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Let pn be a polynomial of m variables and total degree n such that &pn&C(K)=1,
where K/Rm is a convex body. In this paper we discuss some local and uniform
estimates for the magnitude of grad pn under the above conditions. � 1999 Academic Press
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INTRODUCTION

The classical inequalities of Bernstein and Markov estimating the magnitude
of derivatives of univariate polynomials play a central role in approximation
theory.

By the Markov Inequality for any polynomial pn of degree at most n

&p$n&C[a, b]�
2n2

b&a
&pn&C[a, b] . (1)

The Bernstein Inequality provides the following pointwise estimate for
p$n(x) when a<x<b

| p$n(x)|�
n

- (x&a)(b&x)
&pn &C[a, b] . (2)

Upper bounds (1) and (2) are sharp, they are attained for the Chebyshev
polynomial Tn((2x&a&b)�2(b&a)) where Tn(t)=cos(n arc cos t) (for
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certain values of x in case of (2)). It should be noted that (1) can
be deducted from (2) with the help of the following inequality of Schur

&pn&1&C[a, b]�
2n

b&a
&- (x&a)(b&x) pn&1(x)&C[a, b] , (3)

where pn&1 is a polynomial of degree at most n&1.
The purpose of this paper is to study Markov and Bernstein-type

inequalities for multivariate polynomials. Thus we consider the space Pm
n of

polynomials

pn(x)= :
|k|1�n

ak xk, x # Rm, ak # R

of m real variables and total degree �n. (As usual |k|1=k1+ } } } +km and
xk=>m

j=1 xkj
j , where k=(k1 , ..., km) # Zm

+ and x=(x1 , ..., xm) # Rm.) In
what follows |x|2 denotes the Euclidean norm of x # Rm, Sm&1=[x # Rm:
|x|2=1] is the unit sphere in Rm, while Bm=[x # Rm: |x|2�1] stands for
the unit ball of Rm. We are interested in estimating Dy pn(x), the derivative
of pn # Pm

n in the direction y # S m&1. In particular, this leads to estimates
for the magnitude of the gradient of pn(x) given by

|grad pn(x)|2=sup [ |Dy pn(x)|: y # Sm&1].

Naturally, in the multivariate case the results are closely related to the
geometry of the underlying set K/Rm on which the uniform norm
&pn&C(K)=maxx # K | pn(x)| of pn # Pm

n is considered.
The first sharp Markov-type inequality in Rm was obtained by Kellogg

[4] in 1928 in the case when K=Bm is the unit ball:

& |grad pn |2 &C(Bm)�n2 &pn&C(B m) , pn # Pm
n . (4)

(Clearly, inequality (4) is sharp for every n, m # N.)
Wilhelmsen [8] gave a Markov-type estimate for an arbitrary convex

body K # Rm. (A convex body in Rm is a convex compact set with non-
empty interior.) For a convex body K/Rm denote by w(K) the minimal
distance between two parallel supporting hyperplanes for K. Then it is
shown in [8] that

& |grad pn |2 &C(K)<
4n2

w(K)
&pn &C(K) (5)

whenever pn # Pm
n and K/Rm is a convex body. The above inequality with

a different, weaker constant was given earlier by Coatmelec [3]. Note that
w(Bm)=2, i.e., for the unit ball the constant in (5) is twice larger than in
(4). (Independently Nadzhmiddinov and Subbotin [6] verified (5) in the
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special case when K is a triangle in R2.) This leads to the interesting
problem of finding the exact constant in (5). Evidently, this constant must
be between 2 and 4. This question was partially resolved by Sarantopoulos
[7] who found sharp Bernstein and Markov-type inequalities in the case
when K is central symmetric. (Recall that K is central symmetric if and
only if with proper shift it is the unit ball of some norm on Rm.) If K is
central symmetric with its center in the origin then let

.K (x)=inf {:>0:
x
:

# K= , x # Rm (6)

be the corresponding Minkowski functional. Then by [7], for every
pn # Pm

n , y # Sm&1 and x # Int K

|Dy pn(x)|�
n.K ( y)

- 1&.2
K(x)

&pn&C(K) .

Combining this with (3) leads to the bound

|Dy pn(x)|�.K ( y) n2 &pn&C(K) , x # K, y # S m&1.

