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Abstract Formulae expressing explicitly the q-difference derivatives and the moments of the polynomials
Pn(x ; q) ∈ T (T ={Pn(x ; q) ∈ Askey–Wilson polynomials: Al-Salam-Carlitz I, Discrete q-Hermite I, Little
(Big) q-Laguerre, Little (Big) q-Jacobi, q-Hahn, Alternative q-Charlier) of any degree and for any order
in terms of Pi(x ; q) themselves are proved. We will also provide two other interesting formulae to expand
the coefficients of general-order q-difference derivatives D

p
q f (x), and for the moments x�D

p
q f (x), of an

arbitrary function f(x) in terms of its original expansion coefficients. We used the underlying formulae to
relate the coefficients of two different polynomial systems of basic hypergeometric orthogonal polynomials,
belonging to the Askey–Wilson polynomials and Pn(x ; q) ∈ T. These formulae are useful in setting up the
algebraic systems in the unknown coefficients, when applying the spectral methods for solving q-difference
equations of any order.

© 2010 Cairo University. All rights reserved.

Introduction

The expansion of a given function as a series in classical orthogonal polynomials is a matter of great interest in applied mathematics and
mathematical physics. This is particularly true for the connection problem between any two families of classical orthogonal polynomials.
Usually, the determination of the expansion coefficients of this series requires a deep knowledge of hypergeometric functions. It should be
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stressed that, even when explicit forms for these coefficients are available, it is often useful to have a linear recurrence relation satisfied by
these coefficients. This recurrence relation may serve as a tool for detection of certain properties of the expansion coefficients of the given
function, and for numerical evaluation of these quantities, using a judiciously chosen algorithm [1]. The construction of such recurrences
attracted much interest in the last few years. Special emphasis has been given to the classical continuous orthogonal polynomials (Hermite,
Laguerre, Jacobi and Bessel), the discrete cases (Hahn, Meixner, Krawtchouk and Charlier) and the basic hypergeometric orthogonal
polynomials, belonging to the Askey–Wilson polynomials.

The construction of recurrence relations for the coefficients of the Fourier series expansions with respect to the classical continuous/discrete
orthogonal polynomials is presented by many authors. Special emphasis by Lewanowicz [2–4] is given to solving the connection and
linearization problems. Ronveaux et al. [5], Godoy et al. [6] and Area et al. [7] have developed a recurrent method for solving the connection
problem for all families of classical orthogonal polynomials, as well as some special kind of linearization problems, and have used it for
solving different problems related to the associated Sobolev-type polynomials, etc. [see also, Godoy et al. [8,9]]. Also, different algorithms
for solving the connection problem of the four families of classical orthogonal polynomials of continuous variable (Laguerre, Hermite,
Jacobi and Bessel) are presented by Doha [10–12] and Doha and Ahmed [13] respectively, and for the discrete cases (Hahn, Meixner,
Krawtchouk and Charlier) by Doha and Ahmed [14,15].

Also, the construction of recurrence relations for the coefficients of the Fourier series expansions with respect to the q-classical orthogonal
polynomials are presented by Lewanowicz [16,17], Lewanowicz et al. [18], and Lewanowicz and Woźny [19]. A great importance of the
connection and linearization coefficients is appeared in [20–28].

Lately, there has been increasing interest in the q-orthogonal polynomials. This is due to their numerous applications in several areas
of mathematics, e.g., continued fractions, Eulerian series, theta functions, elliptic functions (cf. [29–31]), quantum groups and algebras
[32–34], discrete mathematics (combinatorics, graph theory) and coding theory, among others (see also [24]). There is also a connection
between the representation theory of quantum algebras (Clebsch–Gordan coefficients, 3j and 6j symbols), which play an important role
in physical applications, and the q-orthogonal polynomials; see [35] and the references cited there. This partially motivates our interest
in such polynomials. Another motivation is that the theoretical and numerical analysis of numerous physical and mathematical problems
very often requires the expansion of an arbitrary polynomial or the expansion of an arbitrary function with its q-derivatives and moments
into a set of q-classical orthogonal polynomials. This is also true for the basic hypergeometric orthogonal polynomials belonging to the
Askey–Wilson polynomials. They are important in certain problems of mathematical physics; for example, the development in quantum
groups has led to the so-called q-harmonic oscillators (see, for instance [36–39]). The known models of q-oscillators are closely related
with q-orthogonal polynomials. The q-analogues of boson operators have been introduced explicitly in Askey and Suslov [36], where the
corresponding wave functions were constructed in terms of the continuous q-Hermite polynomials of Rogers (see [40,41]), in terms of the
Stieltjes-Wigert polynomials [42] and in terms of q-Charlier polynomials of Al-Salam and Carlitz [43]. Askey and Suslov [44] have shown
that Al-Salam-Carlitz I polynomials are closely connected with the q-harmonic oscillator. Also, Atakishiyev and Klimyk [45] have shown
that the little q-Laguerre polynomials are related to the problem of diagonalization (eigenfunctions, spectra, transition coefficients, etc.) of
some classes of operators for the discrete series representations of the quantum algebra Uq (su1,1).

In this paper we introduce new knowledge and explicit formulae for the expansion coefficients of general-order q-derivatives and the
moments of an arbitrary function in terms of q-orthogonal polynomials. Similar formulae have been obtained by Karageorghis [46,47],
Phillips [48], Doha [10–12,49,50] and Doha and Ahmed [13–15] for classical orthogonal polynomials of continuous and discrete variables,
as well as Doha and Ahmed [51] for Al-Salam-Carlitz I polynomials and little (big) q-Laguerre, belonging to the Askey–Wilson polynomials,
which are unknown and traceless in the literature. To obtain such formulae, we require knowledge of the so-called structure and three-term
recurrence relations for the q-orthogonal polynomials.

