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SUMMARY

Throughout evolution, organisms have devised strat-
egies to limit fertility in case of prolonged starvation.
In mammals, the liver plays a central role in the
orchestration of mechanisms allowing for the
maintenance of energy homeostasis. We here
demonstrate that dietary amino acids regulate the
transcriptional activity of hepatic estrogen receptor
alpha (ERa) through an mTOR-dependent mecha-
nism. As a result of ERa activation, hepatic IGF-1
mRNA and blood IGF-1 are increased. Conversely,
calorie restriction or selective ablation of ERa in the
liver decrease blood IGF-1 to levels inadequate for
the correct proliferation of the lumen epithelium in
the uterus and the progression of the estrous cycle.
We propose that the liver acts as critical mediator
of energetic and reproductive functions responsible
for the blockade of the estrous cycle in case of
protein scarcity. Our findings may provide novel
insights to understand the cause of selected forms
of infertility and metabolic alterations in women after
menopause.

INTRODUCTION

Food intake and fertility are under a strict reciprocal control and

this mechanism ensures that reproduction occurs only in favor-

able conditions with respect to energy availability. The biochem-

ical pathways coupling nutrition and reproduction were

described in detail in invertebrates (Gerisch et al., 2001; Motola

et al., 2006; Lee et al., 2008); in most vertebrates, it is recognized

that malnutrition affects the reproductive cycle, but the molec-

ular events involved in this phenomenon remain to be clarified.

Inmammals the ovarian sex hormone 17b-estradiol (E2) and its

receptors ERa and ERb have a major role in the control of

reproductive functions as well as in the regulation of food intake
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(Dubuc, 1985; Asarian and Geary, 2006) and lipid and glucose

homeostasis (Hewitt et al., 2004); thus E2 signaling apparatus

is a potential candidate for the coupling of reproductive functions

with the energetic metabolism.

E2 is synthesized via a feedback mechanism involving the

hypothalamus in which the gonadotropin-releasing hormone

(GnRH) is produced to stimulate the anterior hypophysis to

release the gonadotropins into the bloodstream (Levine, 1997).

Gonadotropins elicit the maturation of follicles in the ovary and

the production of sex hormones that orchestrate the maturation

of the oocytes and the implantation of the fertilized eggs in the

uterus. GnRH synthesis in the hypothalamus is in turn controlled

by circulating E2 via complex mechanisms, including the

hormonal direct action on electrical activity of GnRH neurons

and indirect control exerted via neuron-neuron or glia-GnRH

interactions (Herbison, 1998).

GnRH neurons are also the recipient of input from the neural

cells responsive to peripheral (e.g., leptin, insulin, ghrelin) (Magni

et al., 1999; Chan and Mantzoros, 2001; Malik et al., 2008) and

central (NPY, orexins, kisspeptin, melanocortin) metabolic

hormones (Li et al., 1999; Campbell et al., 2003; Dungan et al.,

2006; Lee and Wardlaw, 2007). Thus the finding that ERs are

largely present in the hypothalamic regions which are respon-

sible for energy intake and storage (Musatov et al., 2007) and

that circulating levels of steroid hormones influence neurons

responsive to central metabolic hormones led to the formulation

of the hypothesis of a central mechanism for the control of ener-

getic metabolism by sex hormones (Schneider, 2004).

However, estrogen signaling is known to control some of the

mechanisms regulating the energetic metabolism in the periph-

eral organs as well. E2 controls the amount of white adipose

tissue (WAT) in female mice (Heine et al., 2000) and modulates

leptin production positively and negatively depending upon its

binding to ERa or ERb (Yi et al., 2008); in the skeletal muscle,

both ERa and ERb were shown to be instrumental in estrogen

regulation of the glucose transporter GLUT4 (Barros et al.,

2006); in the pancreas insulin content is regulated via ERa

(Alonso-Magdalena et al., 2008). In the liver, where most of the

estrogen receptors are of the ERa type (Alvaro et al., 2000),

this receptor and estrogen were shown to control glucose
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Figure 1. Food Consumption Is Associated with ER Transcriptional

Activity in the Liver

(A–D) Luciferase (LUC) activity as measured in vivo by BLI (A) and ex vivo by

enzymatic activity (RLU, B), LUC (C), and ERa mRNA (D) in liver prior to (0)

or at the end of weeks 1, 2, 3, and 4 of CR. Data represent the mean ± SEM

(n = 6). *p < 0.05; **p < 0.01 (versus time 0).

(E) LUC enzymatic activity in liver of mice 6 hr after gavage with isocaloric

amounts of carbohydrates (C), amino acids (AA), or lipids (L). Data represent

the mean ± SEM (n = 18).

(F) Time course of the effect of treatment with C or AA on liver LUC activity.

(G–I) BLI (G), LUC enzymatic activity (H), and LUCmRNA content (I) measured

in liver of mice 6 hr after gavage with AA and with or without ICI 182,780 (ICI).

Data represent the mean ± SEM (n = 6). *p < 0.05; **p < 0.01.
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homeostasis, improving glucose tolerance and insulin sensitivity

in animal models and humans (Takeda et al., 2003; Simpson

et al., 2005; Gao et al., 2006), and by regulating the activity of

specific genes, estrogen was described as directly stimulating

lipogenesis in several animal species (Courtney et al., 1988)

and the expression of lipogenic genes (Gowri et al., 2007). By

using the ERE-Luc reporter mouse model (Ciana et al., 2003a),

we clearly demonstrated amajor impact of E2 on liver ER activity;

most interestingly, liver ERa activity was strongly regulated by

food intake (Ciana et. al 2005) and during the female estrous

cycle ERa transcriptional activity in the liver and in the reproduc-

tive organs were temporally associated, in contrast to what was

observed in the nonreproductive organs (Ciana et al., 2003a).

