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Abstract Copper oxide (CuO) nanoparticles were successfully deposited on carbon nanotubes’

(CNTs) surface via complex-precipitation method, the nanocomposite was characterized by trans-

mission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron

spectroscopy (XPS), X-ray powder diffraction (XRD), Raman spectroscopy, Fourier transform

infrared (FT-IR) and Brunauer–Emmett–Teller (BET). The catalytic performance of CNTs/CuO

on ammonium perchlorate (AP) decomposition was analyzed by differential thermal analyzer

(DTA), the DTA results showed its excellent catalytic effect on AP decomposition, as 8 wt.%

CNTs/CuO was added in AP, the second exothermic peak temperature decreased by 158 �C. Such
composite may be a promising candidate for catalyzing the AP thermal decomposition.
ª 2014 The Authors. Production and hosting by Elsevier B.V. on behalf of King SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Ammonium perchlorate (AP), a white crystalline substance, is
the most commonly used oxidizer in composite solid propel-

lants (CSPs). Obviously, the thermal decomposition character-
istic of AP affects the performance of CSPs. Generally
speaking, the lower the decomposition temperature of AP,

the shorter the delay time of propellant ignition, the higher
the combustion rate and the better the performance of CSPs
[1]. Over the past several decades, numerous catalysts have
been employed to decrease the decomposition temperature of

AP [2–5]. The results suggested that the decomposition process
of AP was remarkably sensitive to the catalysts and the nano-
meter sized catalysts possessed better catalytic property as

compared with their bulk size. Among the metal oxide cata-
lysts, copper oxide (CuO) nanoparticles (NPs) showed partic-
ular catalytic effect due to their high concentration of
dislocations and large surface areas [6]. However, nanoparti-

cles are easy to aggregate due to their large surface energy,
which will further affect their catalytic performance.

Extensive attention has been paid on CNTs since their first

discovery [7] in many fields, such as catalyst [8], lithium ion
batteries [9] and solar cells [10]. For its application in catalyst
field, it should be noted that the perfect structure along its tube
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wall allows them to be the excellent dispersing-supporters for
the NPs [11–13]. Our earlier work [14] showed that the
CNTs/Cu exhibited better catalytic effect on AP thermal

decomposition than the simple mixture of CuNPs and CNTs
did, indicating CNTs can improve the catalytic performance
of CuNPs as a supporter. However, CNTs/CuO has not been

reported to catalyze the thermal decomposition of AP. Herein,
in our work CNTs/CuO nanocomposite was prepared, com-
pared with the simple mixture of CuONPs and CNTs,

CNTs/CuO nanocomposite exhibited higher catalytic activity
for AP thermal decomposition.

2. Experimental

2.1. Preparation of CNTs

Catalytic chemical vapor deposition (CCVD) method was
employed to synthesize CNTs. In a typical experiment, the vol-
ume of benzene (carbon source) and thiophene (growth stimu-

lant) was 150 and 1 ml, respectively. Catalyst (ferrocene, about
2 g) was uniformly spread on an alumina boat placed in a hor-
izontal tube furnace. After the temperature of the furnace was

raised to 1170 �C under a flow of nitrogen gas at a rate of
200 ml/min, hydrogen gas was introduced at a rate of 380 ml/
min for 15 min. The as-prepared CNTs were functionalized

by 100 ml concentrated mixed acids (H2SO4/HNO3 = 3:1)
under stirring condition at 75 �C for 2 h.

2.2. Synthesis of CNTs/CuO composite

Firstly, CNTs, SDS and copper chloride(CuCl2) were dis-
persed in 50 ml distilled water under ultrasound condition
for 30 min, subsequently, superfluous aqueous ammonia(e)

was added in the solution, then sodium hydroxide (NaOH)
was added into the solution stirred at 50 �C drop by drop, after
that, the solution was stirred at 50 �C for another 1 h. Finally,

the sample was filtered, washed with distilled water several
times, dried and calcinated in muffle furnace at 400 �C for
2 h. CuONPs were prepared following the same procedure

above without adding CNTs at the beginning.

