levels in PAO1 cultures in a concentration-depen-

dent manner. However, although the enzyme retained >80% of

catalytic activity after incubation in sterile LB for 2 days at 30�C

or 37�C, it lost activity when incubated in cultures or spent culture

supernatants of P. aeruginosa PAO1. The half-life of Hod activity

in a batch culture was about 6 hr (Figure S3). In culture superna-

tant, Hod activity decreased continuously, with a similar half-life.

SDS-PAGE analysis suggested that the loss of activity was due to

proteolytic degradation (Figure S3). This was confirmed by incu-

bating Hod with the P. aeruginosa PAO1 type II secretion (xcp)

mutant D40ZQ that is unable to secrete a number of exopro-

teases (Ball et al., 2002). In this case, and in contrast to the parent

PAO1 strain, Hod reduced PQS-dependent pyocyanin produc-

tion by �60% (data not shown).
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Figure 2. Hod-Mediated Quorum Quenching in an AQ-Negative

P. aeruginosa pqsA Mutant

(A) pqsA expression in PAO1 pqsA CTX-lux::pqsA grown in the presence of

2 or 50 mM PQS and with or without Hod (25 U/0.3 ml).

(B) lecA expression in PAO1 pqsA lecA::lux grown in the presence of 2 or 50 mM

PQS and with or without Hod (25 U/0.3 ml).

(C) Pyocyanin production in PAO1 and in PAO1 pqsA in the presence of 2 mM

PQS and with or without Hod (25 U/0.3 ml). All experiments were carried out in

triplicate at least twice. Error bars represent one standard deviation of the

mean value from three independent measurements.
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Hod Reduces P. aeruginosa Virulence in a Plant
Infection Model
Although P. aeruginosa is not generally considered as a plant

pathogen, plants have been used successfully as in vivo disease

models to study pseudomonas virulence, and experimental data

demonstrated conservation of virulence mechanisms between
1262 Chemistry & Biology 16, 1259–1267, December 24, 2009 ª2009
plant and animal infection models (Starkey and Rahme, 2009).

PqsR (MvfR), for example, was discovered using plants as model

hosts (Starkey and Rahme, 2009). Using the lettuce leaf model

we demonstrated a reduced virulence of the PQS negative

mutant PAO1 pqsA in comparison to the parent strain (data not

shown). To verify if Hod can attenuate virulence in the same

model we coinjected P. aeruginosa PAO1 with Hod, which (1)

caused much less leaf rib tissue damage than the control and

(2) reduced bacterial growth in the leaf tissues (Figure 4).

DISCUSSION

The multifactorial virulence of P. aeruginosa is tightly regulated

via a sophisticated, hierarchical QS network that incorporates

both AHL and AQ signal molecules and hence offers a number

of different potential targets for novel antibacterials. These

include the QS signal synthases (e.g., LasI, RhlI, and PqsA)

and response regulator proteins (e.g., LasR, RhlR, and PqsR)

as well as the QS signal molecules themselves. With respect to

the latter, antibodies raised against QS signal molecule conju-

gates have shown efficacy in experimental animal infection

models (Kaufmann et al., 2008) while enzymes such as lacto-

nases and acylases capable of inactivating AHL-dependent QS

reduce virulence gene expression in vitro and in planta (Dong

et al., 2007). However, to our knowledge, no enzymes capable

of quenching AQ- or PQS-dependent QS have previously been

described. Here we have reported on the potential of the dioxy-

genase Hod to inactivate PQS, downregulate the expression of

key P. aeruginosa PQS-dependent virulence genes, and reduce

in planta growth and plant tissue damage.

When incubated with Hod, PQS undergoes 2,4-dioxygenolytic

cleavage with concomitant formation of carbon monoxide,

consistent with the natural substrate MPQS. Carbon monoxide

is an inhibitor of the respiratory chain and also affects global tran-

scriptional regulators of P. aeruginosa; however, effective inhibi-

tion requires CO to be delivered intracellularly (Davidge et al.,

2009; Desmard et al., 2009).

