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This paper is a continuation of our previous paper. It is concerned with the
global existence and the optimal temporal decay estimates for the Cauchy problem
of the following multidimensional parabolic conservation laws

N
u, + ij(u)zj:DAu, xeRN, >0,
j=1 (%)

u(t, x)li—o = uy(x), x€RN, N> 1.

Here u(z, x) = (uy(¢, x), ..., u,(t, x))" is the unknown vector, f;(u) = (fj(w),...,
fn@)' (j=1,2,..., N) are arbitrary n X 1 smooth vector-valued flux functions
defined in B,(%), a closed ball of radius r centered at some fixed vector z € R",
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and D is a constant, diagonalizable matrix with positive eigenvalues. Our results
show that if the flux function f;(u) satisfies f;(u)/lu — al® € L*(B(@), R"), j =
1,2,..., N forsome s > 2 + 1/N, u € R", then for uy(x) — u € L” N LXRY, R")
with [lug(x) — all 1 ¥, gy sufficiently small, the above Cauchy problem (*) admits
a unique globally smooth solution u(z, x) and u(¢, x) satisfies the following tempo-
ral decay estimates. For each k = 0,1,2,...

IDE(u(t, x) = W)l 2y, gry < C(L + 1)~ N4,

ID*(u(t, x) = @)l ry, mry < C(A + 1)~ FHN2,

Here D* = Z‘H‘:k(&‘”/ﬁxfl -+ dxgN). The above decay estimates are optimal in
the sense that they coincide with the corresponding decay estimates for the
solution to the linear part of the corresponding Cauchy problem.  © 1998 Academic
Press

1. INTRODUCTION AND STATEMENT OF THE
MAIN RESULTS

This paper is a continuation of our previous paper [16]. It is concerned
with the global existence and the optimal temporal decay estimates for the
following multidimensional parabolic conservation laws

N
u,+ Y fi(u)y, =DAu, x€RM (>0, (1.1)
j=1

with initial data
u(t, x)—o =ug(x), xR, N>1. (1.2)

Here u(t, x) = (uy(t,%),...,u,(t, x))" is the unknown vector, f(u) =
(fu@, ..., f;,(w) (j =1,2,..., N) are arbitrary n X 1 smooth vector-val-
ued flux functions defined in B,(&), a closed ball of radius r centered at
some fixed vector # € R", and D is a constant, diagonalizable matrix with
positive eigenvalues (without loss of generality, we can assume D =
diag(dy,,...,d,,) with d; > 0,i = 1,2,..., n in our following analyses).
The Cauchy problem (1.1), (1.2) has been studied by many authors and a
lot of good results, especially for the case of one space dimension, have
been obtained (a complete literature on these regards is beyond the scope
of this paper; however, we want to mention [1-13, 16] and the references
cited therein). To go directly to the main points of the present paper, in
what follows we only review some former results concerning the multidi-
mensional case (for the results on the case of N = 1, we refer the reader
to[1, 2, 8, 10, 12, 16] and the references cited therein): First, for the global
existence results, the most representative results on this regard are due to
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D. Hoff and J. A. Smoller [9]. Their results showed that if the correspond-
ing hyperbolic conservation laws, i.e., (1.1) with D = 0, are equipped with
a strictly convex (thus nontrivial) entropy n(u) which is strongly consistent
with the viscous matrix D, then the Cauchy problem (1.1), (1.2) admits
a unique globally smooth solution provided that u,(x) —u € L” N
L*(RN, R?) with llug(x) — ull2r~ gry sufficiently small for each fixed
vector u € R". But for n > 2, the corresponding entropy equation is
overdetermined and the existence of a nontrivial entropy may be at-
tributed only to a happy coincidence. Hence for general systems of type
(1.2), it is necessary to give some other sufficient conditions to guarantee
the existence of a unique globally smooth solution to the Cauchy problem
(1.1), (1.2). Secondly, for the optimal temporal decay estimates for the
global solution to the Cauchy problem (1.1), (1.2), to the knowledge of the
authors, the only result concerning the case of multidimensional space
variables is limited to the case of the scalar parabolic conservation laws
[12, 13], i.e., (1.1) with n = 1. For the case of N > 1, n > 1, as we know,
no results have been obtained.

Our present paper is devoted to giving some sufficient conditions on the
flux functions f;(w) (j = 1,2,..., N) and the initial data u,(x) to guaran-
tee the global existence and the optimal temporal decay estimates to the
Cauchy problem (1.1), (1.2). Our main results can be summarized in the
following

THEoOREM 1 (Main Results). Let r > 0 be an arbitrary constant and if
there exists some fixed vector u € R", a constant s > 0 such that

fi(w)

lu — ul’

€ L*(B(u),R"), j=12,...,N, (1.3)

we have

() If s=1+ 1/N, then the Cauchy problem (1.1), (1.2) admits a
unique globally smooth solution u(t, x) provided uy(x) —u € L” N
LMRY, R") with |luy(x) — ull 2 gy, rry sufficiently small (without loss of
generality, we may assume |lug(x) — tll L= g¥ gmy < 1);

(i) Ifs > 2+ 1/N, then, under the same conditions on the initial data
uy(x) as those in (i), the solution u(t, x) obtained in (i) satisfies the following
temporal decay estimates. For each nonnegative integer k = 0,1, 2, -+

ID*(u(t, x) — @)l 2wy, gy < C(1 + 1)~ NT274

] (1.4)
ID*(u(t, x) = @)y, mry < C(1 + 1)~ N2,
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Here

k
DF= Y %
lal=k axll e &XNA

Remarks. (1) It is easy to see that the decay rates we get in (1.4) are
optimal since they coincide with the corresponding decay estimates for the
solution to the linear part of the corresponding Cauchy problem.