These observations led us to further investigate the biological

relevance of food intake-dependent regulation of ER activity in

liver and to verify the extent to which liver ER activity could be

involved in the control of reproductive functions.

We here demonstrate the existence of a novel liver-dependent

mechanism controlling growth of the uterus and therefore

ensuring that regular ovulatory cycles occur only in relation to

an adequate nutritional supply.

RESULTS

Amino Acids Induce ER Transcriptional Activity in Liver
Previous studies with the ERE-Luc reporter mouse model

demonstrated that consumption of nonestrogenic food acti-

vated estrogen receptors (ER) in liver. To further demonstrate

the association between food consumption and liver ER activity,

we investigated the consequences of calorie restriction (CR).

Adult female ERE-Luc mice were subjected to 40% CR for

4 weeks and, at the end of each week, liver ER activity wasmoni-

tored in vivo by bioluminescence-based imaging (BLI, Figure 1A)

or ex vivo by quantitative analysis of luciferase enzymatic activity

(Figure 1B) and mRNA (Figure 1C). All measurements were done

in the morning (between 9 and 11 a.m.) when luciferase activity

was generally heightened by food consumption at night. CR

was associated with a very significant decrease in luciferase

mRNA and activity in the liver of ERE-Luc mice. This effect was

not associated with changes in ERa mRNA, indicating that the

receptor activity, but not its turnover, was affected by CR

(Figure 1D).

To identify the nature of the macronutrients responsible for

liver ER activity, we measured luciferase accumulation after

oral administration of an estrogen-free diet or an isocaloric

amount of its carbohydrate (C), protein (mainly amino acids), or

lipid (L) components. Figure 1E shows that 6 hr after gavage,

the complete diet induced an increase in luciferase activity of

67% versus controls; when each single macronutrient was

administered, the amino acids, but not the L or C, were able to

significantly increase ER activity (+46% versus control). As

control, we measured the effect of the diets on another well-

known sensor of cellular energy homeostasis: AMP-dependent

protein kinase (AMPK) (Andersson et al., 2004). As previously re-

ported, AMPK protein content in liver increased in animals fed

with the regular diet (+83%) and with C (+100%), while its phos-

phorylated state (PAMPK) augmented with C (+40%) and

decreased with the complete diet (�34%), amino acids

(�36%), and L (�40%) (Figure S1A, available online). Thus amino
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acids exerted an effect selective for the sex hormone receptor

activity.

Because it is well known that sugars are rapidly catabolized,

we investigated the effects of C or AA administration at shorter

times after oral treatment. We measured luciferase activity in

living mice by BLI at 1, 3, 4, 7, and 8 hr after C or AA administra-

tion by gavage. At no time did C increase luciferase-dependent

photon emission in liver; conversely, 6–8 hr after AA administra-

tion photon emission was increased 4-fold versus time 0 (Fig-

ure 1F). We calculated that the total amount of AA we could

administer by gavage was equivalent to the 20% average daily

protein intake: considering that this amount of AA induced an

increase in liver photon emission of the same order of magnitude

as endogenous estrogen at proestrus (P, the phase of the

estrous cycle in which circulating E2 is highest) (Figure S1B),

we concluded that liver ER activity induced by amino acids

may be associated with a specific physiological function. Thus

we further tested whether the AA effect on liver luciferase was
c.



Figure 2. AA-Induced ER Transcriptional Activation in Hepatic Cells

Grown in Culture

(A) Photon emission of hepatocytes isolated from ERE-Luc mice in primary

culture incubated for 6 hr in the presence of the indicated E2 concentrations.

(B and C) LUC enzymatic activity measured 6 hr after treatment with E2 (0.5, 1,

5, 10 nM) or AA (1 mM) in hepatocytes from ERE-Luc (ERa+/+) or ERE-Luc/

ERaKO (ERa�/�) mice. Data represent the mean ± SEM (n = 6). ***p < 0.001

versus vehicle (veh) ERa+/+; xxxp < 0.001 versus ERa�/�.
(D) LUC enzymatic activity in hepatocytes isolated from ERE-Luc mice after

30 min incubation with BCH (10 mM) prior to 6 hr treatment with veh or AA

(1 mM). Data represent the mean ± SEM (n = 6). ***p < 0.001.

(E) LUC enzymatic activity in transfected HepG2 incubated as shown with E2

(5 nM) or AA (0, 0.25, 0.5, 5, 10 mM) for 5 hr. Data represent the mean ±

SEM (n = 6). **p < 0.01; ***p < 0.001.

(F) LUC enzymatic activity in transfected HepG2 cells treated with 10 mM AA

with or without 50 nM rapamycin (Rapa), 50 mMLY294002 (LY), or 50 mMH-89.

Data represent the mean ± SEM (n = 6). ###p < 0.001 versus ctrl AA.
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associated with transcriptional activation of ER by coadministra-

tion of the ER pan-antagonist ICI 182,780 (6.7 mg/kg). Figures

1G–I show that when amino acids were coadministered with

the ER antagonist, amino acids failed to induce an increase in

photon emission as well as in luciferase enzymatic activity and

mRNA, thus indicating that, in liver, luciferase accumulation is

strictly dependent on ER activity.

Amino Acids Stimulate ER Activity in Primary Cultures
of Hepatocytes and Transfected HepG2 Hepatoma Cells
To demonstrate whether amino acids directly affects liver ER, we

carried out a series of observations in hepatic cells in culture.