Since .K ( y)�2�w(K) when K is central symmetric it follows that

& |grad pn |2 &C(K) �
2n2

w(K)
&pn&C(K) , (7)

|Dy pn(x)|�
2n

w(K) - 1&.2
K(x)

&pn&C(K) . (8)

Inequalities (7) and (8) of Sarantopoulos [7] provide sharp Markov and
Bernstein-type bounds for convex central symmetric sets. (Using methods
of several complex variables these inequalities where established independ-
ently by Baran [1].) In a recent paper [2] by Bia*as-Ciez* and Goetgheluck
it was shown that (7) fails in general for K=20 :=[(x, y) # R2: x, y�0;
x+ y�1], but on the other hand the constant 4 in (5) can be replaced by
- 10 when K=20 . This shows that in non-symmetric case the Markov
constant in (7) has to be larger than 2, but it is also possible to improve
inequality (5) for some sets.

Two questions arise from the above discussion.

�� How can one extend Bernstein inequality for non-symmetric convex
bodies?

�� How can the Markov inequality (5) be improved in non-symmetric
case?
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In this paper we shall address these questions. First in Section 1 we shall
give some auxiliary geometric facts. Section 2 contains our main result
providing a Bernstein-type estimate for derivatives of polynomials on
non-symmetric convex bodies. The sharpness of this estimate will also be
considered. In Section 3 we discuss possible improvements of the Markov-
type inequality (5) in the non-symmetric case with triangles being studied
in a more systematic way.

1. GEOMETRY

The quantity - (x&a)(b&x) appearing in Bernstein Inequality (2)
measures the distance from x # (a, b) to the endpoints of the interval (a, b).
For central-symmetric convex bodies this is accomplished by the term
- 1&.2

K(x) (see [7]). In order to present our Bernstein-type inequality
we shall need a certain quantity :K (x) introduced in [5] measuring the
distance from a given x # Rm to the boundary BdK of the non-symmetric
convex body K/Rm.

For given a, b # Bd K and c # S m&1 such that (c, b&a)>0 denote

Sc(a, b) :=[x # Rm: (c, a)�(c, x) �(c, b)],

where ( } , } ) stands for the usual inner product in Rm. We call Sc(a, b) a
supporting strip of K if K/Sc(a, b). Note that the boundary of a support-
ing strip consists of two parallel hyperplanes supporting K at a and b.
Furthermore, given :>0 the :-dilation of Sc(a, b) is defined by

S :
c(a, b) :=[x # Rm: (c, a&d:)�(c, x) �(c, b+d:)],

where d: :=(:&1)(b&a)�2. For any :>0 and convex body K/Rm set
K: :=� S :

c(a, b) where the intersection is taken over all supporting strips
of K. Clearly, K1=K, K; /K: if 0<;<:, and K:=:K whenever K is
central-symmetric. It should be noted that when K is not central symmetric
K: does not preserve in general the ``shape'' of K. For instant, if K is a
triangle in R2 and :>1 then K: is a hexagon. Finally, set

:K (x) :=inf [:: x # K:].

This quantity measuring the ``distance'' from x # Rm to Bd K was first intro-
duced in [5] in order to verify the relation

sup
pn # P n

m

| pn(x)|
&pn &C(K)

=Tn(:K (x)), x # Rm"K.
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For central symmetric convex bodies K we have :K (x)=.K (x), x # Rm.
Also, it should be noted that :K (x)>1 for x # Rm"K, :K (x)=1 on Bd K,
and :k(x)<1 if x # Int K. Thus the closer is :K (x) to 1, the closer is x to
Bd K. We shall also consider another measure of distance from x # Int K to
Bd K given by

2K (x) :=inf
2 - |x&a|2 |x&b|2

|a&b|2

, x # Int K, (9)

where the above inf is taken over all a, b # Bd K such that x belongs to the
line segment connecting a and b. Clearly the above inf is attained for some
a*, b* # Bd K. Let us verify that K possesses parallel supporting hyper-
planes at these points.

Proposition 1. Let x # Int K and assume that the inf in (9) is attained
for a*, b* # Bd K. Then K possesses parallel supporting hyperplanes at a*
and b*.

Proof. We may assume that x=0 and |b*| 2�|a*|2 . Consider the
function

g(a) :=inf [:>0: &a�: # K].

Evidently, g(a) is positive homogeneous and continuous. It is a routine
exercise to show that g is convex, as well.

Furthermore whenever a, b # Bd K are such that a=&tb (t>0), then
g(a)=1�t and g(b)=t. Now minimizing the quantity

4 |x&a| 2 |x&b|2

|a&b| 2
2

=
4 |a|2 |b|2

|a&b| 2
2

=
4t |b| 2

2

((1+t) |b|2)2=
4

2+ g(a)+ g(b)

is equivalent to maximizing g(a)+ g(b). In view of g(a) g(b)=1 the above
quantity is maximal for pairs a, b # Bd K where g attains its maximal and
minimal values, respectively. Thus the definition of a*, b* # Bd K as extremal
point pair satisfying also |b*|2�|a*|2 entails maximality of g(a*), i.e.,
g(a)�g(a*) for every a # K.