(2) If the system (1.1) admits a strictly convex entropy n(u) which is
strongly consistent with the viscous matrix D, i.e., there exist some positive
constants 6 > 0, & > 0 such that

8lu —al® < n(u) < & Yu —al’,

(15)

w'Dy"(u)w > elwl’,  u € B.(ii),w € R",

then we can replace the assumption s > 2 + 1/N in (ii) of Theorem 1 by
s =1+ 1/N while the same results still hold. We will show this in Sec-
tion 3.

(3) In our global existence results, we only ask the flux functions
fiw) (j=1,2,..., N) to satisfy local growth conditions, i.e., f;(u) = O(lu
—ul)(j=1,2,...,N) as u — u for some fixed vector u € R" and some
positive constant s > 0. It is easy to see that our global existence results
can indeed solve some problems which cannot be solved by employing the
results of D. Hoff and J. A. Smoller [9].

(4) From the proof of our main results, one can easily deduce that if
for some i € {1,2,..., N}, Vfi(@) is hyperbolic, i.e., Vf(z) has n eigenval-
ues and n linearly independent right eigenvectors r/(u) (j = 1,2,...,n)
and A,(u) 'DA(w) = diag(d,,, ..., d,,), A,(@) = (r}@),...,r" (@), then,
to get the global existence result, the assumption f(u)/lu —ul’ €
L*(B.(w), R") is unnecessary. When N = 1, the above observation means
that for general n X n conservation laws, if the system under considera-
tion is hyperbolic at some fixed point z € R", then the Cauchy problem to
the corresponding viscous conservation laws always admits a unique glob-
ally smooth solution. This result is presented in our previous paper [16].

(5) In our main results, in addition to the assumption that D is a
constant, diagonalizable matrix with positive eigenvalues, we do not ask
the viscous matrix D to satisfy any other condition.

(6) In our main results, we ask the initial data u,(x) to satisfy
llug(x) — ull ;2 g, gry sufficiently small. This assumption makes our results
unsuitable to be used to tackle the corresponding hyperbolic conservation
laws. How to remove or relax this assumption, and thus make the result
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suitable to be used to tackle the corresponding hyperbolic conservation
laws remains an open problem.

In conclusion, we outline the key ideas used in the proof of our main
results. We prove our global existence result by employing the method of
extension of the local solutions. The results on the existence of local
solutions to the Cauchy problem (1.1), (1.2) are well established [9] and our
main contributions for the proof of the global existence result lie in how to
extend the local solutions obtained above globally. The techniques used
here are essentially due to D. Hoff and J. A. Smoller [9] with a slight
modification. The main difference between our method and that of D.
Hoff and J. A. Smoler [9] lies in the obtaining of the time independent
LP(RY, R") (1 < p < =) a priori estimate on the local solutions u(T, x): In
[9], to obtain such a time independent estimate, D. Hoff and J. A. Smoller
employed the existence of a quadratic entropy consistent with the viscous
matrix D, while in our paper, we exploit the integral representation (2.2)
of the local solution fully to get the desired estimate. It is worth pointing
out that it is in this step that we ask the nonlinear flux functions f(u)
(j=1,2,...,N) to satisfy the assumption (1.3). As to the proof of the
temporal decay estimates (1.4), we use Schonbek’s Fourier splitting method
[12, 13] and some delicate technical estimates. The estimate |lu(z, x) —
ull gy, gry < C(L + t)~/?! a by-product when deducing the time indepen-
dent L'(R™, R") a priori estimate in proving the global existence result,
plays an important role in our analysis.

This paper is organized as in the following: After this introduction and
the statement of the main results, which constitutes Section 1, we prove
our global existence result in Section 2. The proof of our temporal decay
estimates is given in Section 3.

2. THE PROOF OF THE GLOBAL EXISTENCE RESULT

In this section, we prove our global existence result, i.e., (i) of Theorem
1. We will also obtain some estimates on the global solution u(¢, x). These
estimates are quite useful for our proof of the temporal decay estimates.

Let K(z, x) be the fundamental solution associated with the operator
d/dt — DL (3%/dx?). That is, K(z, x) is an n-vector whose jth compo-
nent is

ki(t,x)= (47rd..t)_"/2exp - Gl (2.1)
A i 4djjt ' '
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Then, the solution u(z, x) of the Cauchy problem (1.1), (1.2) satisfies the
integral representation

N
u(t,x) =K(t,x)*ug(x) — Y, fo](t —s,x)* f,(u(s, x))ds, (2.2)
j=170

where * denotes convolution in space, taken componentwise.

