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a b s t r a c t

The nonlinear analytical solutions of an end notched flexure adhesive joint or fracture test specimen with
identical or dissimilar adherends are investigated. In the current study, a cohesive zone model (with arbi-
trary nonlinear cohesive laws) based analytical solution is obtained for the interface shear fracture of an
end notched flexure (ENF) specimen with sufficiently long bond length. It is found that the scatter and
inconsistency in calculating Mode II toughness may be significantly reduced by this model. The present
work indicates that the Mode II toughness GIIc under pure shear cracking condition is indeed very weakly
dependent on the initial crack length. And this conclusion is well supported by the experimental results
found in the literature. The parametric studies show that the interface shear strength is the most dom-
inant parameter on the critical load. It is also interesting to note that with very short initial crack length
and identical interface shear strength, higher Mode II toughness indeed cannot increase the critical load.
Unlike the high insensitivity of critical load to the detailed shape of the cohesive law for Mode I peel frac-
ture, the shape of the cohesive law becomes relatively important for the critical load of joints under pure
Mode II fracture conditions, especially for joints with short initial crack length. The current study may
help researchers deepen the understanding of interface shear fracture and clarify some previous concepts
on this fracture mode.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Adhesive bonding technology is being used in a variety of
modern industries, including the automotive, aerospace, maritime,
construction, defense, etc. Many components and structures, from
microchips to ships and large aircrafts are made of materials
arranged in layers through adhesive bonding. However, current
design approaches for predicting the fracture of adhesively-bonded
materials are still somewhat empirical, and improving these
approaches is a critical issue for furthering the engineering appli-
cations of this technology. The most commonly used approach
for analyzing the fracture of adhesive joints is interfacial fracture
mechanics. Before the physical macro-crack is formed, the two sur-
faces of the adherends are held together by traction within a cohe-
sive zone. The interfacial stresses vary according to the relative
displacement of the surfaces, and an interface cohesive law
describes the activities in the cohesive zone in terms of the separa-
tion and the traction of the interface to be formed during the frac-
ture process.

Previous studies have focused on the development of test meth-
ods and modeling schemes for the characterization of Mode I adhe-
ll rights reserved.
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sive fracture toughness in structural adhesive joints. However, the
Mode II, or in-plane interface shear fracture, loading mode is of
particular importance for adhesive joints (Blackman et al., 2005).
Mode II loading may be induced when a cracked adhesive joint
or a layered composite is subjected to bending. The various exper-
imental fracture mechanics approaches to Mode II usually utilize
some form of test specimen which is subjected to applied bending
loads in order to determine values of the Mode II toughness GIIC

(Carlsson et al., 1986).
To measure the Mode II interlaminar fracture toughness, Russell

(1982) introduced the customary end notched flexure (ENF) test, a
three-point bending test as illustrated in Fig. 1. The compliance in
bending is measured at several positions of the crack front with
respect to the loading pin, and the load for the crack growth is
determined for one definite crack position. The critical interlami-
nar fracture toughness is computed using the linear elastic fracture
mechanics (LEFM) combined with data reduction techniques. The
LEFM based measurement of Mode II toughness GIIc showed that
the critical load is sensitive to the crack length and delamination
front profile in previous experimental studies (Bachrach et al.,
1991; Schuecker and Davidson, 2000). Therefore, one test of the
critical load may not be truly representative of a consistent GIIc,
and a number of tests are required.