Primary cultures of hepatocytes isolated from the ERE-Luc

mice were shown to express luciferase at a concentration

dependent on the amount of E2 used for the stimulus; the

reporter was not induced in cells isolated from ERE-Luc/ERa�/�

mice (Figures 2A and 2B). Similarly, amino acids induced a signif-

icant increase of luciferase activity only in the cells isolated from

mice expressing ERa (Figure 2C). The AA effect was blocked

when hepatocytes were incubated in the presence of 10 mM of

2-aminobicyclo(2.2.1)-heptane-2-carboxylic acid (BCH), an

AA-uptake inhibitor thought to be specific for the L System

(Christensen et al., 1969), indicating that amino acids had to

penetrate the cell membrane in order to regulate ER transcrip-

tional activity (Figure 2D). In HepG2 cells, not expressing ERs,

the effect of AA was studied in cotransfection experiments. In

the cells transfected with the luciferase reporter plasmid only,

E2 (1 nM) or amino acids (0.25–10 mM) did not induce luciferase

synthesis; in the presence of ERa the effect of AA was dose

dependent and maximal at a concentration of 10 mM (+125%)

(Figure 2E). In transfected HepG2 cells, the AA-induced increase

of ERa activity was blocked by rapamycin (Rapa, 50 nM) and

LY294002 (50 mM), both described as inhibiting the mTOR

pathway (Ghayad et al., 2008). Pharmacological blockade

of the PKA signaling pathway by H-89 (50 mM) did not affect

AA-induced ER activity (Figure 2F). Further, we found that amino

acids failed to induce the transcriptional ability of selected phos-

phorylation mutants of ERa such as S167A and Y537A (Fig-

ure S2), supporting the existence of a direct effect of amino acids

on ER activity that involves mTOR-mediated signaling.

Dietary Proteins Rescue Mice from CR-Induced
Blockade of the Reproductive Cycle
Next, we asked what could have been the physiological role of

the AA-mediatedmodulation of ERa in the liver. Protein malnutri-

tion, as the most severe form of food deprivation in mammals, is

known to be associated with the blockade of the reproductive

cycle. The fact that proteins, but not other macronutrients, stim-

ulated ER signaling in the liver was consistent with the idea of

a functional connection between nutrient-induced activation of

hepatic ER and reproduction. To test this hypothesis, we inves-

tigated whether the 40% CR, able to decrease liver ER activity,

was sufficient to arrest the reproductive cycle and whether

a diet enriched in amino acids by 40% was able to rescue the

effect of the CR. Mice were subjected to 40%CR by using either

a regular (reg) or an isocaloric diet enriched by 40% in raw

proteins (hyperproteic diet, hyp); hence, in the CR experiments,

mice treated with the reg diet consumed 40% less of all macro-

nutrients, while those treated with the hyp diet consumed an
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amount of proteins identical to animals fed ad libitum (AL), but

a lower amount of C and L. The effects of these dietary regimens

on estrous cycle progression were assessed daily by vaginal

smears. The regularity of the estrous cycle was scored by count-

ing the number of proestrus (P) in a 4-day period, considering

that in mice the length of the estrous cycle is about 4 days. Fig-

ure 3A shows that 1 week after 40% CR with regular diet a very

limited percentage (14%) of the mice were cycling; indeed,

100% of mice were in anestrus on average 8.5 days after the

beginning of CR. CR with hyperproteic diet was significantly

less disruptive for the cycle because after 1 week of CR, 66%

of the mice were still cycling and on the 12th day of CR, 25%
etabolism 13, 205–214, February 2, 2011 ª2011 Elsevier Inc. 207



Figure 3. Dietary Proteins Delay CR-Induced Blockade of the Repro-

ductive Cycle and Prevent ER-Dependent Synthesis of Circulating

IGF-1

(A) The frequency of proestrus in the 2 weeks prior to the beginning of the

experiment (time 0) was scored as 100% and then the cycle was analyzed

by vaginal smears daily and scored as % versus time 0 at weeks 1 and 2 of

treatment with regular (reg) or hyperproteic (hyp) diets.

(B) Animal weight at the beginning of the study and at the end of weeks 1 and 2

of CR. Data represent the mean ± SEM (n = 6). ***p < 0.001 (versus reg diet AL);

###p < 0.001 (versus hyp diet AL).

(C) Total serum IGF-1 after 2 weeks of CRwith reg or hyp diets. Data represent

the mean ± SEM (n = 6). *p < 0.05.

(D) Total serum IGF-1 levels at the beginning (0) or at the end of weeks 1, 2, and

4 of CR with reg diet and in females in different phases of estrous cycle Data

represent the mean ± SEM of 3–21 mice. *p < 0.05; **p < 0.01; ***p < 0.001

(versus P); #p < 0.05 (versus D); �p < 0.05 (versus time 0). P, proestrus; E,

estrus; M, metestrus; D, diestrus.

(E and F) Igf-1 mRNA in liver (E) and total serum IGF-1 content (F) measured

6 hr after gavage with AA with/without ICI. Data represent the mean ± SEM

(n = 6). *p < 0.05; **p < 0.01.
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of the mice was still in the metestrus/diestrus (M/D). Interest-

ingly, the hyperproteic diet had a favorable effect also in controls

as indicated by the slight increase (+20%) in the number of P/

mouse. The similarity of body weights (Figure 3B) in the various

experimental groups confirmed that the amount of calories

provided by the two diets was identical.