The presence of the C7 alkyl chain substantially reduced the

activity of the enzyme such that its catalytic efficiency was

some 1200-fold lower than for MPQS. Interestingly, Hod was

most active against the C2 (ethyl) congener of PQS with efficacy

reducing as alkyl chain length was extended such that the

enzyme was virtually inactive against the C9 PQS congener.

Although P. aeruginosa produces PQS congeners with C5 to

C11 alkyl chains, the C7 and to a lesser extent the C9 com-

pounds are the most active in driving pqsA expression and there-

fore the primary 2-alkyl-3-hydroxy-4(1H)-quinolone QS signals

(Fletcher et al., 2007). AQ biosynthesis and pqsA expression

are not, however, exclusively dependent on PQS acting as

a coinducer of the transcriptional activator protein PqsR (Wade

et al., 2005; Xiao et al., 2006). This is because HHQ, the direct

precursor of PQS, also drives the expression of pqsA in a

PqsR-dependent manner and is more effective than PQS with

a lower EC50 (0.4 mM compared with 18 mM for PQS) (Fletcher

et al., 2007). Consequently, since both HHQ and PQS accumu-

late in P. aeruginosa culture supernatants, the ability of Hod to

reduce AQ biosynthesis by downregulating pqs gene expression

in culture is therefore likely to be influenced by HHQ. P. aerugi-

nosa cultures also accumulate substantial concentrations of
Elsevier Ltd All rights reserved



Figure 3. Hod-Mediated Quorum Quench-

ing in P. aeruginosa PAO1

The impact of Hod on pqsA and lecA expression

(A and B), on lectin A protein (C), on pyocyanin

production (D), on rhamnolipid production (E),

and on PQS and HHQ concentrations (F). For (A),

(B) and (D), 25 U Hod/0.3 ml was used. The effect

of Hod on rhamnolipid production (E) was

analyzed with 50 U Hod/ml.

(C) Lane 1, PAO1; lane 2, PAO1 + 25 U Hod/0.3ml;

lane 3, PAO1 + 50 U Hod/0.3ml; lane 4, PAO1

pqsH (negative control); lane 5, lectin A (purified

protein control). Western blot analysis was

repeated three times and each experiment was

carried out in triplicate at least twice. Error bars

represent one standard deviation of the mean

value from three independent measurements.
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the N-oxide HQNO. This AQ, which does not contribute to pqsA

expression, is derived from the same substrate pool as HHQ.

While HQNO proved to be neither a substrate nor an inhibitor

of Hod, HHQ acted as a competitive inhibitor with a Kic of

24 mM (at pH 8), implying that at least at high HHQ concentra-

tions, Hod may not be effective at quenching PQS-dependent
Figure 4. Hod (25 U/Lettuce Leaf) Reduces P. aeruginosa Growth

and Tissue Damage in a Plant Leaf Infection Model

Hod was co-inoculated with PAO1 into lettuce leaf ribs and incubated for

2 days. They were monitored for soft rot damage (inset) and for bacterial viable

counts (determined as cfu/mg leaf mid-rib tissue). Error bars represent the

standard error of the mean value from six independent measurements.

Chemistry & Biology 16, 1259–1267, December 24, 2009 ª
QS in P. aeruginosa cultures. In addition,

other bacterial culture medium compo-

nents, medium pH, and bacterial exo-

products could conceivably interfere

with Hod-mediated quorum quenching.

Therefore, we determined the activity of

Hod toward MPQS in un-inoculated

conventional rich and chemically defined

laboratory bacterial culture media and

found a reduction to between 38.5%

and 60% of that observed at pH 8 in the

standard biochemical assay. Apart from

pH, the iron content of such un-inocu-

lated growth media may also reduce the

efficacy of Hod since PQS (and MPQS)
forms 2:1 and 3:1 complexes with Fe(III). However, in the Tris-

buffered assay even at a 5-fold molar excess of iron, over 80%

of catalytic activity was retained. These data are important

since they suggest that Hod should be capable of interfering

with PQS signaling via all three pathways, i.e., (1) the pqsR

pathway in which PQS induces the expression of genes such

as pqsA but does not require pqsE; (2) the pqsR/pqsE pathway

in which PQS induces the production of lectin, pyocyanin, and

rhamnolipids; and (3) the iron-deprivation pathway in which the

iron-chelating activity of PQS induces siderophore production

(Diggle et al., 2007).