First, according to the well-established result on the existence of the
local solutions to the Cauchy problem (1.1), (1.2) obtained by D. Hoff and
J. A. Smoller in [9], we have

LEMMA 2.1 (Local Existence Result). If the assumptions in Theorem 1
are satisfied, then the Cauchy problem (1.1), (1.2) admits a unique smooth
solution u(t, x) on the strip 11, ={(t,x):0 <t <t;,x € RV} and u(t, x)
satisfies

llu(t, x) — tll =gy, gy < 7. (2.3)

Here t, depends only on |luy(x) — || LR R,

Suppose that the solution u(¢, x) obtained in Lemma 2.1 can be ex-
tended up to ¢ = T(> ¢,) while the regularity properties and the estimate
(2.3) remain unchanged. We have

LEMMA 2.2 [9, 15]. If the conditions of Theorem 1 are satisfied and
u(t, x) satisfies the assumptions stated above, then we can deduce that u(t, x)
satisfies the following estimates: For each 1 <p < o, k=1,2,...,0 <5, <
§; <8 <8y <§, < s <8 1 <5 <t<T

ID*(u(t, x) — u)lli=r™, rry < M(7, 8 — S05 8 — 5¢), (2.4)
ID*(u(t, x) —@)llprry, gy

< sup llu(z, x) — ﬁIILP(RN,Rn)Mk(r, Sk — Soit —5,_1). (2.5)
[0,7]

The next lemma deals with the obtaining of the time independent
LY(RN, R") a priori estimates on the solution u(z, x) obtained in Lemma
2.1, which is one of our main contributions of this paper.

LEMMA 2.3 (Time Independent L*(RY, R") a priori Estimate). Suppose
that the conditions in Lemma 2.1 are satisfied and the solution u(t, x)
obtained in Lemma 2.1 has been extended up to time T(> t; > 0) while the
regularity properties and (2.3) keep unchanged. Then if we assume further that
lluo(x) — Ul 2r¥, gy is sufficiently small, u(t, x) satisfies the following time



PARABOLIC CONSERVATION LAWS, II 603
independent L*(R™, R") a priori estimate

||u(t, x) - 17£||L1(RN'Rn) + ll/zl”u(l‘, x) — lT[”LI(Rn'Rn)

< Cy(r, D)llug(x) — ullp2r™, rry, (2.6)

where | =1+ 1/N,0<t<T.

Before proving Lemma 2.3, we first give the following result which is due
to W. A. Strauss [14]

LEMMA 2.4 [14]. Let M(¢) be a nonnegative continuous function of t
satisfying the inequality

M(t) <d, +d,M(t) (2.7)

in some interval containing 0, where d,, d, are positive constants and r > 1.
If M(0) < d, and

dydy/ "D < (L—r ) (2.8)

then in the same interval

M(t) < T (2.9)

Proof of Lemma 2.3. We take the fundamental space X as
X = {u(t,x)lu(t, x) —u € C([0,T); L*(R",R")),
Y2 (u(t,x) —u) € C([0,T); L'(RY,R"))}, (2.10)

and define

llu(t, x) — ullx = sup {||u(t, x) — ullpary, rmy
[0,7T)

+t1/21||u(t, X) - ﬁ”L’(RN,R")}- (211)

If we let M(T) in Lemma 2.4 be the ||lu(¢, x) — ullx defined in (2.11),
then according to Lemma 2.4, to prove Lemma 2.3, we only need to
establish an inequality similar to (2.8). This is just what we want to do in
the following.
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From the integral representation (2.2), we have
u(t,x) —u=K(t,x)*(uy(x) — ut)
— ']Xv:l /:Kxj(t - §,x) >kf]-(u(s, x)) ds, (2.12)
i-
thus

llu(t, x) —ullx < I1K(t, x)*(ug(x) — u)llx

N
+ ) fth_(t —5,x)* fi(u(s, x)) ds
j=1 0 ! X
=1, +1,. (2.13)
For I,, we have the estimates
Il = sup {”K(t, x) * (uo(x) — ﬁ)”l(RN'RH)
[0,7)
+l‘l/21||K(f, xX)* (uo(x) - ﬁ)”L’(RN,R")}
< sup {llug(x) — tlkry, gr
[0,7)
+Cot Y2 ug(x) — @l gy, gyt~ /210
< C3||MO(X) - ﬁ”Ll(RN’R"). (214)

As to I,, we have

|l K
S (6= s, x) = fi(u(s, x)

ﬁxj

ds}
LYRN,R")

oK = sox)x £ (u(s, 1)) d}
—(t = s, x)* fi(u(s, x s
ﬁxi LI(RN,R™)

=J,+J,. (2.15)

N
t
+ ). sup tl/”f
j=1100,7) 0
Noticing

Nu(t, x) — tll =i, gy < 1,
fi(u)

lu — al'

(2.16)

€ L*(B,(u), R"),
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we have from (2.15) that

N
t —
J,<C, Y sup f (t—ys) 1/2||fj(u)||L1(RN,R") ds
j=1100,7)"0

t - -
< Cy(r) sup / (t =) " llu(s, x) — alligy, gry ds
[0,7)°0

< C(r)B(3, 3)llu(t, x) — ally, (2.17)

N
t — _ _
J, < Cg ) sup {tl/ZZ/ (t=1s) N/ l/2||fj(u)||L1(R"’,R") ds}
~ 0

< Cy(r) sup {72 [*(t — )" N/POVD=L2) 0000y — alliry, v ds}

[0, 7) 0
< Co(r)B(3.5 — 7)llu(t, x) —ally. (2.18)
Thus
I, < Co(r)llu(z, x) — all. (2.19)

Combining (2.14), (2.19) with (2.13), we get

lu(t, x) = dllx < Cyllug(x) — ll gy, gy + Co(r)llu(t, x) — ally.
(2.20)

Having obtained (2.20), if we assume further [luy(x) — @ll g~ gy SUFfi-
ciently small, then from Lemma 2.4, we can get (2.6) immediately. This
completes the proof of Lemma 2.3.