Altogether, these data were consistent with the theory envi-

sioning the requirement for the AA-dependent activation of liver

ER for a correct progression of the estrous cycle.
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Decreased IGF-1 Signaling Impairs the Progression of
the Estrous Cycle
In model organisms such as Caenorhabditis elegans and

Drosphila melanogaster, energy balance controls reproductive

functions through a well-conserved IGF-1/insulin-like signaling

pathway (Lee et al., 2008; Motola et al., 2006; Gerisch et al.,

2001). In rodents and primates, liver is the primary source of

circulating IGF-1 (Yakar et al., 1999) and the hormone blood

content is severely decreased by protein malnutrition (Ammann

et al., 2000) and increased by dietary proteins (Filho et al.,

1999). These observations led us to verify whether AA-induced

liver ER activity affected IGF-1 synthesis and therefore the

progression of the cycle. In line with the data in the literature,

at the end of the second week of CR, we found a significant

decrease in IGF-1 content in the serum of mice treated with

the regular diet, but no decrease in animals in which CR was

carried out with the hyperproteic diet (Figure 3C).

When we analyzed the effect of 40% CR with the regular

diet, we found that, at the end of the first week of CR, serum

IGF-1 content was decreased by 24% (from 300 ng/mL to

230 ng/mL) and by the second week of CR circulating levels

of IGF-1 were stabilized at a concentration of 170 ng/mL

(Figure 3D). In keeping with a relationship between reproduction

and circulating IGF-1, the measurement of IGF-1 in the

bloodstream of mice fed ad libitum showed significant changes

during the estrous cycle: the highest serum concentration of

IGF-1, 398 ng/mL, was at proestrus (P), the lowest, 250 ng/mL,

at estrus (E) (Figure 3D). Thus the impairment of the progression

of the reproductive cycle induced by CR could have been

due to a reduction of circulating IGF-1 to levels below those

observed at E.

Most interestingly, by treating the mice with amino acids alone

or with amino acids and ICI 182,780 we showed that ERa activity

was necessary for the AA-induced increase of Igf-1mRNA in liver

and IGF-1 protein in serum (Figures 3E and 3F).

The involvement of IGF-1 in the progression of the reproduc-

tive cycle was studied further in cycling mice. ERE-Luc mice

were subjected daily to vaginal smear analysis and to in vivo

imaging; blood was collected to measure circulating levels of

E2 and IGF-1. In this group of animals, E2 serum level was

maximal at P, decreased at E, and then slowly increased at

metestrus (M) and diestrus (D); the concentration of the peptide

hormonewasmaximal at P, decreased significantly at E, but very

rapidly augmented at M and D (Figures 4A and 4B). These fluc-

tuations were consistent with our previous observations and

other reports on increased IGF-1 secretion after administration

of exogenous E2 (Venken et al., 2005). In line with the changes

of circulating E2, photon counting indicated that in the hepatic

area luciferase activity peaked at each P (Figure 4E). We then

tested the involvement of IGF-1 in the progression of the cycle

by treating the mice with JB3, a competitive antagonist of the

IGF-1 receptor (IGF-1R) (Pietrzkowski et al., 1992). Infusion of

JB3 at the rate of 1 mg/day, a concentration previously shown

to block IGF-1R activity (Figure S3), increased the length

between each P from 4–5 to 6–7 days (Figure 4C) and blunted

the profile of ER activity in time (Figure 4E).

Further evidence of the consequences of the reduced

synthesis of liver IGF-1 on the reproductive cycle was obtained

by crossing the ERE-Luc with mice carrying a liver-selective
c.



Figure 4. Decreased IGF-1 Signaling Impairs the

Progression of the Reproductive Cycle

(A) BLI and corresponding vaginal smears of a representa-

tive mouse during the 4 day-long estrous cycle.

(B) IGF-1 and E2 serum concentration at the indicated

estrous cycle phases.

(C) JB3 (1 mg/day s.c.) effect on photon emission as

measured daily at 2:00 p.m. by BLI in a representative

ERE-Luc mouse.

(D) BLI and corresponding vaginal smears of a representa-

tive LID/ERE-Luc mouse in different phases of the estrous

cycle.

(E and F) Photon emission as measured daily by BLI (E) in

the hepatic area of ERE-Luc, JB3-treated ERE-Luc, and

LID/ERE-Luc female mice and (F) respective coefficient

of variation. Data represent the mean ± SEM of 5–10

animals.
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ablation of the IGF-1 gene (LIDmice, Yakar et al., 1999). LIDmice

have serum IGF-1 levels 60%–70% lower than ERE-Luc mice

(Yakar et al., 1999 and Figure S4A), but are fertile. Consistent

with the JB3 results, we found that the decreased liver output

of IGF-1 was associated with an increased length of the repro-

ductive cycle (to 6–7 days) (Figure 4D). Similarly to JB3-treated

mice, in LID mice the profile of oscillation of the hepatic ER

activity (Figure 4E) was modified. A quantitative assessment of

the extent of the fluctuations of ER activity in liver during the

estrous cycle was provided by the measurement of the coeffi-

cient of variation (CV), which was clearly higher in ERE-Luc

(53%) than in JB3-treated (25.6%) and LID (33.7%) mice

(Figure 4F).