However, this LEFM based approach relies on the existence of a
crack in the interface, and on assumptions of small-scale bridging
and linear-elasticity. If any of these conditions are violated, an
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Fig. 2. Infinitesimal section of the end notched flexure (ENF) specimen.

a

L L

x

P

h1, E1

h2, E2

Crack tip 

QT

1

2

a

L L

x

P

h1, E1

h2, E2

Crack tip 

QT

11

22

Fig. 1. The end notched flexure (ENF) specimen.
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alternative approach such as cohesive-zone modeling is required
(Needleman, 1987; Tvergaard and Hutchinson, 1992). As an alter-
native approach to the singularity driven fracture approach, the
origins of the concept of cohesive zone model (CZM) goes back to
the work of Barenblatt (1959) and Dugdale (1960). CZM has
evolved as a preferred method to analyze fracture problems in
monolithic and composite material systems not only because it
avoids the singularity but also because it can be easily imple-
mented in a numerical method of analysis such as in finite element
modeling (Atkinson, 1979). Therefore, various CZMs have been
proposed to investigate the fracture process in a number of mate-
rial systems including fiber reinforced polymer composites, metal-
lic materials, ceramic materials, cementitious or concrete
materials, and bimaterial systems (Hillerborg et al., 1976; Rose
et al., 1983; Needleman, 1987, 1990; Tvergaard, 1990; Tvergaard
and Hutchinson, 1992; Xu and Needleman, 1993; Kinloch et al.,
1994; Camacho and Ortiz, 1996; Geubelle and Baylor, 1998;
Hutchinson and Evans, 2000; Williams and Hadavinia, 2002;
Ouyang and Li, in press; Ouyang and Li, 2009).

One of the main problems that have been encountered with
Mode II loading has been the poor reproducibility of the values
of the measured Mode II toughness GIIC (Davies et al., 1999). The
effects of friction in the specimen could be a possible reason for
this poor reproducibility. However, the experimental loading-
unloading cycling test conducted by Russel and Street (1982) indi-
cated a maximum error of around 2% in GIIC in composites if
friction was ignored. More recently, Davidson and Sun (2005)
and Davidson et al. (2007) considered the effects of friction in
the ENF specimen and 4-ENF tests were conducted on composites.
They concluded that friction accounted for only about 2% and 5%,
respectively, of the measured values of GIIC from their tests.

Another possible major cause of scatter and inconsistency in
Mode II toughness may be a difficulty in determining the location
of the crack tip according to some recent studies (Schuecker and
Davidson, 2000; Brunner, 2000; Brunner et al., 2006). The difficulty
in determining the true crack length has also been observed during
Mode I peel tests in composites when extensive fiber-bridging and
microcracking occurs. This has been shown to cause variations and
errors in the calculation of toughness when corrected beam theory
was employed (Brunner, 2000). However, as an analytical model,
the current study will focus on the critical load and its correspond-
ing Mode II toughness at different initial precrack lengths, which
can be clearly defined and well controlled in the actual tests.
Therefore, the identification of crack length is not a concern in
the current study.

Compared to the extensive studies and the well understanding
of the Mode I interface fracture, further investigation on the Mode
II interface shear fracture is needed. It seems that the complex
damage mechanisms occurring around the crack tip and the lack
of a universally agreed understanding of the interface shear frac-
ture have all been suggested as the primary cause of the problem
of poor reproducibility. The primary purpose of the current work
is to develop a cohesive zone model (CZM) based analytical model
for the interface shear fracture of end notched flexure (ENF)
specimens. With this model, the scatter and inconsistency in Mode
II toughness may be significantly reduced. And the strong depen-
dency of the Mode II fracture toughness on the initial crack length
as reported by the previous study (Bachrach et al., 1991) may be
explained in a new perspective. Some important issues will be
highlighted for the modeling and design of pure interface shear
fracture. In addition, the distinct properties of Mode II shear frac-
ture will also be discussed as compared to those of Mode I peel
interface fracture.

2. Theoretical background

It is assumed that the crack separates in a monotonic fashion;
neither unloading nor crack closure is permitted. The cohesive
(or bridging) laws are assumed to be the same for each point along
the bond length. Since the cohesive stresses represent the failure
process zone, it may be also reasonable to assume that a certain
crack opening exists, at which the cohesive stresses vanish when
the failure criterion is satisfied. For the sake of simplicity, the clas-
sical beam theory is adopted in the current study.