P. aeruginosa exports biosurfactant rhamnolipids that function

to facilitate swarming motility, promote the uptake of hydro-

phobic compounds, contribute to biofilm architecture, and

induce the rapid necrotic killing of polymorphonuclear leuco-

cytes (Jensen et al., 2007). In addition, rhamnolipids solubilize

PQS (which is very poorly water soluble) and significantly

enhance its bioavailability as revealed by the PQS-dependent

induction of lasB expression in a P. aeruginosa lasR mutant

and by the augmentation of PQS-induced apoptosis in eukary-

otic cells (Calfee et al., 2005). Given the importance of rhamno-

lipids in PQS solubilization and PQS bioactivity, it was relevant

to determine whether by sequestering PQS they reduced the

efficacy of Hod. In buffer, we noted that the apparent activity

of the enzyme toward PQS (25 mM) was reduced to �55% in

the presence of 20 mg ml�1 rhamnolipids. Further increases in
2009 Elsevier Ltd All rights reserved 1263
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rhamnolipid concentration had only minor affects on Hod activ-

ity, which is consistent with the observations of Calfee et al.

(2005) that the rhamnolipid-dependent augmentation of PQS

bioactivity was diminished at high rhamnolipid concentrations.

One further group of exoproducts likely to influence Hod

activity were secreted exoproteases, and we observed that in

spent stationary phase P. aeruginosa cell-free culture superna-

tants, Hod was rapidly inactivated via proteolytic cleavage with

a half-life of approximately 6 hr. Taken together, the above

data suggested that the prevailing environmental conditions

and presence of bacterial exoproducts, in particular the rhamno-

lipids and exoproteases, were likely to impact on the efficacy of

Hod as a quorum quenching enzyme. However, both exopro-

teases and rhamnolipid production are regulated via QS and

therefore the enzymatic inactivation of a key QS signal molecule

such as PQS is likely to reduce the rate of production and accu-

mulation of these exoproducts during bacterial growth.

To evaluate the potential efficacy of Hod as a quorum-quench-

ing enzyme, we initially examined pqsA::lux and lecA::lux

expression in a pqsA mutant supplied with exogenous PQS

since a pqsA mutant does not produce HHQ or other AQs. In

these experiments pqsA and lecA expression as well as pyocya-

nin production were substantially downregulated. In contrast,

when the parent P. aeruginosa strain was incubated with the

enzyme, pqsA expression was reduced by only 30% (as

opposed to 63% with the pqsA mutant) and pyocyanin was unaf-

fected. In contrast, lecA expression, lectin A protein levels, and

rhamnolipids were each substantially quenched. These data

can be explained by the presence of HHQ, which acts as a potent

pqsA inducer (as well as a competitive inhibitor of Hod), and by

the fact that PQS is a much more potent inducer of lectin A

and rhamnolipids than HHQ. LC-MS analysis of P. aeruginosa

wild-type cultures treated with Hod confirmed that PQS levels,

unlike HHQ, were effectively reduced in a concentration-depen-

dent manner. Because rhamnolipids are regulated via PQS (Dig-

gle et al., 2003), the Hod-mediated reduction in PQS will affect

PQS signaling directly and indirectly since lower rhamnolipid

levels will in turn reduce the bioactivity of PQS and hence its

activity as a QS signal. Thus, the quorum quenching of specific

virulence factors observed in laboratory culture could be

extended to a plant infection model where Hod reduced both

virulence and bacterial growth in leaf tissues.