A Prompt Blockade of Fertility Is Not Observed
in LID Mice Subjected to CR
Previous results led us to conclude that dietary amino acids

enabled the progression of the estrous cycle by maintaining liver

ER above the threshold of transcriptional activity necessary for

the synthesis of the amount of circulating IGF-1 sufficient for
Cell Metabolism 13, 20
its signaling. In LIDmice, the slower progression

through the cycle could have been explained by

the presence of circulating factors substituting

for IGF-1 (e.g., insulin levels in LID are 4-fold

higher than in WT mice, Yakar et al., 2001). If

this were the case, LID mice should have been

insensitive to food deprivation and continue to

cycle even when subjected to CR. This hypoth-

esis was verified by comparing the effect of

40% CR on the fertility cycle of ERE-Luc and

LID/ERE-Luc mice. Figure 5 shows that in

ERE-Lucmice CR caused a very rapid blockade

of the cycle, but was not as efficacious in LID/

ERE-Luc mice: vaginal smear analysis showed

that by the second week of treatment only

10% of the ERE-Luc mice were cycling while

100% of the LID/ERE-Luc mice were still having

a regular cycle (Figures 5A and 5B). Thus LID

mice were clearly less susceptible to CR in spite

of the fact that the effect of the diet was similar in

ERE-Luc mice as indicated by the changes in
body weight (�39% in ERE-Luc, �45% in LID/ERE-Luc, after

4 weeks in CR) (Figure S4B) and in IGF-1 synthesis (�44% in

ERE-Luc, �48% in LID/ERE-Luc, after 4 weeks of CR)

(Figure S4C).

Liver ER, an Integrator of Metabolic
and Reproductive Functions
To finally demonstrate that liver ER was a sensor of the energetic

metabolism and the switch for the blockade of reproduction

in case of shortage of energetic supply, we generated a liver-

selective ERa�/�mouse (named LERKO) by breeding ERa floxed

mice (ERaflox/flox) (Dupont et al., 2000) with mice expressing the

cre-recombinase protein specifically in liver (Figure S5A–S5C).

Consistent with the view that LERKO mice should have an

altered equilibrium between reproductive cycle and energetic

metabolism, LERKO mice started to cycle earlier than their

controls (day 42 versus 47) (Figure S5D), in spite of the fact

that their weight was lower than in ERaflox/flox mice all through

postnatal development (Figure S5F). Indeed, in LERKO mice

the growth rate was slower than in controls up to 28–30 days
5–214, February 2, 2011 ª2011 Elsevier Inc. 209



Figure 5. Calorie Restriction and Reproductive Status of LID/ERE-

Luc Mice

(A) Vaginal smears of three ERE-Luc and three LID/ERE-Luc representative

mice at the beginning (0) and at the end of weeks 1, 2, 3, and 4 of CR. The

experiment was repeated three times on a total of nine animals/experimental

group.

(B) The number of proestrus in ERE-Luc and LID/ERE-Luc was scored and

expressed as percentage of proestrus/week in CR versus regularly fed mice.

Quantification was repeated in a second independent experiment with over-

lapping results.

Figure 6. Rapid Induction of Reproductive Cycle Blockade in Mice

with a Selective Ablation of Liver ERa

(A and B) Igf-1 mRNA (A) and total serum IGF-1 content (B) in ERaflox/flox

and LERKO mice fed AL and in CR. Data represent the mean ± SEM (n = 6).

*p < 0.05; **p < 0.01.

(C) Total serum IGF-1 content in LERKO mice 6 hr after gavage with AA. Data

represent the mean ± SEM (n = 6).

(D–F) The phase of the cycle was analyzed by vaginal smears daily 5 days

before and 7 days after 40% CR in ERaflox/flox mice fed AL (D) or in CR (E)

and in CR LERKO mice (F). Data were expressed as % of animals in a given

phase of the cycle. Each experimental group was composed of three mice.

The experiment was repeated three times with superimposable results.
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of age: at this time, while the growth of ERaflox/flox mice pro-

ceeded at the same pace up to 70 days, the growth of LERKO

mice noticeably accelerated, rapidly reached the growth of

control mice, and then stopped (Figure S5F). Differently from

mice expressing ERa in liver, the initial cycles of LERKO mice

were very regular with a periodicity superimposable to adult

mice (4.3 versus 5 days, Figure S5E). The lack of a functional liver

ERa impacted on IGF-1 synthesis in liver as indicated by the

decreased mRNA content (�40% versus controls, Figure 6A)

and by the lowered serum levels (210 ng/mL versus the average

300 ng/mL found in ERaflox/flox mice, Figure 6B). CR did not

further decrease IGF-1 secretion in LERKO mice. In addition, in

LERKO mice, AA administration failed to significantly increase

circulating levels of IGF-I (Figure 6C).

We predicted that in LERKOmice the low IGF-1 synthesis was

sufficient to maintain a viable cycle, but a minimal perturbation

would have interrupted the cycle. Indeed, vaginal smear analysis

indicated that in LERKO mice 2 days of diet were sufficient to

completely block the cycle. Figure 6F shows that mice cycling

properly arrested immediately in the M/D phases when sub-

jected to CR. The controls cycled regularly when fed ad libitum

(Figure 6D) and similarly to the ERE-luc mice had a gradual

response to CR as indicated by the few P observed during

the first week of CR. In these animals the complete shift to the

M/D did not occur before at least 5–6 days of CR (Figure 6E).

In Uterus Proliferation of Lumen Epithelium
Requires Circulating IGF-1
Circulating IGF-1 has been shown to have a role in the prolifera-

tion of uterus epithelium in preparation of implantation of the

fertilized oocytes (Sato et al., 2002). We therefore investigated

the mutual interplay of ERa and IGF-1R activity in relation to

the proliferation of the uterus epithelium during the estrous cycle.