The paper is organized as follows. In “Properties of the q-classical orthogonal polynomials in the Hahn sense” section, we give some
relevant properties of the polynomials Pn(x ; q) ∈ T. In “Relation between the coefficients a(p)

n and an and the pth q-derivative of Pn(x ; q) ”
section, we prove a theorem that relates the Pn(x ; q) expansion coefficients of the q-derivatives of a function in terms of its original expansion
coefficients. Explicit expressions for the q-derivatives of the polynomials Pn(x ; q) of any degree and for any order as a linear combination
of suitable Pn(x ; q) themselves are also deduced. In “Explicit formula for the expansion coefficients of the moments of Dp

qf (x)” section,
we prove a theorem that gives the Pn(x ; q) expansion coefficients of the moments of one single Pn(x ; q) polynomial of any degree. Another
theorem that expresses the Pn(x ; q) expansion coefficients of the moments of a general-order q-derivative of an arbitrary function in terms
of its Pn(x ; q) original expansion coefficients is also discussed. In “Recurrence relations for connection coefficients between different monic
q-polynomials belonging to the Askey–Wilson polynomials” section, we give an application for these theorems that provides an algebraic
symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between two different
polynomial systems of basic hypergeometric orthogonal polynomials, belonging to the Askey–Wilson polynomials and Pn(x ; q) ∈ T.

Properties of the q-classical orthogonal polynomials in the Hahn sense

The families of q-orthogonal polynomials belonging to the Askey–Wilson polynomials have the property that their derivatives form orthogonal
systems, and also satisfy second-order q-difference equation of the form

[σ(x)DqD1/q + τ(x)Dq + λn,q]Pn(x; q) = 0, (2.1)

where the q-derivative operator Dq (also called Hahn operator) is defined (see Hahn [52]) by

Dqf (x):=

⎧⎨
⎩

f (qx) − f (x)

(q − 1)x
, x /= 0,

f ′(0), x = 0, provided f ′(0) exists,
(2.2)
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Table 1 Polynomials σ(x) and τ(x) in the q-difference equation (2.1).

Family σ(x) τ(x)

Big q-Jacobi Pn(x ; a, b, c ; q) (aq − x) (cq − x) cq−x+aq(1−(b+c)q+bqx)
q−1

q-Hahn Qn(x ; a, b, N ; q) (aq − x) (q−N − x) aq(1+(x−1)bq)−x+q−N (1−aq)
q−1

Little q-Jacobi pn(x ; a, b|q) x(x − 1) 1−x+aq(bqx−1)
q−1

Big q-Laguerre Pn(x ; a, b ; q) (x − aq)(bq − x) x−(a+b)q+abq2

q−1

q-Meixner Mn(x ; b, c ; q) c(x − bq) c(bq−1)+q(x−1)
q−1

q-Alternative Charlier Kn(x ; a ; q) x(1 − x) −1+x(1+aq)
q−1

Little q-Laguerre pn(x ; a|q) x(1 − x) x+aq−1
q−1

q-Laguerr L
(α)
n (x; q) x 1−qα+1(x+1)

1−q

Stieltjes-Wigert Sn(x ; q) x qx−1
q−1

Al-Salam-Carlitz I U
(α)
n (x; q) (x − 1)(x − α) x−α−1

1−q

Discrete q-Hermit I hn(x ; q) 1 − x2 x
q−1

Al-Salam-Carlitz II V
(α)
n (x; q) � x−α−1

q−1

and σ(x) = ax2 + bx + c, τ(x) = dx + e are polynomials in x of degree at most 2 and exactly 1, respectively (but depending possibly on q), and
λn,q = − [n]q[n − 1]q(σ ′/2) + [n]qτ

′, where the q-analogues of the real numbers, [x]q, is defined by

[x]q:=

⎧⎨
⎩

1 − qx

1 − q
, 0,

0, x = 0.

For a brief background, definitions for some terminology and most basic properties of these polynomials, please refer to Gasper and Rahman
[[24], p. 3–6] and Koekoek and Swarttouw [[53], p.113–114].

Remark 1. For the sake of completeness, Table 1 is included at the end of this paper to give the expressions of σ(x) and τ(x) for most
monic q-polynomials belonging to the Askey–Wilson polynomials.

The following two recurrence relations (which may be found in Area et al. [23] and Medem [54]) are of fundamental importance in
developing the present work. These are:

(i) Recurrence relation

xPn(x; q) = Pn+1(x; q) + βnPn(x; q) + γnPn−1(x; q), (γn /= 0), n ≥ 0,

P0(x; q) = 1, P−1(x; q) = 0,
(2.3)

where

βn = −qn(−(aq(b(1 + q) + e(q − 1))) − (a + d(q − 1))q2n(b(1 + q) + e(q − 1)))

a2q2 + (a + d(q − 1))2q4n − a(a + d(q − 1))q2n(1 + q2)

+ q2n(1 + q)(b(a − d) + (a + d)q) + ae(q − 1)q)

a2q2 + (a + d(q − 1))2q4n − a(a + d(q − 1))q2n(1 + q2)
,

γn = − qn+1(qn − 1)(−(aq2) + (a + d(q − 1))qn)

(aq2 − (a + d(q − 1))q2n)2(aq − (a + d(q − 1))q2n)(aq3 − (a + d(q − 1))q2n)

×(a2cq4 + c(a + d(q − 1))2q4n − abqn+3(b + e(q − 1)) − b(a + d(q − 1))q3n+1 × (b + e(q − 1))

+q2(n+1)(−2a2c + b2d(q − 1) + a(2b2 + 2be(q − 1) + (q − 1)(−2cd + e2(q − 1))))).