Furthermore, Epi(g) :=[(a, t): a # Rm, t # R, t�g(a)]�Rm+1 is closed
and convex. In addition, (a*, g(a*)) # Bd Epi(g). By the supporting hyper-
plane theorem there exist c0 # Rm and t0 # R (not both of which are 0) such
that

(c0 , a*)+t0 g(a*)�(c0 , a)+t0 t

for every (a, t) # Epi(g).
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Setting a=a* and letting t � � yields that t0�0. Also, if t0=0 then
(c0 , a*) �(c0 , a) for a # Rm, i.e., c0=0, a contradiction. Thus t0>0.
Hence we may assume that

(c0 , a*) + g(a*)�(c0 , a) +t

for all (a, t) # Epi(g). Thus for very a # Rm

(c0 , a*&a)�g(a)& g(a*). (10)

Since g(a)�g(a*), a # K it follows that

(c0 , a*) �(c0 , a) , a # K. (11)

In addition, by (10)

g(a*)(c0 , a) +(c0 , a*) =(c0 , g(a*) a) +(c0 , a*)

�g(&g(a*) a)& g(a*)= g(a*) g(&a)& g(a*).

Since g(a*)>0 (a*{0) we have

�c0 ,
a*

g(a*)��&(c0 , a) + g(&a)&1, a # Rm.

Note that g(&a)�1 when a # K, so we arrive at

�c0 , &
a*

g(a*)��(c0 , a) , a # K. (12)

Thus by (11) and (12) K possesses parallel supporting hyperplanes at a*
and &a*�g(a*)=b*. This completes the proof of Proposition 1. K

Our next proposition unveils an interesting relation between quantities
:K (x) and 2K (x).

Proposition 2. For any x # K we have

22
K(x)=1&:2

K(x). (13)

Proof. Equation (13) is trivial when x # Bd K so we may assume that
x # Int K. Let a, b # Bd K be such that x belongs to the line segment con-
necting a and b. We may assume that |a&x|2�|b&x|2 , i.e., setting
t :=( |b&x|2)�( |a&b|2) we have that 0<t�1�2 and

|a&x|2

|a&b|2

}
|b&x|2

|a&b| 2

=(1&t) t. (14)
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Consider a supporting strip S of K such that one of its boundary planes
passes through b. Thus for some c # Sm&1 and a~ # Bd K

S=Sc(a~ , b)=[x # Rm: (c, a~ ) �(c, x) �(c, b)]; S#K. (15)

Let d # Rm, d{b, be the second point where the line through a and b
intersects boundary of S. Evidently,

t~ :=
|b&x|2

|b&d | 2

�
|b&x|2

|a&b|2

=t�
1
2

,

and therefore

|d&x|2

|b&d |2

}
|b&x|2

|b&d |2

=(1&t~ ) t~ �(1&t) t. (16)

Consider now an arbitrary :>:K (x). Then x # K: , i.e., x # S : for the strip
S given by (15). This yields that t~ =|b&x|2 �|b&d | 2�(1&:)�2. Thus by
(14) and (16)

|a&x|2 |b&x|2

|a&b| 2
2

=(1&t) t�(1&t~ ) t~ �\1&
1&:

2 + 1&:
2

=
1&:2

4
.

Hence 22
K(x)�1&:2

K(x).
Now we shall verify the converse inequality. For given x # Int K let the

inf in (9) be attained for some a*, b* # Bd K. Set s* :=|x&b*|2�|x&a*|2 ,
:* :=(1&s*)�(1+s*), where we assume again that |x&b*|2�|x&a*|2 .
Consider an arbitrary supporting strip Sc(a, b) of K. Let r be the ray
originating from a and passing through x. Denote by b1 and b2 the points
where r exits from K and Sc(a, b) respectively. We may assume, as usual,
that |x&b2 |2�|x&a|2 . Furthermore, set s :=|x&b1 |2 �|x&a| 2 ; s~ :=
|x&b2 |2 �|x&a|2 . Then 1�s~ �s�s*, and hence

1&s~
1+s~

�
1&s
1+s

�
1&s*
1+s*

=:*.