First, we studied the effect of IGF-1 on Ishikawa cells, a line

derived from endometrial adenocarcinoma. Flow cytometry

showed that maximal cell growth occurred when cells were
210 Cell Metabolism 13, 205–214, February 2, 2011 ª2011 Elsevier In
treated with E2 24 hr prior to IGF-1; E2 alone was not able to

induce a significant increase in the number of cells in the G2/M

phase of the cell cycle (Figure 7A). In a second set of experiments

based on cell counting (Figure 7B), we showed that in the

absence of E2, the medium growth factors were sufficient to

maintain the cells at a basal proliferation status that was not

modulated by E2, but was increased by growth factors like

IGF-1 and insulin at high concentration. The requirement of

a functional ER for IGF-1-dependent cell proliferation was

demonstrated by the fact that ICI 182,780 blocked cell growth

induced by IGF-1 alone or IGF-1 + E2. This indicates the need

for a coupling of ER and IGF-1R activities to obtain the maximal

effect on uterine cell growth.
c.



Figure 7. ERa Transcriptional Activity and IGF-1 AreRequired for the

Growth of Epithelial Cells in Uterus

(A) Flow cytometry analysis of Ishikawa cells grown in culture for 48 hr in the

presence of the indicated compounds: 5 nM E2, 50 nM IGF-1; and 500 nM

ICI. IGF-1 (24 hr) cells were treated with E2 for 24 hr and then IGF-1 was added

in the medium and the incubation was continued for 24 hr. Data show the% of

cells counted in the G2/M phase of the cycle. Data represent the mean ± SEM

of five separate experiments carried out in triplicate. *p < 0.05; ***p < 0.001

(versus veh).

(B) Ishikawa cells were counted 48 hr after treatment with E2 and/or IGF1 at the

concentrations used in (A). Insulin concentration was 50 nM. Data represent

the mean ± SEM of five separate experiments carried out in triplicate. *p <

0.05; **p < 0.01; ***p < 0.001 (versus veh).

(C) Representative IHC for IGF1-Rb, ERa, Ki-67, and FOXO1 in uteri excised

from ERE-Luc mice at different phases of estrous cycle.
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Next, for a better insight of the dynamics of ER-IGF-1 interplay

in a more physiological setting, we studied the localization and

expression of IGF-1R and ERa in the mouse uterus during the

different phases of the reproductive cycle (Figure 7C). Staining

of IGF-1Rb indicated that this protein is modestly present at D

and accumulated through P to E. On the other hand, ERa nuclear

staining was clearly distinguishable from D and was highest at P.

IHC with the proliferation marker Ki-67 demonstrated that in the

uterus epithelium at diestrus there is an outburst of proliferation

which continues in the basal layer at P and stops at E. This is

consistent with the staining of the pioneering factor FOXO1

essential for the expression of approximately 50% of ER target

genes and inhibited by IGF-1 via phosphorylation; FOXO1

nuclear concentration is highest at D; by P the pioneering factor

was found in the cytoplasm and remained cytoplasmic up to D,

when proliferation started.
Cell M
These data clearly indicated that IGF-1 and its cognate

receptor are heavily involved in the progression of the reproduc-

tive cycle and their activity is strongly regulated by ER transcrip-

tional activity.

DISCUSSION

The present study shows that in liver AA-dependent activation of

ERs is necessary for a systemic production of IGF-1 sufficient for

the correct progression of the estrous cycle, thus suggesting for

hepatic ERa the novel role of peripheral integrator of metabolic

and reproductive functions.

The involvement of the liver in the regulation of fertility is well

rooted in the phylogenesis: hepatopancreas in invertebrates

and liver in vertebrates control reproduction by providing the

gonads with the nutrients essential for the maturation of the

oocyte (e.g., vitellogenin) (Jasmani et al., 2004) and the role of

E2 and ER in the production of the major yolk proteins is well

known. Consistent with the view of ERs coupling the nutritional

status with fertility, in invertebrates and several oviparous

species the highest expression of the ER genes is generally

observed in the gonads and in the liver/hepatopancreas (Nagler

et al., 2007).

In mammals, liver is the peripheral integrator of nutrient avail-

ability and energetic needs of the organism and is important

for feeding, digestion, and metabolic balance (Langhans,

1996). Sex is an important determinant of liver activities as

indicated by the fact that several of the enzymes involved in

the catabolism of xenobiotics and transcription factors relevant

for energy metabolism are differentially expressed in males

and females; furthermore, the sexually dimorphic GH secretion

from the anterior pituitary gland was reported to cause a sex-

dependent hepatic metabolism (Norstedt and Palmiter, 1984).

Finally, it is worth emphasizing that liver expresses ERa, the

receptor isoform most involved in the control of female sexual

differentiation and reproductive functions (Korach et al., 1996).

With regard to the mechanism of liver ERa transcriptional acti-

vation by AA, previous reports demonstrated that ER directly

regulated the IGF-I promoter (Gao et al., 2008, Hewitt et al.,

2010). Here, we demonstrated the requirement for a viable

intracellular transport of amino acids and a functional mTOR

pathway. mTOR is a sensor of cellular nutrients and amino acids

shown to control ERa activity via phosphorylation of Ser167 by

S6 kinase, a well-known element of the mTOR pathway (Yamnik

et al., 2009). In line with these results, we show that in hepatoma

cells amino acids fail to activate the transcriptional activity of

ERa mutants in Ser 167. In addition, we show that tyrosine 537

is necessary for AA activation of ERa in the absence of E2; this

phosphorylation was previously shown to be necessary for

p21ras-dependent activation of unliganded ER (Patrone et al.,

1998). We here propose that the regular intake of dietary amino

acids maintains a basal level of ER transcriptional activity neces-

sary to poise the receptors for a proper response to the hormonal

stimulus.