(ii) Structure formula

Pn(x; q) = DqPn+1(x; q)

[n + 1]q
+ β̄n

DqPn(x; q)

[n]q
+ γ̄n

DqPn−1(x; q)

[n − 1]q
, n ≥ 2, (2.4)
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where

β̄n = − qn(qn − 1)

a2q2 + (a + d(q − 1))2q4n − a(a + d(q − 1))q2n(1 + q2)

×((−(b(a + d(q − 1))qn(1 + q)) + aq(b + e(q − 1)) + (a + d(q − 1))q2n(b + e(q − 1)))),

γ̄n = (a + d(q − 1))q2n(qn − 1)(qn − q)

(aq2 − (a + d(q − 1))q2n)2(aq − (a + d(q − 1))q2n)(aq3 − (a + d(q − 1))q2n)

×(a2cq4 + c(a + d(q − 1))2q4n − abqn+3(b + e (q − 1)) − b(a + d(q − 1)) q3n+1

×(b + e(q − 1)) + q2(n+1)(−2a2c + b2d(q − 1) + a(2b2 + 2be(q − 1) + (q − 1)(−2cd + e2(q − 1))))).

Suppose that we have a smooth function f(x), which is formally expanded in an infinite series of Pn(x ; q). In the case of q-Hahn
polynomials, we assume that f is a polynomial belonging to the Askey–Wilson polynomials,

f (x) =
∞∑

n=0

an Pn(x; q), (2.5)

and for the pth q-derivatives of f(x), i.e. Dp
qf (x),

Dp
qf (x) =

∞∑
n=0

a(p)
n Pn(x; q), a(0)

n = an. (2.6)

It is possible to derive a recurrence relation involving the expansion coefficients of successive q-derivatives of f(x). Let us write

Dq

[ ∞∑
n=0

a(p−1)
n Pn(x; q)

]
=

∞∑
n=0

a(p)
n Pn(x; q),

then use of identity (2.4) leads to the recurrence relation

a
(p)
n−1 + β̄na

(p)
n + γ̄n+1a

(p)
n+1 = [n]qa

(p−1)
n , n, p ≥ 1. (2.7)

Relation between the coefficients a(p)
n and an and the pth q-derivative of Pn(x ; q)

The aim of this section is to explicitly express the expansion coefficients a(p)
n in terms of an. It is easy to prove the following theorem:

Theorem 1.

Dp
qPn(x; q) =

n−p∑
k=0

Cp,k(n)Pk(x; q), n, p ≥ 0, (3.1)

if and only if

a(p)
n =

∞∑
k=0

Cp,n(n + p + k)ak+n+p, n, p ≥ 0, (3.2)

where the expansion coefficients Cp,k(n) are assumed to be known.

Proof. Suppose we are given the expansion (3.1); then by applying the operator Dp
qf (x) to the expansion (2.5), we obtain

Dp
qf (x) =

∞∑
n=p

anD
p
qPn(x; q). � (3.3)

Substituting (3.1) into (3.3), expanding and collecting similar terms, we obtain

Dp
qf (x) =

∞∑
n=0

[ ∞∑
k=0

Cp,n(n + p + k)an+p+k

]
Pn(x; q). (3.4)

Identifying (2.6) with (3.4) gives immediately (3.2).
On the other hand, suppose we have (3.2). Substituting (3.2) into (2.6) gives (3.4). Expanding (3.4) and collecting similar terms and

identifying the result with (3.3), we get (3.1), which completes the proof of the theorem.
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Al-Salam-Carlitz I case [Pn(x; q) = U (α)
n (x; q)]

In this problem the recurrence relation (2.7) has the form

a
(p)
n−1 = [n]qa

(p−1)
n n, p ≥ 1. (3.5)

Doha and Ahmed [51] have proved that

a(p)
n = [p]q!

[
n + p

n

]
q

an+p n, p ≥ 0, (3.6)

and

Dp
qU

(α)
n+q(x; q) = [p]q!

[
n + p

n

]
q

U (α)
n (x; q), n, p ≥ 0. (3.7)

Note 1. It is worth noting that the corresponding results for the case of discrete q-Hermite polynomials of the first kind, hn(x;q) can be
easily deduced by taking α = − 1.

Little q-Laguerre cases [Pn(x ; q) = Pn(x ; a, b ; q), pn(x ; a|q)]

In these two cases, the recurrence relation (2.7) takes the form

1

[n]q
a

(p)
n−1 + μqna(p)

n = a(p−1)
n , n, p ≥ 1, (3.8)

where μ = abq(1 − q) and a(1 − q) for big and little q-Laguerre polynomials, Pn(x ; a, b ; q) and pn(x ; a|q) respectively.
The solution of (3.8) has the form (see Doha and Ahmed)

a(p)
n = (qn+1; q)p

(1 − q)p

∞∑
k=0

(
μ

q − 1

)k

q(n+1)k+(k
2) (qp, qn+p+1; q)k

(q; q)k
ak+n+p, n ≥ 0, p ≥ 0, (3.9)

and then

Dp
qPn+q(x; q) = 1

(1 − q)p

n∑
k=0

(
μqk

q − 1

)n−k

q(n−k+1
2 ) (qk+1; q)p(qp, qk+p+1; q)n−k

(q; q)n−k

Pk(x; q), n ≥ 0, p ≥ 0. (3.10)

Big q-Jacobi case [Pn(x ; q) = Pn(x ; a, b, c ; q)]

Theorem 2. The pth q-derivatives of monic big q-Jacobi polynomials of any degree in terms of monic big q-Jacobi polynomials with the
same parameters have the form

Dp
qPn+q(x; a, b, c; q) = q−np

(qn+1; q)p
(1 − q)p

n∑
k=0

Cn,k(aqp, bqp, cqp, a, b, c, p)Pk(x; a, b, c; q), n ≥ 0, p ≥ 0, (3.11)

and the relation between a(p)
n and an is given by

a(p)
n = 1

(1 − q)p

∞∑
i=0

q−(n+i)p(qn+i+1; q)pCn+i,n(aqp, bqp, cqp, a, b, c, p)an+p+i, n, p ≥ 0, (3.12)

where

Cn,k(α, β, γ, a, b, c, r) = (−1)iq( i
2) qi(r+1)(αq, γq; q)n

(αβqn+1; q)n

(q−n, αβqn+1; q)i
(q, αq, γq; q)i

×
n−i∑
j=0

qj(r+1)
(q−(n−i), αβqn+i+1, aqi+1, cqi+1; q)j

(αqi+1, γqi+1, q, abq2(i+1); q)j
3φ2

[
q−(n−i−j), αβqn+i+j+1, qr

αqi+j+1, γqi+j+1

∣∣∣∣ q; q

]
. (3.13)

The following lemma is needed to proceed with the proof of the theorem.