Despite its relatively weak PQS-inactivating activity and sus-

ceptibility to inactivation by P. aeruginosa exoproducts, Hod

was capable of quorum quenching in vitro and in vivo. This

finding is all the more interesting considering that PQS can be

packaged into membrane vesicles that arise through the pinch-

ing off of the outer membrane and fusion with the envelope of

other bacterial cells, serving as a mechanism for trafficking

PQS within a P. aeruginosa population (Mashburn and Whiteley,

2005; Mashburn-Warren et al., 2008).

Recently, Hod has been crystallized (Steiner et al., 2007).

Although PQS is much less susceptible to cleavage by Hod

than MPQS, further insights into the three-dimensional structure

of the enzyme active site may reveal opportunities for modifica-

tion to accommodate the C7 side chain of PQS and improve

catalytic efficiency. Similarly, it may also be possible to engineer

Hod to reduce its susceptibility to P. aeruginosa exoproteases or

to encapsulate the protein such that it is delivered in a protected
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environment permitting PQS substrate but not exoprotease

access.

SIGNIFICANCE

Pseudomonas aeruginosa produces a variety of 2-alkyl-

4(1H)-quinolones (AQ) that were originally discovered during

the search for novel secondary metabolites with therapeutic

potential. AQs have antibacterial, iron chelating, immune

modulatory, and signaling properties. PQS and its pre-

cursor, HHQ, both function as QS signal molecules and are

components of a sophisticated gene regulatory network

coupling cell-to-cell communication to population density

and the elaboration of multiple exoproduct virulence factors.

Mutation of key AQ biosynthesis or signal transduction

genes results in the attenuation of P. aeruginosa virulence

in animal and plant experimental infection models. Conse-

quently there is considerable interest in the development

of novel selective agents that prevent infection by targeting

bacterial virulence rather than growth since these are less

likely to select rapidly for resistance. In a search for enzymes

capable of inactivating PQS-dependent QS we discovered

that 3-hydroxy-2-methyl-4(1H)-quinolone 2,4-dioxygenase

(Hod) from Arthrobacter nitroguajacolicus strain Rü61a is

capable of catalyzing the conversion of PQS to N-octanoy-

lanthranilic acid and carbon monoxide, albeit with substan-

tially less catalytic efficiency than its natural substrate

MPQS. Despite the susceptibility of Hod to pseudomonas

exoproteases and to competitive inhibition by HHQ as well

as the sequestration of PQS by rhamnolipids in bacterial

culture, Hod was capable of significantly reducing the

expression of key P. aeruginosa virulence factors and

reducing growth and tissue damage in a plant leaf infec-

tion model. These data highlight the potential of quenching

AQ-dependent QS and hence virulence through the enzy-

matic degradation of extracellular AQ signaling molecules.

Besides the ability to cleave and thus inactivate PQS, Hod

is also interesting as a carbon monoxide-forming enzyme.

Since intracellular carbon monoxide is a potent inhibitor of

the respiratory chain and also affects gene expression in

P. aeruginosa, CO release from 3-hydroxy-4(1H)-alkylquino-

lones by intracellular Hod might significantly affect bacterial

growth and metabolism.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Plasmids, and Culture Conditions

The strains used in this study are listed in Table S1. The P. aeruginosa PAO1

rhlR and pqsH mutants were constructed by allelic exchange as described

before (Fletcher et al., 2007). Conjugal transfer was performed as described

by Kaniga et al. (1991). E. coli M15 (pREP4, pQE30-hodC69S) was grown in

LB (Sambrook et al., 1989) in the presence of ampicillin (100 mg ml�1) and

kanamycin (25 mg ml�1) at 37�C. At an optical density (OD600 nm) of 0.5, gene

expression was induced by addition of 0.5 mM isopropyl-b-D-thiogalactopyr-

anoside, and the cultivation temperature was decreased to 20�C. Cells were

harvested by centrifugation at an OD600nm of �3.2. Unless otherwise stated,

P. aeruginosa strains were grown with shaking in LB at 37�C.

Synthesis of AQs and N-octanoylanthranilic Acid

PQS, HHQ, and related compounds were synthesized as described before (Dig-

gle etal., 2006).MPQSwas synthesized from3-formyl-2-methyl-4(1H)-quinolone
Elsevier Ltd All rights reserved
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(Eiden et al., 1978) as described by Cornforth and James (1956). N-Octanoylan-

thranilic acid, mp 93-94�C, was prepared as a creamy solid in 82% yield by

acylation of anthranilic acid solution in sodium hydroxide with octanoyl chloride

according to Wells et al. (1952).