This yields that 1�s~ �(1&:*)�(1+:*) and therefore x # S :*
c (a, b) for an

arbitrary supporting strip Sc(a, b) of K. Thus x # K:* , i.e., :K (x)�:*.
Recall that

22
K(x)=

4 |x&a*|2 |x&b*|2

|a*&b*| 2
2

=
4

s*+2+1�s*

=1&(:*)2�1&:2
K(x). K

Now we introduce the notion of the width of the convex body K in direc-
tion v # S m&1. For any x # K and line lv(x) in direction v passing through
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x denote by dv(x) the length of the segment of intersection of lv(x) and K.
Then the quantity

wv(K) :=sup
x # K

dv(x)

will be called the width of K in direction v.

Proposition 3. For any convex body K/Rm and v # S m&1 we have
wv(K)�w(K), where w(K) is the minimal distance between two parallel
supporting hyperplanes for K.

Proof. Clearly dv(x) is a continuous function of x # K, when K is
convex. Thus for some x0 # K we have dv(x0)=wv(K). Denote by a0 and b0

the points of intersection of K and the line through x0 in the direction
v # Sm&1. Consider the set K0=Int K+a0&b0 . We claim that K & K0=<.
Assume that to the contrary, for some y # Int K we have y+a0&b0 # K.
Since y # Int K y&=(a0&b0) # K if =>0 is small enough. But the line
segment connecting points y+a0&b0 , y&=(a0&b0) # K is parallel to v and
has length (1+=) |a0&b0 |2=(1+=) dv(x0), a contradiction. Thus K & K0

=<. This implies that K and K0 can be separated by a hyperplane, i.e.,
with some u # S m&1 we have (x, u)�( y, u) whenever x # K, y # K0 . Thus

(x, u)�( y+a0&b0 , u) , x, y # K. (17)

Setting x=a0 in (17) yields

(b0 , u) �( y, u), y # K.

Moreover, using (17) with y=b0 implies

(x, u)�(a0 , u), x # K.

Thus K possesses parallel supporting hyperplanes at a0 and b0 , i.e., wv(K)
=|a0&b0 |2�w(K). K

We conclude this section by some remarks and open questions concern-
ing the quantity :K (x). Evidently, 0�:K (x)�1 whenever x # K. Denote by

:K := inf
x # K

:K (x)

the minimal value of :K (x). It is not difficult to show that :K=0 if and
only if K is central symmetric. Thus, in particular, :K>0 for every non-
symmetric convex body K. To determine the size of :K for a non-symmetric
convex body K seems to be an interesting and nontrivial problem. It can
be verified that :k(xK)�(m&1)�(m+1) if xK is the center of mass of the

141BERNSTEIN AND MARKOV-TYPE INEQUALITIES



convex body K/Rm. Thus, in particular, :k�(m&1)�(m+1) for every
K/Rm. Moreover, if K is any finite convex body arising from cutting a
cone by a hyperplane in Rm, then :K=(m&1)�(m+1) with xK being the
only point in K with :K (xK)=(m&1)�(m+1). We conjecture that for
every convex body K in Rm there exists a unique point x # K such that
:k(x)=:K .

2. A BERNSTEIN-TYPE INEQUALITY FOR MULTIVARIATE
POLYNOMIALS ON NON-SYMMETRIC CONVEX BODIES IN RM

In this section we shall apply the geometric results of the previous section
in order to derive a Bernstein-type inequality for non-symmetric convex
bodies. One approach to this problem consists in utilizing the technique of
Wilhelmsen [8], who essentially linearized this problem by passing to
proper lines. Let us outline this approach.

Consider an arbitrary y # Sm&1 and x # Int K. Let Sy(a, b) be a support-
ing strip of K, where a, b # Bd K. Let c be the point where the ray originat-
ing from a and passing through x exits from K. We may assume without
loss of generality that dist(x, Ha)� 1

2 dist(Ha , Hb)�w(K)�2, where Ha and
Hb are the boundary hyperplanes of Sy(a, b) passing through a and b,
respectively. Set u :=(a&c)�|a&c| 2 # Sm&1. Then using the classical
Bernstein Inequality (2) on the line segment connecting points a and c we
have when &pn&C(K)=1

|Du pn(x)|�
n

- |x&a|2 |x&c|2

�
2n

|a&c|2 2K (x)
. (18)

We can choose y # Sm&1 so that it is the unit vector in direction of
grad pn(x). Clearly, |Du pn(x)|=|grad pn(x)|2 cos ., where . is the angle
between u and y. Moreover, |a&c|2cos .=dist(c, Ha)�dist(x, Ha)�
w(K)�2. Thus we have by (18)

|grad pn(x)|2=
|Du pn(x)|

cos .
�

4n
w(K) 2K (x)

.