Lemma 1. It can be shown that

Pn(qrx; α, β, γ; q) =
n∑

i=0

Cn,i(α, β, γ, a, b, c, r)Pi(x; a, b, c; q), r ≥ 0, (3.14)

where the connection coefficients Cn,i(α, β, γ , a, b, c, r) are given as in (3.13).
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Proof of Theorem 2. In view of the formula (3.5.7) of Koekoek and Swarttouw [[53], p. 74], we can show that the monic big q-Jacobi
polynomials Pn(x ; a, b, c ; q) satisfy the formula

DqPn(x; a, b, c; q) = q−n+1 (1 − qn)

(1 − q)
Pn−1(qx; aq, bq, cq; q), n ≥ 1, (3.15)

and by using relation (0.8.4) of Koekoek and Swarttouw [[53], p. 20], one may obtain

Dp
qPn(x; a, b, c; q) = q2(p

2)−(n−1)p
(qn−p+1; q)p

(1 − q)p
Pn−p(qpx; aqp, bqp, cqp; q), n ≥ p ≥ 0. � (3.16)

By making use of (3.14) and (3.16), we obtain (3.11). Relation (3.12) can be deduced immediately by the aid of Theorem 1, and this
completes the proof of the theorem.

Note 2. It is worth noting that the corresponding results for the case of monic q-Hahn polynomials Qn(x, a, b, N ; q) can be easily deduced
by using relation (3.5) of Doha and Ahmed [[51], p. 10115].

Little q-Jacobi case [Pn(x ; q) = pn(x ; a, b|q)]

Theorem 3. The pth q-derivatives of monic little q-Jacobi polynomials of any degree in terms of monic little q-Jacobi polynomials with
the same parameters have the form

Dp
qpn+p(x; a, b|q) = (qn+1; q)p

(1 − q)p

n∑
i=0

Cn,i(aqp, bqp, a, b)pi(x; a, b|q), n, p ≥ 0, (3.17)

and the relation between a(p)
n and an is given by

a(p)
n =

∞∑
i=0

(qn+i+1; q)p
(1 − q)p

Cn+i,n(aqp, bqp, a, b)an+p+i, n, p ≥ 0, (3.18)

where

Cn,i(α, β, γ, a, b) = (−1)nqi+(n
2)(αq; q)n(q−n, αβqn+1; q)i

(αβqn+1; q)n(q, αq; q)i
3φ2

[
q−(n−i), αβqn+i+1, aqi+1

αqi+1, abq2(i+1)

∣∣∣∣ q; q

]
. (3.19)

The following lemma is needed to proceed with the proof of the theorem.

Lemma 2 ((see [55])). The connection problem between monic little q-Jacobi polynomials with different parameters is

pn(x; α, β|q) =
n∑

i=0

Cn,i(α, β, a, b)pi(x; a, b|q), (3.20)

where the connection coefficients Cn,i(α, β, a, b) are given as in (3.19).

Proof of Theorem 3. In view of formula (3.12.7) of Koekoek and Swarttouw [[53], p. 93], it can be shown that the monic little q-Jacobi
polynomials pn(x ; a, b|q) satisfy the formula

Dqpn(x; a, b|q) = (1 − qn)

(1 − q)
pn(x; aq, bq|q), n ≥ 1, (3.21)

and therefore

Dp
qpn(x; a, b|q) = (qn−p+1; q)p

(1 − q)p
pn−p(x; aqp, bqp|q), n ≥ p ≥ 0. � (3.22)

By making use of (3.20) and (3.22), we obtain (3.17). Relation (3.18) can be deduced immediately by the aid of Theorem 1 which
completes the proof of the theorem.

The monic alternative q-Charlier polynomials, Kn(x ; b ; q), can be obtained from the monic little q-Jacobi polynomials by using the
relation (55) of Doha and Ahmed [[51], p. 10118], and accordingly, one can show that

lim
a→0

Dp
qpn

(
x; a, − b

aq

∣∣∣∣ q

)
= Dp

qKn(x; b; q), n ≥ p ≥ 0. (3.23)

In view of relations (3.17), (3.23) and the q-analogues of the Vandermonde summation formula [see Kokoek and Swarttouw [53], p. 15,
formula (0.5.8)], we obtain the following corollary.



Recurrences and connection coefficients in series of q-polynomials 199

Corollary 1. The pth q-derivatives of monic alternative q-Charlier polynomials of any degree in terms of monic alternative q-Charlier
polynomials with the same parameter have the form

Dp
qKn+p(x; b; q) = (qn+1; q)

(1 − q)p

n∑
i=0

Cn,i(b, q)Ki(x; b; q), n, p ≥ 0, (3.24)

and the relation between a(p)
n and an is given by

a(p)
n =

∞∑
i=0

q−(n+i)p
(qn+i+1; q)p

(1 − q)p
Cn+i,n(b, p)an+p+i, n, p ≥ 0, (3.25)

where

Cn,i(b, p) = (−1)ibn−iq(n+i+2p)(n−i)qi+(n
2) (q−n, −qn+2pb; q)i(q

i−n−2p+1; q)n−i

(−qn+2pb; q)n(−q2i+1b; q)n−i(q; q)i
.

Remark 2. The formulae for a(p)
n given by (3.12), (3.18) and (3.23) are the exact solutions of the difference equation (2.7) for the cases of

big (little) q-Jacobi and alternative q-Charlier polynomials respectively.

Explicit formula for the expansion coefficients of the moments of Dp
qf (x)

For the evaluation of the expansion coefficients of x�Dp
qf (x) as expanded in series of Pn(x ; q) polynomials, the following theorem is needed.