Purification of Recombinant Hod

Since Hod (GenBank: CAL09864) tends to form dimers due to oxidative forma-

tion of an intermolecular disulfide bridge (Frerichs-Deeken et al., 2004), we

used protein with a substitution of cysteine-69 by serine in this study. Purifica-

tion of the Hod protein, carrying an N-terminal hexahistidine tag besides the

C69S substitution, from E. coli M15 (pREP4, pQE30-hodC69S) was performed

as described in Beermann et al. (2007). The purity of the protein preparations

was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE) and Coomassie staining. Concentrations of Hod were deter-

mined by absorption measurements using an extinction coefficient (3280nm)

of 1.937 ml mg�1 cm�1 (Beermann et al., 2007).

Enzyme Assays and Kinetics

The catalytic activity of Hod toward MPQS was determined spectrophotomet-

rically in 50 mM Tris/HCl (pH 8), or in 10 mM disodium phosphate/borate buffer

(pH 8) as described previously (Frerichs-Deeken et al., 2004). All assays were

performed in air-saturated buffer. Activity toward 2-ethyl-, 2-propyl-, 2-pentyl-,

2-heptyl-, and 2-nonyl-3-hydroxy-4(1H)-quinolone was determined spectro-

photometrically, using molar extinction coefficients [in 50 mM Tris/HCl buffer

(pH 8)] of 3335nm = 9.72 3 103 M�1 cm�1, 3337nm = 9.55 3 103 M�1 cm�1,

3382nm = 5.86 3 103 M�1 cm�1, 3377nm = 10.89 3 103 M�1 cm�1, and 3370nm =

10.88 3 103 M�1 cm�1, respectively. Enzyme-catalyzed conversion of

2-undecyl-3-hydroxy-4(1H)-quinolone was tested by recording UV/Vis-

spectra of the compound, incubated in buffer with 5 mM Hod for up to 48 hr.

Stock solutions of AQs (10 mM) were prepared in methanol. In the standard

assays, final concentrations of MPQS and PQS were 100 mM and 45 mM,

respectively. One unit of enzyme activity was defined as the amount of enzyme

required to consume 1 mmol of substrate per minute at 30�C under the condi-

tions described. To determine the apparent kinetic constants of Hod for PQS,

final PQS concentrations of 3.5–45 mM were used in the assays and apparent

Km and kcat values were deduced from Hanes plots. Four independent series of

measurements were performed, using different preparations of Hod, and each

assay within a series was done at least in triplicate. Standard deviations for all

apparent Km and kcat values were below ±17% of the average value within

a series of experiments (i.e., for individual protein preparations), but up to

±30% (Km app) and up to ±43% (kcat app) of the value among independent

experiments, i.e., among different protein preparations.

Hod-catalyzed conversion of HHQ was assessed by recording UV/Vis

spectra (200–400 nm) for up to 16 hr of an assay mixture that contained

5 mM of enzyme. To examine whether HHQ and HQNO act as inhibitors of

Hod, its activity toward PQS (10–50 mM) was determined in the presence of

20, 35, 40, and 50 mM HHQ and 50 mM HQNO. Two independent series of

experiments were performed, and each assay was performed in triplicate.

The activity of Hod in different culture media was also estimated in spectro-

photometric assays, after determining the corresponding molar absorption

coefficients, 3334nm, of MPQS.

To determine the effect of P. aeruginosa rhamnolipids on the activity of Hod

toward PQS, 25 mM PQS was equilibrated for 20 hr (at 37�C and 550 rpm) in

50 mM Tris/HCl buffer (pH 7.4) with different concentrations of rhamnolipids

(5–300 mg ml�1). After addition of Hod (40 mg ml�1), PQS cleavage was moni-

tored at 377 nm. Since the presence of rhamnolipids changes the UV spectrum

of PQS, indicating close interaction, the molar extinction coefficient (at 377 nm)

of PQS was determined for all PQS-rhamnolipid mixtures tested.

