Idempotency of linear combinations of two idempotent matrices

Jerzy K. Baksalary a, Oskar Maria Baksalary b,*

aDepartment of Mathematics, Tadeusz Kotarbiński Pedagogical University, pl. Słowiański 9, PL 65-069 Zielona Góra, Poland
bFaculty of Physics, Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, PL 61-614 Poznań, Poland

Received 11 May 2000; accepted 29 June 2000
Submitted by G.P.H. Styan

Abstract

A complete solution is established to the problem of characterizing all situations, where a linear combination of two different idempotent matrices \(P_1 \) and \(P_2 \) is also an idempotent matrix. Including naturally three such situations known in the literature, viz., if the combination is either the sum \(P_1 + P_2 \) or one of the differences \(P_1 - P_2, P_2 - P_1 \) (and appropriate additional conditions are fulfilled), the solution asserts that in the particular case where \(P_1 \) and \(P_2 \) are complex matrices such that \(P_1 - P_2 \) is Hermitian, these three situations exhaust the list of all possibilities and that this list extends when the above assumption on \(P_1 \) and \(P_2 \) is violated. A statistical interpretation of the idempotency problem considered in this note is also pointed out. © 2000 Elsevier Science Inc. All rights reserved.

AMS classification: 15A57; 62H10

Keywords: Oblique projector; Orthogonal projector; Quadratic form; Chi-square distribution

1. Introduction

It is assumed throughout that \(c_1, c_2 \) are any nonzero elements of a field \(\mathcal{F} \) and \(P_1, P_2 \) are two different nonzero idempotent matrices over \(\mathcal{F} \), i.e., \(P_1 = P_1^2, P_2 = P_2^2 \), and \(P_1 \neq P_2 \). The symbols \(\gamma_1, \gamma_2 \) and \(Q_1, Q_2 \) are used instead of \(c_1, c_2 \) and \(P_1, P_2 \) when considerations are concerned with complex scalars and matrices.

* Corresponding author.
E-mail address: baxx@main.amu.edu.pl (O.M. Baksalary).

0024-3795/00 - see front matter © 2000 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 4 - 3 7 9 5 (0 0) 0 0 2 2 5 - 1
The purpose of this paper is to establish a complete solution to the problem of characterizing all situations, where the operation of combining linearly P_1 and P_2 preserves the idempotency property. Three such situations are known in the literature, viz., if the combination is either the sum $P_1 + P_2$ or one of the differences between P_1 and P_2, and appropriate additional conditions are fulfilled; cf. Theorems 5.1.2 and 5.1.3 in [4]. The solution obtained asserts that these three situations exhaust the list of all possibilities when attention is restricted to complex idempotent matrices Q_1 and Q_2 such that $Q_1 - Q_2$ is Hermitian and that this list extends when the problem is considered in the general case.

The idempotency problem considered in this note admits a statistical interpretation due to the fact that if A is an $n \times n$ real symmetric matrix and x is an $n \times 1$ real random vector having the multivariate normal distribution $N_n(0, I)$, where I stands for the identity matrix, then a necessary and sufficient condition for the quadratic form $x'Ax$ to be distributed as a chi-square variable is that $A = A^2$; cf. Theorem 5.1.1 in [3] or Lemma 9.1.2 in [4].

2. Results

As already pointed out, the main result deals with the idempotency of linear combinations of any idempotent matrices.

Theorem. Given two different nonzero idempotent matrices P_1 and P_2, let P be their linear combination of the form

$$P = c_1P_1 + c_2P_2$$

with nonzero scalars c_1 and c_2. Then there are exactly four situations, where P is an idempotent matrix:

(a) $P_1P_2 = P_2P_1$ holds along with either one of the following sets of conditions:

(i) $c_1 = 1$, $c_2 = 1$, $P_1P_2 = 0$;
(ii) $c_1 = 1$, $c_2 = -1$, $P_1P_2 = P_2$;
(iii) $c_1 = -1$, $c_2 = 1$, $P_1P_2 = P_1$;

(b) $P_1P_2 \neq P_2P_1$ holds along with the conditions $c_1 \in \mathbb{R} \setminus \{0, 1\}$, $c_2 = 1 - c_1$, $(P_1 - P_2)^2 = 0$.