Theorem 4. In the expansion

xmPn(x; q) =
2m∑
n=0

am,n(j)Pj+m−n(x; q), m ≥ 0, j ≥ 0, (4.1)

the coefficients am,n(j) can be computed as follows

(i) For Al-Salam-Carlitz I, U (α)
n (x; q), we have

am,n(j) =
j∑

i=max(j−n,0)

(−α)j−iq(j−i

2 )
[

j

i

]
q

bm+i
m+j−n1φ1

[
q−(j−i)

0

∣∣∣∣ q;
q

α

]
, (4.2)

where b(m)
n =

[
m

n

]
q

m−n∑
r=0

[
m − n

r

]
q

αr.

In particular, and for the special case α = − 1, explicit formula for the expansion coefficients of xm hj(x ; q) is obtained (see [51]).
(ii) For big q- Jacobi, Pn(x ; a, b, c ; q), we have

am,n(j) = q(j+m−n)(j−n)(aq, cq; q)j(q; q)m
(abqj+1; q)j(q; q)j+m−n

×
n∑

i=0

[
q(max(j−i,0)

2 ) q(n−i
2 ) (−q(j−n+1))(n−i)(−q−(j+m−i−1))max(j−i,0)

(q, abq2(j+m−n+1); q)n−i

× (aqj+m−n+1, cqj+m−n+1; q)n−i(q
m+1, q−j, abqj+1; q)max(j−i,0)

(q; q)max(i−j,0)(q, aq, cq; q)max(j−i,0)

]

×4φ3

[
qmax(−i,−j), abqj+max(j−i,0)+1, q−m+max(i−j,0), 0

aqmax(j−i,0)+1, cqmax(j−i,0)+1, q−(j−i)+2 max(j−i,0)+1

∣∣∣∣ q; q

]
. (4.3)

In particular, explicit formula for the expansion coefficients of Pn(x ; a, b ; q) is obtained by using relation (34) of Doha and Ahmed
[[51], p. 10115].

(iii) For little q-Jacobi, pn(x ; a, b|q), we have

am,n(j) = (−1)j
(aq, abq2(m+1)+r+j−n, qr−j+n+1; q)j(abqj+1, qm+j−n+1, aqj+m−n+1, q−j; q)r+n

(qm+r+1, aqm+r+1, abqj+1; q)j(q, q, aq, abq2(j+m−n+1)q; q)r+n

×qr+(j

2)
(aqr+1, qr+1; q)

(abqj+r+1, qr−j; q)n
4φ3

[
qmax(−i,−j), abqj+max(j−i,0)+1, q−m+max(i−j,0), 0

aqmax(j−i,0)+1, cqmax(j−i,0)+1, q−(j−i)+2 max(j−i,0)+1

∣∣∣∣ q; q

]
, r = max(j − n, 0). (4.4)

In particular, explicit formulae for the expansion coefficients of xmpj(x ; a|q) and xmKj(x ; b ; q) are obtained by using relations (54)
and (55) of Doha and Ahmed [[51], p. 10118] respectively.
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The following lemma is needed to proceed with the proof of the theorem.

Lemma 3. It can be shown that the coefficients am,n(j) of (4.2)–(4.4), satisfy the recurrence relation

am,n(j) = am−1,n(j) + βj+m−nam−1,n−1(j) + γj+m−n+1am−1,n−2(j), n = 0, 1, . . . , 2m, (4.5)

with a0,0(j) = 1, am−1,−�(j) = 0, ∀ � > 0, am−1,r(j) = 0, r = 2m − 1, 2m.

Proof of Theorem 4. To prove this theorem we proceed by induction. In view of recurrence relation (2.3), we may write

xPj(x; q) = a10(j)Pj+1(x; q) + a11(j)Pj(x; q) + a12(j)Pj−1(x; q), (4.6)

and this in turn shows that (4.1) is true for m = 1. Proceeding by induction, assuming that (4.1) is valid for m, we want to prove that

xm+1Pj(x; q) =
2m+2∑
n=0

am+1,n(j)Pj+m−n+1(x; q). (4.7)

From (4.6) and assuming the validity for m, we have

xm+1Pj(x; q) =
2m∑
n=0

am,n(j)
[
a10(j + m − n)Pj+m−n+1(x; q) + a11(j + m − n)Pj+m−n(x; q) + a12(j + m − n)Pj+m−n−1(x; q)

]
.

Collecting similar terms, we get

xm+1Pj(x; q) = am0(j)a10(j + m)Pj+m+1(x; q) + [am1(j)a10(j + m − 1) + am0(j)a11(j + m)]Pj+m(x; q)

+
2m∑
n=0

[
amn(j)a10(j + m − n)+ am,n−1(j)a11(j + m − n + 1) + am,n−2(j)a12(j + m − n + 2)]Pj+m−n+1(x; q)

+ [am,2m(j)a11(j − m) + am,2m−1(j)a12(j − m + 1)]Pj−m(x; q) + am,2m(j)a12(j − m)Pj−m−1(x; q). � (4.8)

Application of Lemma 3 given in (4.5) to Eq. (4.8) yields Eq. (4.7) and the proof of the theorem is complete.
According to Theorem 4, we can state the following theorem, which relates the Pn(x ; q) expansion coefficients of x�Dp

qf (x) in terms of
a(p)

n .

Theorem 5. Assume that f(x), f(p)(x) and x�Pj(x ; q) have the Pn(x ; q) expansions (2.5), (2.6) and (4.1) respectively, and assume also that

x�Dp
qf (x) =

∞∑
i=0

b
p,�

i Pi(x; q) = Ip,�; say, (4.9)

then the connection coefficients b
p,�

i are given by

b
p,�

i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�−1∑
k=0

a�,k+�−i(k)a(p)
k +

i∑
k=0

a�,k+2�−i(k + �)a(p)
k+�, 0 ≤ i ≤ �,

�−1∑
k=i−�

a�,k+�−i(k)a(p)
k +

i∑
k=0

a�,k+2�−i(k + �)a(p)
k+�, � + 1 ≤ i ≤ 2� − 1,

i∑
k=i−2�

a�,k+2�−i(k + �)a(p)
k+�, i ≥ 2�.