An end notch adhesively bonded joint with a unit width is
considered as shown in Fig. 1. In the end notch flexure specimen,
the adhesive layer is assumed to be very thin and soft relative to
the adherends. It is also assumed that the entire bond length 2L
and L-a, which is the distance between the crack tip and the con-
centrated loading in mid-span are long enough. It is noted that
the present analytical model is derived based on the configuration
of adhesively bonded ENF joints with two adherends made of iso-
tropic or orthotropic materials (identical or dissimilar materials).
However, it may also be applicable to the ENF specimen with
end notch or inserted crack starter foil if the cohesive zone is lim-
ited to the crack tip region and no large scale plasticity is devel-
oped in the upper and lower substrates.

It is also assumed that the nonlinear behavior of the entire
adhesive layer under shear loadings can be well described by a
nonlinear cohesive law. Since the nonlinear fracture behavior of
the entire thin adhesive layer is normally dependent on the type
and thickness of the adhesive layer, the thickness of the adhesive
layer is not directly considered in the current work. Instead, an
interface constitutive relationship (as described by the cohesive
law) is assumed to be known once the adhesive type and thickness
are given. In another word, the effect of the adhesive layer thick-
ness is indirectly considered by the interface cohesive law.

Consider an infinitesimal section of the ENF specimen as shown
in Fig. 2. Obviously, the relative tangential displacement d between
the bottom fiber of the upper adherend and the top fiber of the
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lower adherend is contributed by two parts: (1) the longitudinal
displacement of the neutral axis of each beam; and (2) the local
rotation of each beam. Accordingly, the displacement field of the
two beams (adherends) has the form

u1ðx1; z1Þ ¼ u10ðxÞ þ z1
dw1ðxÞ

dx
; u2ðx; z2Þ ¼ u20ðxÞ þ z2

dw2ðxÞ
dx

w1ðx; z1Þ ¼ w1ðxÞ; w2ðx; z2Þ ¼ w2ðxÞ ð1Þ

where u10(x) and u20(x) are displacements of the neutral plane of
beams 1 and 2, respectively.

The longitudinal displacement of the bottom fiber of the upper
beam u1 and that of the top fiber of the bottom beam u2 can be
described as follows, respectively,

u1 ¼ u10 �
h1

2
dw1ðxÞ

dx
; u2 ¼ u20 þ

h2

2
dw2ðxÞ

dx
ð2Þ

With Eq. (2), the relative interface displacement w (normal
opening) between the bottom fiber of the upper adherend and
the top fiber of the lower adherend can be expressed by

w ¼ w1 �w2;
dw
dx
¼ dw1

dx
� dw2

dx
ð3Þ

According to Eq. (2), the relative tangential sliding d (interface
cohesive slip) between the upper adherend and lower adherend
as illustrated by Fig. 2 can be expressed by

d ¼ u1 � u2 ¼ ðu10 � u20Þ �
h1

2
dw1

dx
þ h2

2
dw2

dx

� �
ð4Þ

The constitutive equations are written by

Ni ¼ Ai
dui0

dx
; Mi ¼ Di

d2wi

dx2 ð5Þ

in which

Ai ¼
Exihi

1� vxzivzxi
; Di ¼

Exih
3
i

12ð1� vxzivzxiÞ

The subscript i = 1, 2 represents the beams 1 and 2, respectively;
Ni and Mi are the axial force and bending moment per unit width of
the beam i (i = 1, 2) as illustrated in Fig. 1, respectively; Ai and Di

are the axial and bending stiffness of the beam i(i = 1, 2) per unit
width under the plane strain condition.