2.3. Characterization

X-ray powder diffraction (XRD) analysis of the samples was
carried out with a German D8ADVANCE X-ray diffractome-
ter with Cu Ka radiation (k = 1.54056 Å). X-ray photoelec-
tron spectroscopy (XPS) was performed with an American

Thermo ESCALAB 250 electron spectrometer using Al K irra-
diation. Morphology of the samples was investigated using a
transmission electron microscopy (TEM) on a FEI instrument

(T-12 TENcai) subjected to an acceleration voltage of 120 kV
and a scanning electron microscopy (SEM) using a JEOL 35.
Raman spectra of the samples were recorded in the frequency

range of 200–2000 cm�1 using a Raman spectrometer (JY
HR-800 type) with a laser excitation line at 532 nm. Fourier
transform infrared (FT-IR) spectra were recorded on a NicdeT
740 spectrometer using pressed KBr pellets to test the chemical

bonding of the samples from 500 to 3750 cm�1. The Brunauer–
Emmett–Teller (BET) surface area of as-synthesized samples
was determined by using an instrument of the Beckman Coul-

ter Co. Ltd., USA.
2.4. Catalytic analysis

Thermal decomposition study of pure AP and AP with cata-
lysts was performed with the differential thermal analyzer
(DTA, TA instrument SDT-Q600) under a heating rate of

20 �C/min in a static N2 atmosphere with a-Al2O3 as reference
material. Sample of approximately 1.5 mg was taken. The
mass content of CNTs/CuO composite added in AP was
4 wt.%, the catalytic performance of the mixture of CNTs

and CuONPs was also carried out in the same way as compar-
ison. At the same time, CNTs/CuO with mass content of
1 wt.% and 8 wt.% was selected to study the effect of the mass

content of CNTs/CuO on AP thermal decomposition.

3. Results and discussion

Fig. 1a shows the SEM image of CNTs/CuO, in which
CuONPs are well dispersed along the CNTs surface. Fig. 1b
shows the TEM image of CNTs/CuO, which further proves

the uniform disperse of CuONPs on CNTs, also indicates
the uniform thickness of the loading layer. It should also be
mentioned that although the TEM specimen suffers from long

time sonication, perfect loading of CuONPs on CNTs can still
be seen clearly, indicating the strong force between CuONPs
and CNTs [15].

Fig. 2 illustrates the XRD patterns of CNTs (Fig. 2a) and

the synthesized CNTs/CuO composite (Fig. 2b). For the
XRD pattern of CNTs, three characteristic peaks at 26.41�,
43.6� and 53.12� correspond to the (002), (101) and (004)

inter-planar spacing of CNTs, respectively. For the XRD pat-
tern of CNTs/CuO, the intensity of the three characteristic
peaks of CNTs are weakening or disappearing, maybe caused

by the fine loading of CuONPs on CNTs surface. Besides the
diffraction peaks of CNTs, other strong diffraction peaks
could be assigned to CuO (JCPDS Card No. 80-1916). From
the Scherrer formula, it can be calculated that the average size

of CuO on CNTs is 25 nm approximately. To further confirm
the Cu species and its content on CNTs surface, XPS analysis
was carried out (Fig. 3). Fig. 3a shows the XPS result of

CNTs/CuO, from which C, O and Cu can be easily detected,
according to the surface element analysis, the content of C,
O and Cu is 45.07%, 34.57% and 20.36%, respectively.

Fig. 3b shows the XPS result of Cu 2p, the two main peaks
at about 933.6 and 953.6 eV are associated with the binding
energy of Cu 2p3/2 and Cu 2p1/2, respectively, which confirm

the formation of Cu2+. Fig. 3c shows O 1s XPS curves, where
the non-lattice oxygen species (e.g., hydroxyl group, adsorbed
oxygen species) with peak position at 531.2 eV (marked as I) is
evident. The peak at 529.6 eV (marked as II) corresponds to

the surface lattice oxygen [16]. The content of non-lattice oxy-
gen and lattice oxygen is 39.01% and 60.99% in the detection
layer of the XPS analyses, respectively, which indicate that

20.36% Cu exists in the form of CuO.
To have a far better knowledge of the surface structure of

the composite, Raman spectra of CNTs (Fig. 4a) and CNTs/

CuO (Fig. 4b) are presented. As shown in Fig. 4b, the peak
at 292 cm�1 is attributed to the Ag mode and the peaks at
342 and 627 cm�1 are attributed to the Bg mode of CuO. Both

the spectra display the peak at about 1350 cm�1 (D-band)
associated with the vibrations of carbon atoms in the disor-
dered graphite structure and the peak at about 1585 cm�1