(4.10)

Recurrence relations for connection coefficients between different monic q-polynomials belonging to the Askey–Wilson
polynomials

Let f(x) have the expansion (2.5), and assume that it satisfies the non-homogeneous linear q-difference equation of order m

m∑
i=0

pi(x)Di
qf (x) = g(x), (5.1)
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where p0, p1, . . ., pm /= 0 are polynomials in x, and the expansion coefficients of the function g(x) in terms of Pn(x;q) are known, then
formulae (3.2), (4.1) and (4.6) enable one to construct in view of Eq. (5.1) the linear recurrence relation of order r,

r∑
j=0

αj(k)ak+j = β(k), k ≥ 0, (5.2)

where α0, α1, . . ., αr (α0 /= 0, αr /= 0) are polynomials of the variable k.
In this section, we consider the problem of determining the connection coefficients between different polynomial systems. An interesting

question is how to transform the Fourier coefficients of a given polynomial corresponding to an assigned orthogonal basis into the coefficients
of another basis orthogonal with respect to a different weight function. The aim is to determine the so-called connection coefficients of the
expansion of any element of the first basis in terms of the elements of the second basis. Suppose V is a vector space of all polynomials
over the real or complex numbers and Vm is the subspace of polynomials of degree less or equal to m. Suppose p0(x), p1(x), p2(x), . . . is a
sequence of polynomials such that pn(x) is of exact degree n; let q0(x), q1(x), q2(x), . . . be another such sequence.

Clearly, these sequences form a basis for V. It is also evident that p0(x), p1(x), p2(x), . . ., pm(x) and q0(x), q1(x), q2(x), . . ., qm(x) give two
bases for Vm. While working with finite-dimensional vector spaces, it is often necessary to find the matrix that transforms a basis of a given
space to another basis.

This means that one is interested in the connection coefficients ai(n) that satisfy

Qn(x) =
n∑

i=0

ai(n)Pi(x). (5.3)

The choice of Pn(x) and Qn(x) depends on the situation. For example, suppose

Pn(x) = xn, Qn(x) = (x; q)n,

then the connection coefficients ai(n) are given by (see [24])

ai(n) =
[

n

i

]
q

(−1)i qi(i−1)/2.

If the roles of these Pn(x) and Qn(x) are interchanged, then we get (see [[23], p.774, Eq. (3.3)])

ai(n) =
[

n

i

]
q

(−1)i qi(i+1−2n)/2.

Eq. (2.1) can be written in the form (see [[51], p. 10113–10114])

σ̃(x)D2
qy(x) + τ̃(x)Dqy(x) + λn,qy(x) = 0, (5.4)

where σ̃(x) = q−1σ(qx) + (q − 1) x τ(qx) and τ̃(x) = τ(qx) + λn,q(q − 1)x.

Al-Salam-Carlitz I-Little q-Jacobi connection problem

The link between U (α)
n (x; q) and pi(x ; a, b|q) given by (5.3) can easily be replaced by a linear relation involving only pi(x ; a, b|q), using the

Al-Salam-Carlitz I q-difference equation, namely

[(q − 1)2αD2
q + (q − 1)q1−n[−qx + qn(α + 1)]Dq + q2(1 − q−n)]U (α)

n (x; q) = 0, (5.5)

by substituting

U (α)
n (x; q) =

n∑
i=0

ai(n) pi(x; a, b|q), (5.6)

and by virtue of formula (4.9), Eq. (5.5) takes the form

(q − 1)2αb
2,0
i − q2−n(q − 1)b1,1

i + q(q − 1)(α + 1)b1,0
i + q2(1 − q−n)b0,0

i = 0.

By making use of formula (4.4) and (4.10), we obtain

γ
(0)
i 0 ai(n) + γ

(1)
i,−1a

(1)
i−1(n) + γ

(1)
i 0 a

(1)
i (n) + γ

(1)
i 1 a

(1)
i+1(n) + γ

(2)
i 0 a

(2)
i (n) = 0, (5.7)
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where

γ
(0)
i0 = q2(qn − 1), γ

(1)
i,−1 = q2(1 − q),

γ
(1)
i0 = [(1 − bcq2i)(1 − bcq2i+2)]−1 × qi+2[aqi(1 + b)(q2 − 1) − (1 + a)(q − 1)(1 + bcq2i+1)] + qn+1(q − 1)(1 + α),

γ
(1)
i1 = (1 − q)qi+2(1 − aqi+1)(1 − abqi+1)[(abq2i+1)2]−1

, γ
(2)
i0 = qn(q − 1)2α;

again, making use of formula (3.18) with (5.7) enable one to obtain the following recurrence relation,

δi0ai(n) + δi1ai+1(n) + δi2ai+2(n) + δi3ai+3(n) + δi4ai+4(n) = 0, i = n − 1, n − 2, . . . , 0, (5.8)

where

δi 0 = (qn − qi),

δi1 = (qi+1 − 1)[(1 − bcq2(i+1))(1 − bcq2(i+3))]
−1 × [qi(−1 − aqn+1(1 + q)) − abq3i+3(1 + q + q2 + aqn+2(1 + q)) + qn−1(1 + α)

+ a2bq4i+6(1 + bqn+1(1 + α)) + aq2i+1(1 + q + q2 − bqn(1 − q(1 + q + q2) + α + q4α))],

δi2 = qn−2(qi+1; q)2(1 − q)−1 ×
[
−α + [(abq2i+3; q)5]

−1× (1 − abq2i+5)(q1−n(qnα + a4b4qn+8i+20α

−a(1 + α)(q − 1)qn+i+2[1 + b3a3q6i+15] + aq2i+3(1 + a2b3q4i+10)(−1 + q2 + qn(q(q − 1)(b + (a + b)q)