Furthermore, (13) yields that

|grad pn(x)|2�
4n

w(K) - 1&:2
K(x)

, (19)

where &pn&C(K)=1.
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The quantity - 1&:2
K(x) appearing in (19) can be considered as the

``Bernstein-factor'' corresponding to - 1&.2
K(x) of (8) which holds in the

central symmetric case. Thus in non-symmetric case the constant in (19) is
twice larger than the one in (8). (This is analogous to the increase of
constant in the Markov-type inequality (5) relative to (7) which holds in
central symmetric case.)

We shall present below another approach to Bernstein inequality on
non-symmetric convex bodies which will enable us to replace the constant
4 in (19) by 2 - 2. This approach is based on a more delicate technique
when the problem is linearized by inscribing ellipses into K (and not line
segments). We shall also show that for every K/Rm the optimal constant
in (19) can not be smaller than 2, in general.

Theorem 1. Let K/Rm be a convex body, pn # Pm
n , &pn&C(K)=1;

n, m # N. Then for every y # Sm&1 and x # Int K we have

|Dy pn(x)|�
2n

wy(K) - 1&:K (x)
�

2 - 2 n

wy(K) - 1&:2
K(x)

. (20)

Recall that by Proposition 3 wy(K)�w(K) for every y # Sm&1. Thus
Theorem 1 yields the next

Corollary 1. For every convex body K/Rm and polynomial pn # Pm
n

&- 1&:2
K(x) |grad pn(x)| 2&C(K)�

2 - 2 n
w(K)

&pn &C(K) . (21)

Our next result shows that the constant in the first inequality in (20) is
optimal in general, while the constant of (21) might differ from the best
possible by at most - 2.

Theorem 2. Let K/Rm be a convex body, and assume that n is
sufficiently large, so that cos(?�2n)�:K . Then for every x # Int K such that
sin n arc cos :k(x)=1 there exist a v # Sm&1 and pn # Pm

n , &pn&C(K)=1, so
that

Dv pn(x)=
2n

wv(K) - 1&:2
K(x)

. (22)

Note that when x # Int K the quantity :K (x) attains all values between
:K and 1. Thus if cos(?�2n)�:K the set of those points x # K for
which sin(n arc cos :K (x))=1 is nonempty. On the other hand :K�
(m&1)�(m+1) implies the existence of such points x for n�n0(m)=
?�(2arc cos((m&1)�(m+1))) independently of the body K.
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Example 1. Let K=20=[(x, y) # R2: x, y�0; x+ y�1] (m=2).
Then it is easy to show that w(K)=- 2�2 and for every (x, y) # Int 20 ,
1&:K (x, y)=2 min[1&x& y, x, y]. Thus by the first inequality in (20)
for every pn # Pm

n

|grad pn(x, y)|2�
- 2 n

- min[1&x& y, x, y]
&pn&C(20) .

Proof of Theorem 1. Let G, H # Bd K be such that |G&H|2=wy(K),
and the line through G and H is parallel to y. Consider also F, E # Bd K
such that the line through F and E is parallel to y and the point x # Int K
belongs to this line. Now we shall reduce our considerations to the 2-dimen-
sional plane spanned by G, H, F, E. (The case when x belongs to the line
segment connecting G and H is trivial.) By a suitable choice of the coor-
dinate axises in this plane we may assume that y=(0, 1) and G=(&a, g),
H=(&a, h), E=(a, e), F=(a, f ) where a>0, g>h and f>e. Let B be the
point where the diagonals of the trapezoid GFEH intersect, and denote by
C the intersection of the line through x and B with the segment connecting
H and G. We may assume without loss of generality that the midpoint of
the segment connecting C and x coincides with the origin, i.e., x=&C.
Now set

* :=
|E&F |2

|G&H|2

=
f &e
g&h

, 0<*�1. (23)

Let + # (&1, 1) be such that x=(a, ((1++)�2) f+((1&+)�2) e). Then
routine similarity arguments yield that C=(&a, ((1++)�2) h+((1&+)�2) g).
Consider the ellipse

x~ (t) :=x cos t+by sin t, 0�t�2?, (24)

where

b := 1
2 |G&H|2 - *(1&+2)= 1

2wy(K) - *(1&+2). (25)

We shall verify now that this ellipse is inscribed into the trapezoid GHEF.
Since x~ (0)=x, x~ $(0)=by, x~ (?)=&x=C and x~ $(?)=&by it follows that
x~ (t) passes through x and C and has vertical tangent at these points. Thus
it remains to verify that the ellipse x~ (t) is enclosed between segments GF
and HE. Clearly, x~ (t) is below GF provided that

(x~ (t), u) �(F, u) , (26)

where u :=(g& f, 2a). We have

(F, u) =a(g& f )+2af =a(g+ f ).