Proof. Direct calculations show that P of form (1) is idempotent if and only if

$$c_1(1 - c_1)P_1 - c_1c_2P_1P_2 - c_1c_2P_2P_1 + c_2(1 - c_2)P_2 = 0.$$

Hence the sufficiency part of the theorem follows easily. The proof of necessity is split into two complementary cases (a) and (b) specified by $P_1P_2 = P_2P_1$ and $P_1P_2 \neq P_2P_1$, respectively.

In the former case, premultiplying equality (2) first by P_1 and then by P_2 leads, respectively, to
\[c_1(1 - c_1)P_1 + c_2(1 - 2c_1 - c_2)P_1P_2 = 0, \quad (3)\]
\[c_2(1 - c_2)P_2 + c_1(1 - c_1 - 2c_2)P_1P_2 = 0, \quad (4)\]

and postmultiplying \((3)\) by \(P_2\) or premultiplying \((4)\) by \(P_1\) yields
\[\left[c_1 + c_2 - (c_1 + c_2)^2\right]P_1P_2 = 0. \quad (5)\]

From \((3)\) and \((4)\) it is seen that if \(P_1P_2 = 0\), then in view of \(P_1 \neq 0, P_2 \neq 0\) and \(c_1 \neq 0, c_2 \neq 0\) both \(c_1\) and \(c_2\) must be equal to 1, which is the situation \((i)\). On the other hand, if \(P_1P_2 \neq 0\), then \((5)\) implies that either
\[c_1 + c_2 = 1 \quad (6)\]
or
\[c_1 + c_2 = 0. \quad (7)\]

Then equalities \((3)\) and \((4)\) simplify to
\[c_1c_2(P_1 - P_1P_2) = 0 \quad \text{and} \quad c_1c_2(P_2 - P_1P_2) = 0 \quad (8)\]

when substituting \((6)\) and to
\[c_1(1 - c_1)(P_1 - P_1P_2) = 0 \quad \text{and} \quad c_1(1 + c_1)(P_2 - P_1P_2) = 0 \quad (9)\]

when substituting \((7)\). In view of the assumption that \(P_1 \neq P_2\), the equalities \(P_1P_2 = P_1\) and \(P_1P_2 = P_2\) cannot hold simultaneously. Consequently, since \(c_1 \neq 0\) and \(c_2 \neq 0\), it follows that the pair of conditions \((8)\) can never be fulfilled, whereas the pair of conditions \((9)\) is fulfilled if and only if either \(c_1 = 1\) (implying \(c_2 = -1\)) and \(P_1P_2 = P_2\), which is the situation \((ii)\), or \(c_1 = -1\) (implying \(c_2 = 1\)) and \(P_1P_2 = P_1\), which is the situation \((iii)\).

We now return to the necessary and sufficient condition \((2)\). Premultiplying and postmultiplying it by \(P_1\) leads, respectively, to
\[c_1(1 - c_1)P_1 + c_2(1 - c_1 - c_2)P_1P_2 - c_1c_2P_1P_2P_1 = 0, \quad (10)\]
\[c_1(1 - c_1)P_1 + c_2(1 - c_1 - c_2)P_2P_1 - c_1c_2P_1P_2P_1 = 0. \quad (11)\]

Hence
\[c_2(1 - c_1 - c_2)(P_1P_2 - P_2P_1) = 0, \quad (10)\]

and since in the case \((b)\) the condition \(c_2 \neq 0\) is accompanied by \(P_1P_2 \neq P_2P_1\), it is clear that \((10)\) is equivalent to \((6)\). Substituting \((6)\) to \((2)\) simplifies the latter to the equality
\[c_1c_2(P_1 - P_1P_2 - P_2P_1 + P_2) = 0, \quad (12)\]

which in view of \(c_1c_2 \neq 0\) yields the last condition in \((b)\), thus concluding the proof. \(\square\)

Other functions of idempotent matrices \(P_1\) and \(P_2\) studied (quite intensively) in the literature are the products \(P_1P_2\) and \(P_2P_1\); cf. Ref. [1] containing investigations.
of their idempotency in the case where P_1 and P_2 are Hermitian and Refs. [2,5] containing recent investigations of this type in the general case. In this context it seems interesting to notice the following relationship.