Our study points to IGF-1 synthesized by liver as a molecule

signaling the nutritional status to the reproductive apparatus in

mammals; a wealth of studies carried out in invertebrates such

as D. melanogaster and C. elegans demonstrated that IGF-I/

insulin-like signaling triggered by food availability is the key
etabolism 13, 205–214, February 2, 2011 ª2011 Elsevier Inc. 211
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regulator of reproductive behavior. In nematodes, however, the

switch for the fertility status is a lipid-activated protein, DAF-

12, an ortholog of the mammalian LXR receptor (Motola et al.,

2006). It is conceivable that in more evolved organisms able to

synthesize lipids, but not all amino acids, the lipid sensor LXR

lost its ability to regulate the reproductive functions in favor of

a novel transcription factor sensitive to proteins, as a better indi-

cator of the state of malnutrition in mammals.

Gonadal hormones are well-known regulators of the somato-

tropic axis at the hypothalamic level; by the selective ablation

of liver ERa, here we demonstrate the existence of a peripheral

mechanism of control of IGF-1 synthesis by estrogen signaling

so far not described. This mechanism may be a phylogenetic

remnant keeping a physiological relevance in mice as underlined

by the observation that in LERKO mice the pubertal spurt is un-

coupled from total body mass and that, in adult females, the low

synthesis of circulating IGF-1 heightens the vulnerability of the

reproductive cycle to CR. Of course, with evolution, the main

control of peripheral functions, including reproduction, was

acquired by the brain; indeed, when exposed to quite long-

term CR mice stop cycling in spite of the fact that the levels of

circulating IGF-1 are quite high.

Our finding of a role of dietary amino acids in the control of

reproduction in mammals is in line with previous reports showing

that the deficiency of a single essential AA like methionine repro-

duces many of the effects of CR (Malloy et al., 2006) and that

protein rather than total calorie intake regulates IGF-1 levels in

humans (Fontana et al., 2008). We propose that liver ER contrib-

utes to the maintenance of the systemic levels of IGF-1 required

for the waves of uterine epithelium proliferation necessary for the

correct implantation of the fertilized oocyte at each estrous

cycle. In LID mice the lower sensitivity to CR may be explained

by the very high levels of circulating insulin known to be able to

bind IGF-1 receptors and that might have a compensatory

activity by stimulating IGF-1 receptors in the uterus in the

absence of the cognate hormone.

The role of IGF-1 in E2-dependent mouse uterine epithelial cell

proliferation is well established (Korach et al., 1996), although the

source of IGF-1 has been controversial (Zhu and Pollard, 2007).

In agreement with previous reports, by using tissue grafting with

uteri from IGF-1 null mice (Sato et al., 2002), we demonstrated

that systemic IGF-1 is required for the E2-induced epithelial

uterine cell proliferation. The exact mechanism involved needs

further study. In keeping with current belief we here show that

the growth of Ishikawa cells induced by IGF-1 or insulin is

blocked in the absence of a viable ER. However, we believe

that the study of isolated epithelial cells is not sufficient to gain

the necessary insight on the complexity of the changes occurring

in the uterus during the 4 days of the cycle and the role played by

the stroma component of the uterus. Indeed, IHC shows that the

expression of proliferative markers ER and IGF-1Rb in uterus

change differentially in stroma and epithelium. A better under-

standing of the impact of E2 and IGF-1 on the stroma and epithe-

lium is necessary to fully elucidate the role of systemic IGF-1. On

the basis of the results here presented, we postulate that circu-

lating IGF-1 is a relevant factor for the blockage of FOXO1

activity at diestrus, allowing the completion of the proliferative

phase at P and facilitating differentiation of epithelial cells of

the uterus; this would explain the increase of IGF-1Rb noticeable
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at P and E in the cells that are undergoing differentiation.

Previous studies in our laboratory have also shown that

a cross-coupling between ERa and growth factors may act as

a switch to differentiation (Ciana et al., 2003b).

We believe that the present study, by showing the relevance of

amino acids on ER signaling in liver for the regulation of repro-

ductive functions has implications for the elucidation of mecha-

nisms of impaired pubertal development, nutritional amenor-

rhea, and obesity-related infertility. A better understanding of

these etiologies has far-reaching implications for the prevention

and management of reproductive dysfunctions and associated

comorbidities.

EXPERIMENTAL PROCEDURES

Animals

Animals were fed ad libitum with a certified estrogen-free, isoflavone-

deprived, 4RF21 diet (Mucedola). Room temperature was maintained at

22–25�C and the light/dark cycle was 12 hr (lights on at 7:00 a.m.). Heterozy-

gous ERE-Luc reporter mice (Ciana et al., 2003a); ERE-Luc/ERaKO mice, and

LID/ERE-Luc mice, were obtained by mating ERE-Luc with ERaKO (Dupont

et al., 2000) and LID mice (Yakar et al., 1999) respectively; for the LERKO

mice see Supplemental Experimental Procedures. Mice were generally

2–4 months old. Vaginal smears were done at 8:00 a.m.

A 40% CR regimen was calculated from the daily food consumption

measured for 14 days prior to the experiment. The hyp diet was 40% enriched

in raw proteins and decreased in carbohydrates and lipids to contain the same

calories as in the control diet. After overnight fasting, mice were repeatedly

(0.3 ml, three times every 45 min) treated by gavage to receive in total 21%

of the daily intake.