144 KROO� AND RE� VE� SZ



Moreover, by (24)

(x~ (t), u) 2�a2(4b2+(g++f +(1&+) e)2).

Thus (26) will hold provided that

4b2�(g+ f )2&(g++f +(1&+) e)2

=2(1&+)( f &e) \g+
1++

2
f+

1&+
2

e+ . (27)

Since x = (a, ((1++)�2) f + ((1&+)�2) e) = &C = (a, &((1++)�2) h&
((1&+)�2) g) it follows that

1++
2

f+
1&+

2
e=&

1++
2

h&
1&+

2
g.

Using this we can write (27) as

4b2�2(1&+)( f &e) }
1++

2
(g&h)=(1&+2)( f &e)(g&h). (28)

But by (25) and (23)

4b2=(g&h)2 *(1&+2)=(g&h)( f &e)(1&+2).

Thus (28) holds which in turn yields that (27) and (26) are true, as well.
Hence x~ (t) is below GF. Analogously it can be shown that x~ (t) lies above
segment HE. Finally, this leads to the conclusion that the ellipse x~ (t),
0�t�2?, is inscribed into the trapezoid GHEF, i.e., into K, as well.
Consider now the trigonometric polynomial tn(t)= pn(x~ (t)) of degree at
most n (0�t�2?). Since ellipse x~ (t) is inscribed into K and &pn&C(K)=1
it follows that &tn&C[0, 2?]�1. Then by the Bernstein Inequality for trigono-
metric polynomials |t$n(0)|�n. Using that t$n(0)=bDy pn(x) be obtain
by (25)

|Dy pn(x)|�
n
b

=
2n

wy(K) - *(1&+2)
. (29)

Let us first consider the case when *=1. Then by Proposition 2

*(1&+2)=1&+2=
4 |F&x|2 |E&x| 2

|F&E| 2
2

�22
K(x)=1&:2

K(x).

This together with (29) yields an estimate which is even stronger than (20).
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It remains to consider the case when 0<*<1, i.e., |E&F |2<|G&H|2 .
Then the line through H and x must intersect the line through G and F at
some point Q. Furthermore, the line through H and x intersects Bd K at
a point R located on the segment connecting x and Q. Then

(1&+) *
2

=
|F&x|2

|G&H| 2

=
|Q&x|2

|Q&H|2

�
|R&x|2

|R&H|2

:=t. (30)

Furthermore, by Proposition 2

1&:2
K(x)=22

K(x)�4t(1&t).

This easily yields that t�(1&:K (x))�2. Hence by (30) (1&+) *�1&:k(x).
Similarly it can be shown that (1++) *�1&:k(x) where + # (&1, 1). There-
fore (1&+2) *�1&:K (x), and applying this in (29) yields (20). This
completes the proof of Theorem 1. K

Proof of Theorem 2. Let a*, b* # Bd K be such that

22
K(x)=4 |x&a*|2 |x&b*| 2�|a*&b*| 2

2

and x=ta*+(1&t) b* with some 0<t�1�2. By Proposition 1 K possesses
parallel supporting hyperplanes at a* and b*, i.e., with some c # Sm&1

(c, a*) �(c, y)�(c, b*) , y # K. (31)

In particular, this also implies that wv(K)=|a*&b*|2 , where v :=(b*&a*)�
|a*&b*|2 . Hence

2K (x)=
2

wv(K)
- |x&a*|2 |x&b*|2 =2 - t(1&t). (32)

Set now ; :=2�wv(K)(c, v) , and

pn( y) :=Tn \; �c, y&
a*+b*

2 �+ ,

where Tn(x)=cos n arc cos x is the Chebyshev polynomial.
Note that by (31), (c, v)>0, i.e., ;>0. Using (31) we obtain that

&1�; �c, y&
a*+b*

2 ��1, y # K,
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i.e., &pn&C(K)�1. Furthermore, set

#(x) :=; �c, x&
a*+b*

2 �=; �c, \1
2

&t+ (b*&a*)�
=\1

2
&t+ ;wv(K)(c, v) =1&2t. (33)

We have then

Dv pn(x)=(grad pn(x), v)=;T $n(#(x))(c, v)

=
2n

wv(K)
}
sin(n arc cos #(x))

- 1&#2(x)
. (34)

Note that by (32) and (33) #(x)=- 1&22
K(x)=:K (x). Thus sin(n arc cos #(x))

=sin(n arc cos :K (x))=1 and by (34)

Dv pn(x)=
2n

wv(K) 2K (x)
=

2n

wv(K) - 1&:2
K(x)