Using the above results, we are now in a position to prove our global
existence result.

Proof of Our Global Existence Result. Under the assumptions of Theo-
rem 1, we have from the local existence result Lemma 2.1 that there exists
a sufficiently small ¢, > 0 such that the Cauchy problem (1.1), (1.2) admits
a unique globally smooth solution u(z, x) on the strip II, and u(z, x)
satisfies

llu(t, x) — ﬁ“Lx(H[l,R”) <r, (2.21)
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which means that, on the strip II, , u(z, x) satisfies all the conditions stated
in Lemma 2.2, Lemma 2.3, and consequently wu(z, x) satisfies (2.5), (2.6)
with 7' = ¢,. If we choose 0 < 5; <5} <35, < - <3§y_,; <sy sufficiently
small such that

sy <t and =S8, =8—s=s-5_,=p,j=12,...,N—1,
(2.22)

where B > 0 is a sufficiently small positive constant, then from (2.5), (2.6)
(let T=1t,,5,=50,5_,=5_,ands; =s;(j=1,2,...,N)in(25), (2.6)),
we deduce

||u(t,x) —ﬁ”LX(RN,R")Sr, OStStl,
lu(t, x) — tll gy, gy < Co(r, D) llug(x) — all 2 g, gy, O<t<ty,

lu(ty, x) — allwvyagy gy < Co( B, r, N) sup llu(t, x) — #ll 3 g™, gm.
[0,#,]

(2.23)

Let C,, be the constant in Sobolev’s inequality
||M(l, x) - ﬁ”Lx(RN,R”) < C10||M(f, x) - ﬁ”WN‘l(R",R”)- (2-24)
Then if we choose |luy(x) — @ll 1z~ g sufficiently small that

Ci1oCo( B, 7, N)Cy(7, D)llug(x) — ull gy, gy < lug(x) — bll =gy gry <7,
(2.25)

we can deduce from (2.23), (2.25) that

lu(ty, x) — Ul =r™, gy < Cyollu(ty, x) — bllwyagy, g
< C1oCo( B, 7, N)Cy(7, D)llug(x) — ll 12z, &)
< llug(x) — ull =g~ g

<r.

So that, by Lemma 2.1, u(¢, x) can be extended up to the time ¢ = 2¢,.
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Now suppose that u(z, x) has been defined up to the time k¢, for some
k € Z, such that

llu(t, x) — @l g™, Rry < 1, 0<t<ke,
lu(z, x) — wll3ry gy < Cyo(r, D)llug(x) — ull i gv gy, 0 <t <kt
llu(kty, x) — wllwyagy, gy < Co( B, 7, N) sup llug(x) — #llixz>, rm.
[0, kt4]
(2.26)
Then

||M(kt17 x) — l7||L*(RN,R”) < C10||u(ktl, x) — ﬁ”WN'l(RN,R")
< CyxCo( B, 7, N)Cy(7, D)llug(x) — ullrrr g

<llug(x) — ullp=r~, g
<r.

So that, by Lemma 2.1 again, u(¢, x) can be extended up to the time
(k + D¢, with

||u(t,x) — ﬁ”LX(RN,R") <r,0<t< (k + l)tl, (227)

and (2.27) means that u(z, x) satisfies all the conditions stated in Lemma
2.2, and Lemma 2.3 on the strip II . ,,, , and consequently, u(#, x) satisfies
(2.5), (2.6) with T = (k + D)t,. If we let ,5,,5,,5,,, (j=1,2,...,N — 1)
in (25), (2.6) equal to (k + Dy, kt; + 54, kty + 5, kty + 57, (j=1,2,
..., N —1), we get

llu(t, x) — tll gy, gy < Co(r, D) lug(x) — all 2y, gy,
0<t<(k+ 1),
lu((k + 1)ty, x) = ial|ymacgy gry < Co( B, 7, N)

X sup  lu(t, x) = all gy, gy
[0, (k+ 1D)t4]

Thus (2.26) holds up to the time (k + 1)¢,. Proceeding inductively, we
thus establish the existence of the solution in all of ¢ > 0.

Before concluding this section, we give some estimates on the global
solution u(z, x) obtained above; these estimates are quite useful for the
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proof of our temporal decay estimates:

COROLLARY 2.5. Suppose that u(t, x) is the global solution obtained
above. Then for each fixed T > 0 and every positive integer k = 1,2,..., we
have

lu(t, x) — tll =g, xr¥, gy <7, (2.28)

sup {||M(f, x) — ullpyry, gry + fl/zzHU(f, x) — L_l”Ll(RN,R”)}

[0, )
< Cy(r, D)||u0(x) - a”Ll(RN,R”): (2.29)
D*(u(t, x) — @)ller, =<V, k) < My (7, B), (2.30)
sup ||Dk(b£(t, X) — a)”LZ(RN,R”) < Mk(r, ,B) (231)
[7,%)

Here M,,, M, are independent of t and B is defined by (2.22).

Relations (2.28), (2.29) follow from (2.6) and the proof of the global
existence result. By employing the method of induction and Lemma 2.2,
(2.30), (2.31) can be proved similarly to the proof of the global existence
result and the details are omitted.