Pharmacological Treatments

JB3 (DSL) was administered 1 mg/day s.c. with an osmotic minipump (3 day-

release, Alzet) first implanted at proestrus. ICI 182,780 (TOCRIS) was admin-

istered i.p. at the dose of 6.7 mg/kg/day for 4 days before in vivo imaging.

All animal experimentation was carried out in accordance with European

guidelines for animal care and use of experimental animals, approved by the

Italian Ministry of Education, University and Research, and controlled by the

panel of experts of the Department of Pharmacological Sciences, University

of Milan.

Bioluminescence-Based Imaging and Luciferase Assay

BLI and luciferase assay were carried out as previously described (Maggi and

Rando, 2009).

Biochemical and Hormonal Assays

Serum total estradiol measurement was done by Dr. Parlow (NHPP, Harbor-

UCLA Medical Center, Torrance, CA, USA). IGF-1 (active mouse and rat

IGF-1 EIA and ELISA, DSL) was measured according to the manufacturer’s

protocols.

Cell Cultures and Treatments

Adult hepatocytes were isolated from liver of ERE-Luc or ERE-Luc/ERaKO

mice and grown according to Valverde et al. (Valverde et al., 2003). Prior to

treatment, cells were incubated in serum and phenol red-free medium for

45 min at 37�C, in the presence or absence of 10 mM BCH (30 min); then cells

were exposed to E2 or AA stimulation for 6 hr.

For human HepG2 cells, 48 hr before transfection the growth medium

was replaced with white MEM with dextran-coated charcoal stripped-FBS

(DCC-FBS). Transfection of the p-VERE-tk-LUC (0.8 mg) and ERa-containing

plasmids (0.016 mg) was done with Lipofectamine LTX and Plus Reagent

(Invitrogen-Life Technologies) for 6 hr and then medium was replaced with

white MEM plus 1% of DCC-FBS. To study AA effects, we starved cells in

Krebs Solution for 2 hr. HepG2 cells were treated with vehicle, 10 nM E2, or

with the AA solution at pH 7.4 in Krebs (for amino acids see Table S1). Lucif-

erase content was measured after 5 hr of incubation. Rapamycin and
c.



Cell Metabolism

Liver Estrogen Receptor and Fertility
LY294002 (2-[4-Morpholinyl]-8-phenyl-1[4H]-benzopyran-4-one hydrochlo-

ride) (both Sigma-Aldrich) and H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-

iso-quinolinesulphonamide) (Alexis Corporation) were added 30 min prior to

treatments. After 5 hr cells were harvested for luciferase enzymatic assay.

Treatments of Ishikawa cells with 5 nM E2 and/or 50 nM IGF-1 (Long R3

IGF-I, Sigma) and/or 50 nM insulin (from porcine pancreas, Sigma), with or

without 500 nM ICI 182,780 (TOCRIS) were done in the presence of 5%

FBS-DCC. The medium and treatments were renewed every 24 hr. Cells

were counted by CellTiter-Glo� Luminescent Cell Viability Assay (Promega).

The DNA distribution profiles of the Ishikawa cells were determined 48 hr

after treatments by using the FACSCalibur� (BD). After fixation with EtOH

and DNA staining, cells were analyzed by flow cytometry with a 488 nm laser

line for excitation. Quantitative analysis (10,000 events) was done with the

CELLQuest system program (BD).

Real-Time PCR Gene Expression Analysis

Total liver RNA was extracted with RNeasy Mini kit (QIAGEN). cDNA was

prepared as described (Ciana et al., 2007). rtPCR experiments were done

by TaqMan technology and using the primers: Luc forward and reverse

primers (ACA-GAT-GCA-CAT-ATC-GAG-GTG-AA and GCC-AAC-CGA-ACG-

GAC-ATT-T), Luc TaqMan MGB probe 50-TAC-GCG-GAA-TAC-TTC; TaqMan

Gene Expression assays for ERa (Mm00433149_m1), Igf-1 (Mm00439561_m1),

and as a reference gene assay 18S rRNAVIC-MGB-PDAR (AppliedBiosystems).

The reaction was carried out according to the manufacturer’s protocol by using

7900HT fast real-time PCR system (Applied Biosystems). Data were analyzed

by using the 2-DDCt method (Livak and Schmittgen, 2001).

Immunohistochemistry

Tissues were fixed in 4% paraformaldehyde and embedded in paraffin. Five

micrometer-thick sections were treated with 3%H2O2 in order to block endog-

enous peroxidises and then permeabilized (0.2% Triton X-100). The primary

antibodies used were monoclonal ERa 1D5 clone, Zymed Laboratories

(1:500); monoclonal rat anti-mouse Ki-67 antigen, DakoCytomation (1:25);

rabbit polyclonal IGF-I receptor b antibody, Cell Signaling Technology (1:50);

and rabbit monoclonal antibody FoxO1 (C29H4), Cell Signaling Technology

(1:25). Secondary biotinylated antibodies were from Vector Laboratories

(1:200). Immunoreactivity amplification was performed with the avidin-biotin-

peroxidase (Vectastain ABC kit, Vector Laboratories) and developed with

DAB (3,30-diaminobenzidine substrate, Sigma-Aldrich) or Alexa Fluor� 555

Streptavidin (Molecular Probes) for IGF1-Rb and FOXO1 or Alexa Fluor� 488

Streptavidin for ERa. Hoechst 33258 (Molecular Probes) was used to stain

nuclei. Slices were photographed at 40003.

Statistical Analysis

If not otherwise stated, statistical significance was assessed by one-way or

two-way ANOVA with Bonferroni’s multiple comparison post hoc test by using

GraphPad Prism 5 (GraphPad Software).

SUPPLEMENTAL INFORMATION
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