− b(1 + 2q + q4)α)) + a2bq4i+7((q − 1)(q + 1)3 + qn((q − 1)(aq2(q + 1)2 + b(−1 + q2 + 2q3)) + 2b(1 + q3 + q4)α))

+ (a2bq5(i+2) + aq3i+5)((a + b)(1 − q3) + ba(q − 1)qn(1 + α + q(1 + q)(−1 − 2q + (q − 1)qα)))))
]
,

δi3 = q3i+6a2(qi+1; q)3(1 − bqi+3)(1 − aqi+3)[(1 − abq2(i+3))(abq2i+4; q)5]
−1

× [
1 + bq(−abq3i+8(1 + aqn+1(1 + q)) − qi+1(1 + q + q2 + aqn+2(1 + q)) + (1 + α)qn[1 + a2b2q4(i+3) ]

+ aq2(i+2)(1 + q + q2 − bqn(1 − q(1 + q + q2) + α(1 + q4))))
]
,

δi4 = q5i+14a3b(qi+1; q)4(aqi+3; bqi+3; q)2(−1 + abqn+i+5)[(abq2(i+3); q)3(abq2i+5; q)5]
−1

,

with an+s(n) = 0, s = 1, 2, 3 and an(n) = 1. The solution of (5.8) is

ai(n) = (−1)nαn−iq(n
2)+i(q−n; q)i

(q; q)i

n−i∑
j=0

(q/α)j(q−(n−i), aqi+1; q)j
(q, abq2(i+1); q)j

1φ1

[
q−(n−i−j)

0

∣∣∣∣ q;
q

α

]
, i = 0, 1, . . . , n. (5.9)

Al-Salam-Carlitz I-Big q-Jacobi connection problem

In this problem

U (α)
n (x; q) =

n∑
i=0

ai(n)Pi(x; a, b, c; q), (5.10)

the coefficients ai(n) satisfy the fourth-order recurrence relation

δi0ai(n) + δi1ai+1(n) + δi2ai+2(n) + δi3ai+3(n) + δi4ai+4(n) = 0, i = n − 1, n − 2, . . . , 0, (5.11)

δi 0 = (qn − qi),

δi1 = q−1(qi+1 − 1)[(1 − acq2(i+1))(1 − acq2(i+3))]
−1 × [−qi+2(a + b) − a(b + c)qn+i+3(1 + q) + acq3i+5(−a(b + c)qn+2(1 + q)

−(a + b)(1 + q + q2)) + qn(1 + α) + a2cq4(i+2)(b + c + cqn(1 + α)) + aq2(i+1)((b + c)q(1 + q + q2)

+ cqn((a + b)q2(1 + q)(1 + q2) − (1 + q4)(1 + α)))
]
,
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Table 2 Formulae for the connection coefficients in problem (5.13) for the case of Pi(x ; q) = Pi(x ; a, b, c ; q).

P̄n(x; q) ai(n) (0 ≤ i ≤ n)

V
(β)
n (x; q) (−1)nβn−iqni−(n

2)
(q−n; q)i

(q; q)i
3φ1

[
q−(n−i), aqi+1, cqi+1

abq2(i+1)

∣∣∣∣ q;
qn−i

β

]

Pn(x ; α, β, γ ; q) (−1)iq(i+1
2 ) (αq, γq; q)n(q−n, αβqn+1; q)i

(αβqn+1; q)n(q, αq, γq; q)i
4φ3

[
q−(n−i), αβqn+i+1, aqi+1, cqi+1

αqi+1, γqi+1, abq2(i+1)

∣∣∣∣ q; q

]

Mn(x ; β, γ ; q) (−1)n(γ/qn)n−iq(i+1
2 ) (βq; q)n(q−n; q)i

(q, βq; q)i
3φ2

[
q−(n−i), aqi+1, cqi+1

βqi+1, abq2(i+1)

∣∣∣∣ q; −qn+1

γ

]

pn(x ; α, β|q) (−1)nqi+(n
2)

(αq; q)n(q−n, αβqn+1; q)i
(αβqn+1; q)n(q, αq; q)i

×
n−i∑
j=0

(−q1−i)
j
q−(j

2)
(q−(n−i), αβqn+i+1, aqi+1, cqi+1; q)j

(q, αqi+1, abq2(i+1); q)j
2φ1

[
q−(n−i−j), αβqn+i+j+1

αqi+j+1

∣∣∣∣ q; q1−i−j

]

L
(β)
n (x; q)

(−1)nq(i+1
2 )

q(n−i)(n+β)

(qβ+1; q)n(q−n; q)i
(qβ+1; q)i(q; q)i

×
n−i∑
j=0

(−qn+β+1)
j (q−(n−i), aqi+1, cqi+1; q)j

(q, qβ+i+1, abq2(i+1); q)j
1φ1

[
q−(n−i−j)

qβ+i+j+1

∣∣∣∣ q; −qn+β+1

]

Sn(x ; q)
(−1)nq(i+1

2 )

qn(n−i)

(q−n; q)i
(q; q)i

n−i∑
j=0

(−qn+1)
j (q−(n−i), aqi+1, cqi+1; q)j

(q, abq2(i+1); q)j
1φ1

[
q−(n−i−j)

0

∣∣∣∣ q; −qn+1

]



204
E

.H
.D

oha
and

H
.M

.A
hm

ed

Table 3 Formulae for the connection coefficients in problem (5.13) for the case of Pi(x ; q) = pi(x ; a, b|q).