3. THE PROOF OF THE TEMPORAL DECAY ESTIMATES

In this section, we prove our temporal decay estimates (1.4). Our
analyses are based on Schonbek’s Fourier splitting method [12, 13] and
some delicate technical estimates.

In what follows, C will denote a generic positive constant independent
of ¢, x and without loss of generality we can assume u = 0 in our following
analyses.

For later use, we first give the following fundamental inequality

LemmA 3.1 (Nirenberg’s Inequality). If u € LY(R"N, R") and D™u €
L'(RN, R") with 1 < q,r < +, then, for any integer j such that 0 <j < m,
we have

||D’M||LF(DN,R") < C”Dmu”z’(RN,R")”u”L"(%N,R")y (3-1)
where p is determined by

1 j 1 m 1
—=—+a(———)+(1—a)—,
p N r N q
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From the time independent L*(R", R") estimate (2.29), we know that
(e, )l gy, gy < C(1 + 1) /2, (3.3)

Our next lemma is devoted to obtaining a similar estimate for u(z, x) in
the L2(R™, R") norm.

LEMMA 3.2.  Suppose that u(t, x) is the global solution obtained in Section
2. Then we have
lu(t, ¥)ll 2n gy < C(L+ 1) V2% 1> 1>0. (3.4)

Here ¢ > 0 is a sufficiently small constant.

Proof. Firstly, it is easy to see that / =1 + 1/N < 2. Thus we have

fRN|u(t, )2 dx < llu(t, x)||1Lz(;/NN,Rn)[RN|u(z, xX)| dx
< C(L+ 1) P llu(t, x) - goy- (35)
Secondly, from Nirenberg’s inequality, we get
Nlu(t, ) =rv, g7y < CIID™u(t, x)I72rY, gllu(t, x)”lL’_(}%N, R™)
< C(1+ )" IDmu(t, x)Ifzcry, rmy, (3.6)
where

N/(N +1) N
a = , m> —. (3.7)
N/(N+1)+m/N-1/2 2

Substituting (3.6) into (3.5), we deduce from (2.31) that
J Ju(t, )P de < C(1 4 )7 V/HNTDENEDE s 25,
RN

Thus

Tlalte oy s >0,

||I/t(l, x)”LZ(RN,R”) < C(l + l)
where ¢ = (N — 1)/4(N + 1)) and it’s easy to see that if we choose m
sufficiently large, ¢ can be arbitrarily small. This completes the proof of
Lemma 3.2.
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LeEmmA 3.3.  Under the conditions of Lemma 3.2, we have

sup lu(t, &)l < C. (3.8)
(t, £)EB1)

Here
Bo(t) = {£€RV:1EP(1 + 1) < C}. (3.9)
Proof. From (3.1), one can deduce
a,(t, &) efdumzt;;m( £) N edu“f‘z(“’)gjﬁl(u(s, £))
= z iy [ e ds,
~ —170 .
L) | ettty (g) | T | et g fu(s, £))
and so from Lemma 3.2, we have
N N
(e, &) < |@o( )l + 2/()|§||J;(u)|ds
j=1
< [ Juo(x)ldx + C [1llu(s, x) [z, rn ds
RN 0

t - &
Sj;eNluo(x)ldx+C|§|f0(l+s) L/2+ze g

< [ lug(x)ldx + Clel(L + )" M2,
RN

Thus, if | £]1*(1 + 1) < C, we can easily deduce from the above inequality
that
li(e, &)l < C.
This is (3.8) and completes the proof of Lemma 3.3.

LEMMA 3.4.  Under the conditions of Lemma 3.2, we have

d 2 d 2 25— &
EfRN'”(” x)|? dx + EfRNlDu(t,x)l dx < Cllu(t, )13, gy
t>7>0. (3.10)

Here d = min{d,,,...,d,,}, € > 0, is a sufficiently small positive constant.

The proof of this lemma is similar to that of Lemma 3.2 and hence, we
omit the detail.
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The purpose of the following lemma is to improve the L2(RY, R")-norm
temporal decay estimates obtained in Lemma 3.2.

LEMMA 3.5.  Suppose that u(t, x) is the global solution obtained in Section
2 andfj(u) (j=1,2,..., N) satisfies (1.3) with s > 2 + 1/N. We have
[ Jut,x)Pax<c@a+o"  tz1>0 (3.11)
R
Here P, = min{N/2,a, — &}, a, = sa
a sufficiently small constant.

Proof. We prove (3.11) by the method of induction.
First, we prove that (3.11) is true for n = 1.
From Lemma 3.2, Lemma 3.4, we have

—1a,=2/1-1and ¢>0is

n—1

d d ,
2 _ 2 —-1/l+¢
. fRNlu(t,x)| dx + ZfRNmu(t,xn dx < C(1 +1) ,

t>7>0. (3.12)

here &' = g/21 + 2ss — &7 is also a sufficiently small constant.
Setting

5 4N
B(t) = {geRN:Igl (1+71) 37}

and noticing
supli(t, &)l < C,

B(1t)
we have

%{(1 + t)“V[RN|u|2 dx}

<2N@+ 0™ [ Jufde+ 1+ 0" v e
RN
- Ed(l +0)*" [ |Dul?® dx
2 RN
<2N@+ 0" [ Jufde+ €1+ )
RN
- Ed(l +0 N[ Jglardé
2 B(1)C
<CA+0)NT L 2N + t)ZN’lf G d¢
B(1)