Figure 1 SEM (a) and TEM (b) images of CNTs/CuO.
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Figure 2 XRD patterns of pure CNTs (a) and CNTs/CuO (b).
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(G-band) which corresponds to the E2g mode of graphite. It is
known that the ratio of the intensity of D-band to G-band
(ID/IG) suggests the defect density in CNT samples. As shown

in Fig. 4, the value of ID/IG is 1.03 for CNTs and then
decreases to 1.02 after CuO loading. This means that CuO
NPs prefer anchoring onto the defect structures rather than

to the perfect sites of CNTs, which is consistent with the study
of other researchers [17–19]. In addition, the defects on CNTs
surface may have a profound impact upon electronic transport
properties and produce electron acceptor-like states within

graphitic materials [19–21].
The preparation process of CNTs/CuO can be inferred as

follows. Firstly, carboxylic and hydroxyl groups were intro-

duced onto CNTs during the functionalization process, as
proved by the bands at 1719 and 3439 cm�1 shown in
Fig. 5a. When superfluous NH3ÆH2O was added, complex

[Cu(NH3)4]
2+ was formed, afterward, [Cu(NH3)4]

2+ was
attached to CNTs through the reaction between amide and
carboxylic groups [22], as it can be proved, no band corre-

sponding to the carboxylic groups can be detected in the FTIR
spectra of CNTs/CuO nanocomposite (Fig. 5b). As NaOH
solution was added slowly, Cu(OH)2 precipitate was formed
in situ and stabilized by the chemisorption and Van der Waals
interactions between Cu(OH)2 and CNTs [23]. Under heating

and stirring conditions, Cu(OH)2 was converted to CuO. Dur-
ing the preparation process of pure CuONPs, it can be
observed that the color of the solution changed from blue-

green to blue, then to black finally, which can also prove the
formation process of CNTs/CuO described above to some
extent.

BET analyses were performed to investigate the specific sur-

face area of the samples. For pure CuONPs and CNTs, the
specific surface area is 17.6 and 48.7 m2 g�1 respectively, while
the specific surface area of CNTs/CuO is 80.0 m2 g�1, much

higher than that of pure CuONPs and CNTs. Specific surface
area is one of the important methods to characterize the cata-
lytic properties of materials. Generally, the higher the specific

surface area of the catalyst is, the better its catalytic
performance is. The high specific surface area of CNTs/CuO
indicates CNTs could effectively prevent the aggregation of

CuONPs, which may lead to their excellent catalytic
performance.

Fig. 6 shows the thermal decomposition process of pure AP
and AP with catalysts. As shown in Fig. 6a, the thermal

decomposition of pure AP has apparently three stages
[2–6,24]. In the first stage, the endothermic peak temperature
appears at about 245 �C, ascribed to its crystal transition from

orthorhombic to cubic. In the second stage, the exothermic
peak temperature appears at about 328.1 �C which is attrib-
uted to the partial decomposition of AP and the formation

of an intermediate product. While the third peak, also the main
exothermic peak, appears at relatively higher temperature
478 �C, indicating the further and complete decomposition of
the intermediate products. As the catalysts were added

(Fig. 6a,b), the thermal decomposition of AP in the second
and the third stage became significantly different while little
change can be observed in the first stage, which is similar with

the effect of other catalysts on the AP thermal decomposition
[2–5]. As the mixture of CuO and CNTs was added (Fig. 6a),
the two exothermic peaks merge into one peak, the second exo-

thermic peak temperature decreases by 135 �C, as CNTs/CuO
(Fig. 6a) was added, the two exothermic peaks also merge into
one peak, and the second exothermic peak temperature

decreases by 145 �C, indicating that CNTs can further improve
the catalytic performance of CuO particles for AP thermal
decomposition as a supporter. In addition, as shown in
Fig. 6b, relatively high content of CNTs/CuO (1 wt.%,
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Figure 3 XPS pattern of CNTs/CuO (a), Cu 2p (b) and O 1s (c).
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4 wt.% and 8 wt.%) favors the further decrease of the second

exothermic peak temperature of AP. As 8 wt.% CNTs/CuO
was added, the second exothermic peak temperature decreases
by 158 �C, indicating that such catalyst may be a promising
candidate to prepare the excellent-performance of solid rocket

propellants.
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4. Conclusions

This work has prepared CNTs/CuO nanocomposites and stud-

ied its catalytic effect on the thermal decomposition of ammo-
nium perchlorate. The results showed that with the addition of
CNTs/CuO nanocomposite in AP, the decomposition temper-

ature of AP decreased significantly. As 8 wt.% nanocomposite
was added in AP, only the second exothermic peak can be
seen, and its corresponding temperature decreased by 158 �C.
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