. K

3. SOME IMPROVEMENTS OF THE MARKOV-TYPE
INEQUALITY FOR MULTIVARIATE POLYNOMIALS ON

NON-SYMMETRIC CONVEX BODIES IN Rm

In this last section we shall discuss possible improvements of the
Markov-type inequality (5) of Wilhelmsen. In the previous section it was
shown how the technique of ``inscribed ellipses'' improves the constant in
Bernstein-type inequalities on non-symmetric bodies. (Inequality (20) is
substantially sharper than estimate (19) derived using Wilhelmsen's techni-
que.) One would except that this method should yield a similar improvement
of the Markov-type inequality. Unfortunately this approach gives a rather
modest decrease in constant in (5). Namely we shall verify the following

Theorem 3. Let K/Rm be a convex body. Then for every pn # Pm
n

& |grad pn |2 &C(K)�
4n2&2n

w(K)
&pn&C(K) . (35)

Proof. We may assume that &pn &C(K)=1. For an arbitrary y # S m&1 let
G, H # Bd K be such that |G&H|2=wy(K), and the line through G and H
is parallel to y. Set M=(G+H)�2. Furthermore, choose an arbitrary x # K,
and set x(t)=(1&t) x+tM, 0�t�1. We shall reduce our considerations
now to the triangle 2 with vertices x, G and H. Our goal is to estimate
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Dy pn at the point x(t) lying inside this triangle. Repeating the procedure
used in the proof of Theorem 1 (with K replaced by 2) we shall arrive
again at inequality (29) with *=t and +=0, i.e.,

|Dy pn(x(t))|�
2n

wy(2) - t
=

2n

wy(K) - t
, 0<t<1. (36)

Set g(t) :=Dy pn(x(1&t2)), &1<t<1. Evidently, g is a univariate algebraic
polynomial of degree at most 2n&2. Moreover by (36)

| g(t)|�
2n

wy(K) - 1&t2
, &1<t<1.

Then by the Schur Inequality (3)

&g&C[&1, 1]�(2n&1) }
2n

wy(K)
=

4n2&2n
wy(K)

.

Thus

|Dy pn(x)|=| g(1)|�
4n2&2n
wy(K)

.

Since x # K and y # S m&1 where chosen arbitrarily this yields the statement
of Theorem 3. K

We shall achieve a more significantly improvement of the Markov
constant in case when K is a triangle in R2. As it was mentioned in the
Introduction the Markov constant 4 in Wilhelmsen's inequality (5) was
replaced in [2] by - 10 in the special case when K=20=[(x, y) # R2:
x, y�0; x+ y�1]. We shall replace below the constant 4 in (5) by a
smaller quantity for arbitrary triangles in R2.

Let us consider a triangle 2 in R2 with sides a, b, c and corresponding
angles :, ;, #. We may assume that c�b�a, i.e., #�;�:. With this
assumption set

M(2) :=
2
a

- a2+b2+2ab cos #.

Clearly, M(2)�2 - 2+2 cos #<4.
On the other hand, elementary geometric arguments yield that whenever

0<#�;�:�?�2 we have

M(2)�- 10. (37)

Moreover, equality in (37) is obtained only if 2$20 .
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Theorem 4. Assume that 2/R2 is a triangle with angles 0<#�;�
:�?�2. Then for every pn # P2

n we have

& |grad pn |2 &C(2)�
M(2) n2

w(2)
&pn&C(2) . (38)

Since M(2)<4 this estimate improves (5) for every acute and right
triangle. When 2=20 we have M(20)=- 10 and thus the Markov
inequality given for 20 in [2] is recovered. Note also that for equilateral
triangle with side h we have M(2)=- 12 and w(2)=- 3 h�2. Hence we
obtain from (38) in this case

& |grad pn |2 &C(2)�
4n2

h
&pn&C(2) .

Theorem 4 can be applied to obtain an improvement of estimate (5) for
every triangle. It yields the next

Corollary 2. Let 2 be an arbitrary triangle in R2 with #>0 being its
smallest angle. Then for every pn # P2

n we have

& |grad pn |2 &C(2)�
4 cos(#�2)

w(2)
n2 &pn&C(2) .