<C(L+ )" e+ )N (3.13)
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Integrating (3.13) with respect to ¢ over [, ], we can easily deduce that
(3.11) is true for n = 1.
Now suppose that (3.11) is true for n = m, i.e.,

J Jul?dxe < c(@+ )" (3.14)
R

We are now in a position to prove (3.11) is true for n = m + 1.
Substituting (3.14) into (3.10), we get

d d .
J— 2 _ 2 —sP,+e
dz/RN'”' dx + 2/RN|Du| dr < C(1+1) . (3.15)

where &' is a sufficiently small constant.
With (3.15) in hand, similar to the proof of (3.13), we have

4 :
L+ 0™ [ Julfdey < CL+ )P4 C(L )
dt RN

Thus

f lul? dv < C(1 + ¢) ™nNV/2sPn=1=el (3.16)
RN

If a,, >N/2,then P, = N/2.Since N > 2,s >2+ 1/N > 2, we have
sP,=(N/2)s >1+ N/2. Thus min{N/2,sP, — 1 — &'} = N/2.

Ifa, <N/s then P, =a, — ¢andthus sP, —1— ¢ =5sa, —1— ¢
=a,_ ., — &,where & is a sufficiently small constant.

In summary, we have min{N/2,sP,, — 1 — &'} = P,,.,. Combining this
observation with (3.16) proves that (3.11) is true for n = m + 1.

Thus by employing the principle of induction, we get that (3.11) is true
for each positive integer n. This completes the proof of Lemma 3.5.

From Lemma 3.5, we can easily get the optimal L*(RY, R")-norm
temporal decay estimate for u(z, x), i.e.,

COROLLARY 3.6. Under the conditions of Lemma 3.5, we have
J Jul?dxe < c(x+ 02 (3.17)
R
Proof. From Lemma 3.5, we only need to show

lima, = +. (3.18)

n— o
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This can be seen from
s'(s —1—-1) +1
T TG -

and
s>1+1>2.

We now turn to deduce the optimal H*(R", R")-norm temporal decay
estimates for u(z, x). First for N > 3, we have

THEOREM 3.7.  Suppose that N > 3 and the conditions in Lemma 3.5 are
satisfied. Then we have

ID*u(t, x)l 2y, gmy < C(L+ ) NP2k =1,2,.... (3.19)

Proof. We prove (3.19) by the method of induction and it is divided
into two major steps.

The First Step: Relation (3.19) is true for k = 1.
Multiplying (1.1) by 2(Au)" and integrating the result over R, after
some integrations by parts, we have

d
- 2 2
. fRNIDuI dx + 2deN|Au| dx
- ZfRNAu ; fi(u) 5 dx
j=1
2 1 N 2
sdeNIAuI de + — g fNIfj(u)x,| dx

<df |Aul® dx+ Cllullf-y,ro [ |Dul? dx. (3.20)
RN RN

Since
1/2 1/2
||DM||L2(RN,R") < C||D2M||L/2(RN R")HMHL/Z(RN,R”), (3.21)

we have from (3.20), (3.21) that
i] |Dul? dx + df |Aul? dx
dt /g~ RN
< C”MHZL"(RN,R")”AUHLZ(RN,R")HMHLZ(RN,R")

2 4 2
< §|AM|L2(RN,R") + Cllullz= gy, rmllullzz gy, gy
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Thus

ISW

d —
) el x4 S [ Iaul de< € )T lullize g (3.22)

2 RN
Due to
4 1—- 4
lull =, mry < CID™wll S5 o llullz 4, (3.23)

where e(m)/4 = N/2m € (0,1) can be chosen sufficiently small, we get
from (3.22), (3.23) that

d d
2 2
EfRN'D“' dx + EfRN'A”' dx

-N/2 4
< C(1+ 1) " IDmull 50y, gy luall o G gy
< C(1 + 1) @/ANTN/Delm) =5 250, (3.24)

From (3.24), one can deduce
4 (L +0™[ |Dul® dx
dt RN
d
2N-1 2 2N 2
< 2N(1+1) /RN|DM| de = —(1+1) ]RN|AM| dx

+C(1 + ) V/2HN/Dem s 25 0. (3.25)

Let
) AN
B(l) = {fERNZ|§| (1 +t) < 7}
and due to

d 2N 2 12 d 2N 4)~2
S(L+0) fRN|D ul’ dv = (1 +1) [RNlél a? dé

%

d 2N
—(1+1¢ l&14al1? d
R (L 07, JeViar de

2N-1

v

2N(1+ 0" [ |Dul® dg
RN

— 2N(1 + t)”*lfB(t)|g|2|ﬁ|2 dé¢,
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we have from (3.25) and N > 3 that

d 2N 2
E{(l +1) jRN|Du| dx}
<2N@+ 0™ [ JePlal dé
B(1)

+ C(l + t)N/2+(N/4)£(m)
<C(1+ t)(s/z)N—z +C(q + t)N/2+(N/4)£(m)

<CA+)®¥?V? > 1>0. (3.26)
Integrating (3.26) with respect to ¢ over [, t], we get

c(1+@+ t)(S/Z’N‘l)

—(N+2)/2
<C(1+¢t , t>7>0,
(1 +t)2N ( )

f |Dul? dx <
RN

which means that (3.19) holds for £k = 1 and completes the proof of the
first step.