P̄n(x; q) ai(n) (0 ≤ i ≤ n)

V
(β)
n (x; q) (−1)nβn−iqni−(n

2)
(q−n; q)i

(q; q)i

n−i∑
j=0

(qn/β)j
(q−(n−i), aqi+1; q)j

(q, abq2(i+1); q)j
2φ0

⎡
⎣ q−(n−i−j), 0

−

∣∣∣∣∣∣ q;
qn−i−j

β

⎤
⎦

Pn(x ; α, β, γ ; q) (−1)iq(i+1
2 ) (αq, γq; q)n(q−n, αβqn+1; q)i

(αβqn+1; q)n(q, αq, γq; q)i
×

n−i∑
j=0

(−qi)
j
q(j+1

2 ) (q−(n−i), αβqn+i+1, aqi+1; q)j
(q, αqi+1, γqi+1, abq2(i+1); q)j

3φ2

⎡
⎣ q−(n−i−j), αβqn+i+j+1, 0

αqi+j+1, γqi+j+1

∣∣∣∣∣∣ q; q

⎤
⎦

Mn(x ; β, γ ; q)
(−1)nγn−iq(i+1

2 )

qn(n−i)

(βq; q)n(q−n; q)i
(q, βq; q)i

×
n−i∑
j=0

(qn+i/γ)
j
q(j+1

2 ) (q−(n−i), aqi+1; q)j
(q, βqi+1, abq2(i+1); q)j

2φ1

⎡
⎣ q−(n−i−j), 0

βqi+j+1

∣∣∣∣∣∣ q; −qn+1

γ

⎤
⎦

pn(x ; α, β|q) (−1)nqi+(n
2)

(αq; q)n(q−n, αβqn+1; q)i
(αβqn+1; q)n(q, αq; q)i

3φ2

⎡
⎣ q−(n−i), αβqn+i+1, aqi+1

αqi+1, abq2(i+1)

∣∣∣∣∣∣ q; q

⎤
⎦

L
(β)
n (x; q)

(−1)nq(i+1
2 )

q(n−i)(n+β)

(qβ+1; q)n(q−n; q)i
(qβ+1; q)i(q; q)i

2φ2

⎡
⎣ q−(n−i), aqi+1

qβ+i+1, abq2(i+1)

∣∣∣∣∣∣ q; −qn+β+i+1

⎤
⎦

Sn(x ; q)
(−1)nq(i+1

2 )

q(n−i)n

(q−n; q)i
(q; q)i

2φ2

⎡
⎣ q−(n−i), aqi+1

abq2(i+1), 0

∣∣∣∣∣∣ q; −qn+i+1

⎤
⎦
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δi2 = (qi+1; q)2 × [
qn−2α + aqi+2(1 − aqi+2)(1 − bqi+2)(1 − cqi+2)(b − acqi+2)× [(1 − acq2i+4)(acq2i+3; q)3]

−1
[1 + acqi+1(qn+1 − 2)]

− ca2q2i+7[(1 − acq2i+6)(acq2i+5; q)3]
−1

(1 − aqi+3)(1 − bqi+3)(1 − cqi+3)(b − acqi+3)(qi+2 − qn)

+ [(1 − acq2(i+2))
2
(1 − acq2(i+3))

2
]
−1×{

aq2i+5[((b + c)(1 + acq2i+5)−c(a + b)qi+2(1 + q))((1 + acq2i+5)(a + b + a(b + c)qn+1)

− aqi+2(1 + q)(b + c + c(a + b)qn+1))] −aqn+i+2(1 − acq2(i+2))(1 − acq2(i+3))(1 + α)[(b + c)(1 + acq2i+5)

− c(a + b)qi+2(1 + q)]
}]

,

δi3 = a2qi+6(qi+1; q)3(1 − aqi+3)(1 − bqi+3)(1 − cqi+3)(acqi+3 − b)[(1 − acq2i+6)
2
(acq2i+4; q)5]

−1

× [
acqi+4(1 + q) (qn − 1)(1 − acq2i+6)[(b + c)(1 + acq2(i+3)) − c(a + b)qi+2(1 + q2))]

+ cqi+4(1 − acq2i+4)[(a + b + a(b + c)q)(1 + acq2i+7) − aqi+3(1 + q)(b + c + c(a + b)q)]

+ (1 + ac(q − 2)qi+3)(1 − acq2i+8)[(b + c)(1 + acq2i+5) − c(a + b)qi+2(1 + q)]

+ cqn(1 + α)(1 − acq2i+4)(1 − acq2i+6)(1 − acq2i+8)],

δi 4 = ca3q3i+11(qi+1; q)4(aqi+3; bqi+3, cqi+3; q)2(b − acqi+3)(acqi+4 − b)[1 + acqi+4(qn+1 − 2)] × [(abq2(i+3); q)3(abq2i+5; q)5]
−1

,

with an+s(n) = 0, s = 1,2,3 and an(n) = 1. The solution of (5.11) is

ai(n) = (−1)nαn−iq(n
2)+i(q−n; q)i

(q; q)i

n−i∑
j=0

(−q1−i/α)
j
q−(j

2)
(qi−n, aqi+1, cqi+1; q)j

(q, abq2(i+1); q)j
2φ1

[
q−(n−i−j), qi+j

0

∣∣∣∣ q;
q1−i−j

α

]
, i = 0, 1, . . . , n. (5.12)

Remark 3. Similar recurrence relations that are satisfied by the connection coefficients ai(n) in the relation

P̄n(x; q) =
n∑

i=0

ai(n)Pi(x; q), (5.13)

may also be obtained for the other families belonging to the Askey–Wilson polynomials, but details are not given here. In Tables 2 and 3,
we summarize the formulae of connection coefficients for most of the remaining monic families Pi(x;q).

Remark 4. One of our goals is to emphasize the systematic character and simplicity of our algorithm, which allows one to implement it
in any computer algebra (here the Mathematica [56]). Symbolic language has been used.

Conclusion

In this paper, we deduced some interesting formulae associated with the Pn(x;q) coefficients for the moments of Dp
q f(x), p = 0,1,2,. . . and

with the connection coefficients between the q-classical orthogonal polynomials belonging to the Askey–Wilson polynomials and Pn(x;q)
in T. These formulae are systematically used to set up the resulting algebraic systems when applying the spectral methods for solving
q-difference equations with polynomials coefficients of any order.
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