Proof of Theorem 4. Let 2 have vertices C=(0, 0), B=(a, 0), A=
(b cos #, b sin #). Set 21=(1�3) 2; 22=21+(2�3) B; 23=21+(2�3) A.
Then 2=0 _ (�3

j=1 2j), where 0 is a central symmetric hexagon with
w(0)=(2�3) w(2). Let pn # P2

n be such that &pn&C(2)=1. Then applying
Sarantopoulos' inequality (7) on 0 yields

& |grad pn |2 &C(0)�
2n2

w(0)
=

3n2

w(2)
. (39)

It remains now to estimate |grad pn | 2 on 21 (22 and 23 are isometric to
21). We shall use Wilhelmsen's method on 21 . For x # 21 and y # R2

denote by l(x, y) the segment of intersection of 2 with the line trough x
in the direction y. Then by the univariate Markov Inequality |Dy pn(x)|�
2n2�|l(x, y)|2 . Denoting by . the angle between y and grad pn(x) we obtain

|grad pn(x)|2�
2n2

|l(x, y)|2 cos . \0�.<
?
2+ . (40)

Set v :=(2�3) B=((2�3) a, 0), y :=B&x, u :=grad pn(x)�|grad pn(x)|2 ,
and denote by � the angle between v and u.
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Case 2. #&?�2���&;+?�2. In this case (u, v)�0, (u, y)�0,
and (u, y&v) �0. Thus

|( y, u) |�|(v, u) |= 2
3 a cos �� 2

3 a min[sin ;, sin #]� 2
3 w(2).

Then |l(x, y)|2 cos .�|( y, u) |�2w(2)�3 and applying this with (40)
yields again

|grad pn(x)|2�
3n2

w(2)
.

Case 2. &;+?�2���?�2. This case can be treated similarly to Case
1 if we replace � by �$ :=#&�, v by v$ :=(2�3) A and y by y$ :=A&x.

Case 3. &?�2���#&?�2. Let L be the line [tu: t # R], where as
above u # S1 is the direction of grad pn(x). Denote by A1 and B1 the
projections to L of vertices A and B, respectively. Since &?�2���#&?�2
it is obvious that C=(0, 0) is between A1 and B1 (on the line L). Moreover

|l(x, B&x)|2 cos .B �|B1 |2 ,

|l(x, A&x)|2 cos .A�|A1 |2 ,

where .A and .B are the angles between u and B&x and A&x, respectively.
Thus using (40) we obtain

|grad pn(x)|2�
2n2

+
, (41)

where

+ := min
u # S 1

&?�2���#&(?�2)

max[ |A1 |2 , |B1 |2].

Clearly, the above minimum is obtained when |A1 |2=|B1 |2 , i.e., a cos �=
b |cos(#&�)|. Solving the last equation for � yields

cos �=
b sin #

- a2+b2+2ab cos #
.

Thus we have in this case

+=|A1 |2=|B1 | 2=a cos �=
ab sin #

- a2+b2+2ab cos #
=

2w(2)
M(2)

.
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Hence by (41)

|grad pn(x)|2�
M(2) n2

w(2)
, x # 21 ,

which is the same as (38). Recall that in all other cases we obtained
estimate (39), which is better than (38) in view of the fact that M(2)�
- 10>3. This completes the proof of Theorem 4. K

Proof of Corollary 2. For acute triangles the Corollary follows from the
estimate M(2)�2 - 2+2 cos # combined with (38).

Assume now that 2 is an obtuse triangle with angles #�;<: (:>?�2)
and corresponding sides c�b�a. Drawing perpendicular lines to a and b,
at the point A, 2 can be covered by two right triangles 21 and 22 with
angles #, (?�2)&#, ?�2 and ;, (?�2)&;, ?�2, respectively. Evidently, w(21)
=w(22)=w(2). Furthermore, noting that #�(?�2)&#<?�2 we have

M(21)=
2 cos #

b � b2

cos2 #
+b2+2b2

=2 - 1+3 cos2 #�2 - 2+2 cos #. (42)

For the triangle 22 two cases may occur.

Case 1. ;�?�4. Then ;�(?�)2&;<?�2 and

M(22)=
2 cos ;

c � c2

cos2 ;
+c2+2c2

=2 - 1+3 cos2 ;�2 - 1+3 cos2 #�2 - 2+2 cos #. (43)

Case 2. ;>?�4, i.e., (?�2)&;<;<?�2. Then

M(22)=
2 cos ;

2 � c2

cos2 ;
+c2 tan2 ;+2c2 tan2 ;

=2 - 1+3 sin2 ;=2 �1+3 cos2 \?
2

&;+
�2 - 1+3 cos2 #�2 - 2+2 cos #. (44)

Thus by (42)�(44), M(21), M(22)�4 cos(#�2). Since w(21)=w(22)=w(2)
we obtain from Theorem 4 (applied to 21 and 22) the needed estimate for
obtuse triangles, as well. K

We conclude this paper by a remark concerning polynomials on any real
Banach space (see [7] for the corresponding definition). The main results
of this paper can be verified in the same manner for these polynomials.
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