The Second Step: Suppose that (3.19) istrue fork <m —1(m e Z,
m > 2). We then prove (3.19) is true for k = m.
First, we can get the differential inequality

d

— m,,|2 m+1,,2

dtfszlD ul azx+deN|D ul? de
< Cllullrs, g [ 1D ul? d

¢ 112
+C ¥ r[nDuuL(RNRn)nDsuné?RNRn)[ |D*ul? dx.

(3.27)

Since

. . S
”D]L‘”L"(RN,R") < C”DmﬂM”zZ(RN,R")||D]M||L2(§2N,R”)-

< C(771)(1 + t)*(N+2j)/4+((N+2j)/4)sl (328)
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where

(S Py 9y
& (1)1 J 1= N

we have from (3.27), (3.28), and the assumption that (3.19) is true for

k <m — 1 that

d
_ m,, 12 m+1,,12
af ol de v df D"l
<C(1+ t)‘N/“(N/‘”Sf |D™ul? dx
RN

+C Y @@+n 7
Yiqjia;=m
l<s<m
a,#0

< C(l + t)fN/2+(N/4)e/ Nleu|2 dx
R

+ C(l + t)—(N/Z)Zlea]—m+((N/2)Z;:1a]+m—(N+25)/2)g.

(3.29)

where o = —TZH(N + 2j/2)a; — (N + 2))/2)a;e) — (N + 25)/2)

X(a, — 1) + (N + 25)/2) (e, — De — (N + 2s5)/2.
From Xi_jia; = m,1 <s < m, we can easily deduce that
N ¢ N

—Zaj>?+l;
j=1

thus, if we choose ¢ = N /2m sufficiently small such that

N N
- —e>1,
4

2
N S N 3 N + 2s N
?; S+ m — ?';aj—km— > 823+1+m,

we have from (3.29), (3.30) that

d
m,,|2 m+1,,12
—dtfRNu) ul dx+deN|D ul? dx

<C(1+0)7" /RNle”|2 de + Cy(1 + 1) V2t

Setting

C
B(t)={geRNzlglz(lth)gaJr 1} (a>m+ﬂ,

(3.30)
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we have from (3.31) that

d
— @+ |D"ul?
oot
a—1 m. .12
< (a+C)(1+1) fRNID ul? dx
+ G+ )TV —d( 4+ ) [ Dl dx. (332)
RN
Since
d(g+0)"[ ID"uldv=d(1+0)"[ € Vlal e
RN RN
>d(L+0)"[ [P VA’ d
(t+0° € ¢
2 (a+C)(a+0 [ D"l dé
RN
—(a+C)(1+ t)“’lf l€1P™al® dé,
B()

(3.33)

we have from (3.32), (3.33) that

d
a m. 2
E{(1+t) fRNID ul dx}
<(a+C)A+0) [ el de+ Cy(1 + o) A
B(0)
<C(L+n) N (3.34)

Integrating the above differential inequality over [r, ¢] with respect to ¢,
we can immediately deduce that (3.19) holds for kX = m and this completes
the proof of the second step.

Based on the above two steps and from the principle of induction, we
can easily deduce that (3.19) is true for each positive integer k. Thus the
proof of Theorem 3.7 is complete.

For the case of N = 2, we have the following result
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THEOREM 3.8.  Relation (3.19) also holds for N = 2.
Proof.  We first prove the following assertion:

Assertion A. 1f (3.19) with N = 2 is true for k < 4, then (3.19) with
N = 2 is true for k > 5.

In fact, if (3.19) with N = 2 is true for k < 4, we have
lu(t, X)ll=r2, gry < C(L + 1) "4, (3.35)
and its easy to see that to prove the above assertion, we only need to prove
that if (3.19) with N = 2 is true for k <m — 1(m = 5), then (3.19) with
N = 2 is true for k = m. In what follows, we will prove this observation.

First, noticing that m > 5, we have that the nonnegative integers
ay, ..., a, in (3.27) must satisfy

s<m—3, (3.36)
or s can be equal to m — 2 and m — 1 but «,,_,, a,,_, must satisfy
a, ;1 +a, ,=1 (3.37)
Consequently
s—1<m-—3 and a,=1withs=m —1ors=m — 2. (3.38)

On the other hand, since N = 2, we have the inequalities

i - 1/2 i 11/2
”D]uHL"(RZ,R") < C||D]+2u||L/2(RZ,R")HD]u”Lé(RZ,R"),

i=12,..., (3.39)
IDull 12gr2, gy < CIIDT*  ullo2g2, ool DI~ 2wl 152R2 gy, '
i=1,2,....

Combining (3.38), (3.39) with the assumption that (3.19) is true for
k <m —1(m = 5), we have

, ' i o
ID7ulliore, ey < CIDT 2ulliiire, wol| DIul e, e

<C(1+ z)—(2+j)/2, j=1,2,...,s =1, (3.40)
”DSUHLZ(RZ,R”) < C(l + t)(l+x)/2.
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Thus from the above discussions, (3.27) can be rewritten as
d[ ID"ul? de+d [ D" ul* de
dt

2 2
< Clullf-qee, g | |D"ul” d

+C X HnDunmzRn)fzmzmzdx

Y jia;=m i=
l<s<m
a,=1

<CQ+0) 2 [ [D"uf dv + C(1+ 1) 257" (3.41)
R
Due to

N
2Y q;+m—1=m+ 2,
i=1

then, similar to the proof of Theorem 3.7, we can prove that (3.19) with
N = 2 is true for k = m. This proves Assertion A.