Corollary 1. Under the assumptions of the theorem, a necessary condition for $P = c_1P_1 + c_2P_2$ to be an idempotent matrix is that each of the products P_1P_2 and P_2P_1 is an idempotent matrix.

Proof. In case (a) of the theorem the assertion of this corollary is obvious. In case (b) we have

$$P_1 - P_1P_2 - P_2P_1 + P_2 = 0,$$

and premultiplying (11) by P_1 leads to the equality

$$P_1 = P_1P_2P_1,$$

which implies the idempotency of both P_1P_2 and P_2P_1. □

The second corollary refers to a special case where P_1 and P_2 are complex matrices such that their difference is a Hermitian matrix. This requirement obviously covers the situation where both P_1 and P_2 are Hermitian.

Corollary 2. Given two different nonzero complex idempotent matrices Q_1 and Q_2 such that the difference $Q_1 - Q_2$ is Hermitian, let Q be their linear combination of the form $Q = \gamma_1Q_1 + \gamma_2Q_2$ with nonzero complex numbers γ_1 and γ_2. Then there are exactly three situations, where Q is also idempotent:

(i) $Q = Q_1 + Q_2$ and $Q_1Q_2 = 0 = Q_2Q_1$,
(ii) $Q = Q_1 - Q_2$ and $Q_1Q_2 = Q_2Q_1$,
(iii) $Q = -Q_1 + Q_2$ and $Q_1Q_2 = Q_1 = Q_2Q_1$.

Proof. In view of the theorem, it suffices to show that the situation described in its part (b) is void when $Q_1 - Q_2$ is a Hermitian matrix. But this is indeed the fact, for the equality $(Q_1 - Q_2)^2 = 0$ can then be reexpressed as

$$(Q_1 - Q_2)(Q_1 - Q_2)^* = 0,$$

which is impossible except merely for the trivial case where $Q_1 = Q_2$. □

According to the statistical interpretation of the idempotency problem pointed out at the end of Section 1, Corollary 2 asserts that when q is a linear combination of two quadratic forms $q_1 = x'A_1x$ and $q_2 = x'A_2x$, each following a χ^2 distribution, then q is also distributed as a χ^2 variable if and only if either it is the sum of q_1 and q_2, and the distributions of q_1 and q_2 are independent, or it is one of the differences $q_i - q_j$, $i, j = 1, 2; i \neq j$, and the distributions of q and q_j are independent.
In conclusion, we first show that the fourth possibility indicated in the theorem is a real extension of the list of three possibilities common for the theorem and Corollary 2. A simple example is provided by the matrices

\[
P_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad P_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}.
\]

Since they are both idempotent and, in view of the equalities \(P_1 P_2 = P_2\) and \(P_2 P_1 = P_1\), satisfy \((P_1 - P_2)^2 = P_1 - P_1 P_2 - P_2 P_1 + P_2 = 0\) along with \(P_1 P_2 \neq P_2 P_1\), part (b) of the theorem asserts that, in addition to \(P_1\) and \(P_2\), also every matrix of the form

\[
P = c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + (1 - c) \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 - c & 1 \end{pmatrix},
\]

with any \(c\) different from 0 and 1, is idempotent. The second example, in which

\[
Q_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad Q_2 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}
\]

shows that the assumption in Corollary 2 that the difference \(Q_1 - Q_2\) is a Hermitian matrix is essentially weaker than the requirement that both \(Q_1\) and \(Q_2\) are Hermitian matrices. Consequently, the conditions given therein must refer to both products \(Q_1 Q_2\) and \(Q_2 Q_1\).

Acknowledgements

The authors are very grateful to a referee for stimulating comments and suggestions which resulted in reformulating the theorem, reorganizing its proof and adding Corollary 1. The research of both authors was supported in part by the Polish Committee of Scientific Research Grant No. 2 P03A 010 18.

References