Identification of Products Formed from PQS

Enzyme-catalyzed formation of carbon monoxide from PQS was detected using

a highly specificspectrophotometric assay developed by Klendshojet al. (1950).

The organic product of Hod-catalyzed cleavage of PQS was purified by

combined anion exchange/reversed-phase chromatography and analyzed by

mass spectrometry. For details, see Supplemental Experimental Procedures.

To assess whether the catalytic activity of Hod possibly involves 2,3-dioxy-

genolytic cleavage of PQS, resulting in formation of an a-oxo acid, the product

from PQS conversion was reacted with 2,4-dinitrophenylhydrazine (Friede-
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mann and Haugen, 1943). 39 mg of PQS (0.23 mM) was incubated for 8 hr

with 1 mg of Hod in assay buffer. Subsequent to addition of 2,4-dinitrophenyl-

hydrazine (dissolved in 2 M HCl) and incubation for 5 min, the reaction mixture

was adjusted to alkaline pH with NaOH, and 2,4-dinitrophenylhydrazones

were detected spectrophotometrically at 440 nm. The sensitivity of the assay

was determined using pyruvic acid as a reference oxo acid.

Bioluminescence Reporter Gene Assays

The impact of Hod on pqsA::lux and lecA::lux promoter fusions chromosomally

integrated into P. aeruginosa was determined using a combined, automated

luminometer-spectrometer (Genios Pro; TECAN Ltd). Overnight cultures of

P. aeruginosa were diluted 1:1000 in fresh LB medium, and 0.2 ml cultures

were grown in microtiter plates. Where required, AQs and/or Hod were added

at the concentrations indicated. Luminescence and turbidity were automati-

cally determined every 30 min. Luminescence is given in relative light units

divided by OD600nm. All assays were carried out in triplicate at least three times.

Exoproduct Assays

Pyocyanin was extracted with chloroform from the culture supernatants of

strains grown in the presence or absence of Hod in 96 well microtiter plate

format and quantified spectrophotometrically at 520 nm (Essar et al., 1990)

using a NanoDrop spectrophotometer (Thermo Scientific). Lectin A (PA-1L)

protein levels were determined by western blot analysis of whole cell lysates

as described by Winzer et al. (2000). Rhamnolipid levels in the P. aeruginosa

wild-type with and without Hod and in the pqsA mutant were quantified indi-

rectly using the orcinol method as described in Wilhelm et al. (2007) using

a P. aeruginosa PAO1 rhlR mutant as a rhamnolipid negative control.

LC-MS Quantification of PQS and HHQ

AQs were extracted from Pseudomonas aeruginosa PAO1 culture superna-

tants grown in the presence or absence of Hod in 96 well microtiter plate

format. 150 ml of supernatant was shaken with 300 ml of ethyl acetate acidified

with acetic acid (0.1%) and centrifuged. 150 ml of the organic phase was trans-

ferred to a fresh eppendorf tube. The extraction step was repeated three times

and after drying the organic fraction (total volume 450 ml), 50 ml methanol was

used to solubilize the compounds for LC-MS analysis.

Lettuce Leaf Infection Model

Ten microliter aliquots of a P. aeruginosa culture resuspended to OD600nm 0.1

in 10 mM MgSO4 with or without Hod (25 U) were injected into the midribs of

fresh romaine lettuce leaves incubated for 2–5 d as described by Starkey and

Rahme (2009) and monitored for the appearance of soft-rot symptoms. In

addition, the numbers of bacterial cells (cfu) mg�1 mid-rib were determined

after a defined incubation period.

SUPPLEMENTAL DATA

Supplemental Data include three figures, one table, and Supplemental Exper-

imental Procedures and can be found with this article online at http://www.cell.

com/chemistry-biology/supplemental/S1074-5521(09)00404-9.
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