From Assertion A, to prove Theorem 3.8, we only need to show that
(3.19) with N = 2 is true for k = 1,2,3,4. In the following, we only give
the proof of the cases of k£ = 1,2. For k = 3, 4, the proof is similar and the
details are omitted.

Similar to the proof of (3.27), we have

d

— 2 2,12 2. 2

. /Rz|Du| dx +dez|D ul? dx < Cllull?-ze. & >fRJD“| dx
< Cllulfzqe n | |D?ul? d
<C+0)t [ D%l dr. (342)

RZ
If we choose ¢, sufficiently large such that
d
c(1+n! <3 for ¢ > t,, (3.43)

then we have from (3.42), (3.43) that

d d
E/ 2IDul2 dx + 5/ Z|D2u|2 dc <0, 1>t (3.44)
R R



620 JEFFREY AND ZHAO

Let
2a
B(z)={§eR2:|§|2(q+z)57} (a>2).
Then
%{(1 + t)“/R2|Du|2dx}

d
<a(+0)"" [ |Dul® dx - S+ 0 [ |D?ul® dx
R R

IA

_ d a ~
a(l+1)" lfRJDL”Z dr — —(1+1) fB(t)Clgl“luldg

IA

a(L+0)" [ [ePiar de
B(®)

CL+0)"°%  t>1,.

IA

Integrating the above differential inequality with respect to ¢ over [z, ¢],
we get

Blpo|Dul* dx < C(1 + 1) 2,

which means (3.19) with N = 2 is true for k = 1.
We now turn to prove that (3.19) with N = 2 is true for k = 2.
Similar to (3.42), we have

d
— 2,12 3,12
2 [ D%l ax+ [ Dl dx
< Cllulliae v [ |D?ul® d
RZ

2 2
+ ClIDullire, vy [ |Dul” d
R

IA

3
||u||L2(R2, R”)HDZMHLZ(RZ, R™)

3
+ ID3%ull 12cr2, gl Dulli2(r2, R

IA

d 312 6 4 6
Ef 2|D ul” dx + C(||DM||L2(R2,R")Hu”LZ(RZ,R") + ||Du||L2(R2,R"))
R

IA

d
EfRZID%LIZ de + C(1+1)"°,
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i.e.,
if |D2ul? dx + if |D3ul? dx < C(1 + 1) ", (3.45)
dt Jge 2 Jpe
Setting
B(t) = {geR2:|§|2(1 +1) < %a} (a>3),
we have

IA

d
—{(1 + t)”f |D?ul? dx} a(l+ t)“*lf lel*la’?de+ Cc(1+1)*°
dt R? B(1)

A

<C(1+1n)*" (3.46)

From (3.46), we can easily deduce that (3.19) with N = 2 is true for
k = 2 and as a direct corollary of the above results, we can easily deduce
that (3.35) holds.

Having obtained (3.35), for k = 3, 4, we can get the differential inequali-
ties

d
. 312 4.2 -1 312 -7
dtfRleuldx+deZ|Du|dst(1+t) fRZIDMIdx+C(1+t) ,

(3.47)

and

d
_ 4,12 512 -1 412 -7
dtfRZIDuIdx+de2|Du|dst(1+t) fRZIDuIdx+C(1+t) ,

(3.48)

and from the above two differential inequalities, we can also deduce that
(3.19) with N =2 is true for k = 3,4. This completes the proof of
Theorem 3.8.

As a direct corollary of Theorem 3.7, Theorem 3.8, we have

COROLLARY 3.9. Under the conditions of Theorem 3.7, Theorem 3.8, we
have

ID*u(t, Xl =gy, gy < C(1 4+ £) " V72 =0,1,2,.... (3.49)

Remark. From the proof of Theorem 3.7, Theorem 3.8, we can deduce
that the assumption s > 2 + 1 /N needed in (ii) of Theorem 1 is used only



622 JEFFREY AND ZHAO

to get the optimal L2(RM, R")-norm temporal decay estimate. In this
remark, we will show that if the system (1.1) is equipped with a quadratic
strictly convex entropy m(u) which is strongly consistent with the viscous
matrix D, i.e., (1.5) holds, then we can replace the assumption s > 2 + 1/N
in (ii) of Theorem 1 by s > 1 + 1/N while the same results also hold.

To show that the above assertion is true, we only need to get the optimal
L2(RY, R")-norm temporal decay estimate for the global solution u(z, x).
This is just what we want to do in the following.

Multiplying (1.1) by Vn(u)" and integrating the results over RY with
respect to x, after some integrations by parts, we get from (1.5) that

d 2
EfRNn(u) dx + g/RN|Du| dx < 0. (3.50)

If we let B(r) = {¢e€ RV:|£°(1 + 1) < 2N/8¢}, we have from (3.50)
and (1.5) that

o™ nw a)

2n—1 ZNd
2N(1 + 1) fRNn(u) de + (1 +1) EfRNlp(u) dx

2N 2N-1 2 2N 217~ 2
< —(1+1) fR~|”| dr — (1 +1) fRN|g| al® d¢
2N 2N-1 2
<—@Q+t lal” d
o ( ) '/B(t) ¢
sc@a+n™t dé
\

£P<2N/se(l+¢)
< C(1+ )N 1

From the above inequality, we can easily get
J Jul?dxe < e+ )",
RN

and this completes the proof of this remark.
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