The equilibrium equations of each beam in the bonded region
are written in the conventional way as

dN1

dx
¼ sðxÞ; dN2

dx
¼ �sðxÞ; dQ1

dx
¼ rðxÞ; dQ2

dx
¼ �rðxÞ ð6Þ

dM1

dx
¼ Q 1 �

h1

2
sðxÞ; dM2

dx
¼ Q 2 �

h2

2
sðxÞ ð7Þ

N1 þ N1 ¼ NT ; Q 1 þ Q 2 ¼ Q T ; M1 þM2 ¼ MT ð8Þ

With Eq. (4), it can be seen that

d0 ¼ � h1

2D1
M1 þ

N1

A1
� h2

2D2
M2 þ

N2

A2

� �
ð9Þ

It is noted that the normal interface separation w = w1 � w2, we
thus have

w00 ¼ w001 �w002 ¼
M1

D1
�M2

D2

� �
;

w000 ¼ w0001 �w0002 ¼
1

D1

dM1

dx
� 1

D2

dM2

dx

� �
ð10Þ

As illustrated by Fig. 1, when a joint is subjected to a transverse
shear force Q1 and Q2 at the ends of the upper and lower substrate,
respectively, there are bending moments M1 = a � Q1 and M2 = a � Q2
on the corresponding substrates at the location of the crack tip.
With Eqs. (3)–(10), after lengthy derivations, the following equa-
tion can be derived

d00 þh1D2�h2D1

2ðD1þD2Þ
w000 þ h1þh2

2ðD1þD2Þ
QT ¼

1
A1
þ 1

A2

� �
þ ðh1þh2Þ2

4ðD1þD2Þ

" #
s ð11Þ

It is noted that Q1(x) + Q2(x) = QT, which is a constant along the
longitudinal direction of the joint. This equation must be satisfied
for a composite joint consisting of two beams with arbitrary geom-
etry and material configurations if the classical beam theory is
applied.

However, when h1D2 = h2D1, the normal and tangential compo-
nents can be completely decoupled. Eq. (11) can thus be reduced to
the governing equation of a pure Mode II equation

d00 þ h1 þ h2

2ðD1 þ D2Þ
Q T ¼

1
A1
þ 1

A2

� �
þ ðh1 þ h2Þ2

4ðD1 þ D2Þ

" #
s ð12Þ

Note the decoupling condition is given as follows:

h1=D1 ¼ h2=D2 ð13Þ

If the Poisson’s ratio of the two adherends is identical or very
close, Eq. (13) can be equivalent to the equation as follows:

h2=h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E1=E2

p
ð14Þ

It is interesting to note that this decoupling condition does not
require two identical beams. In another word, for the joints bonded
with adherends made of dissimilar materials, Eq. (12) is still appli-
cable if Eq. (13) is satisfied. The decoupled governing equation can
significantly simplify the J-integral based analytical form of the
interface fracture problems. As an effort on the analytical model-
ing, only the specimens which satisfy the decoupling condition
are discussed in this study. Future work may be directed towards
the conditions that Eq. (13) is not satisfied. However, this is beyond
the scope of the current study.

3. Interface cohesive sliding behavior

With the decoupling condition that h1/D1 = h2/D2 (note that it
does not require h1 = h2 and E1 = E2 for the two substrates), the
decoupled governing equation of the tangential interface shear
behavior can be described by

d00 þ h1 þ h2

2ðD1 þ D2Þ
Q T ¼

1
A1
þ 1

A2
þ ðh1 þ h2Þ2

4ðD1 þ D2Þ

" #
s ð15Þ

An arbitrary shear cohesive law s = s(d) is considered for the
governing Eq. (15). Note that Q1 + Q2 = QT (QT = P/2) is a constant
along the x coordinate. Under the configuration in Fig. 1, the inter-
face tangential sliding d(x) must be a monotonic function of the
coordinate x, although the interface shear stress s(x) may be varied
in a wave manner along the x direction due to the nonlinear rela-
tionship between d and s. The value of d must be the highest posi-
tive at one end, and be the lowest negative at the other end under a
given resultant transverse force QT as illustrated by Fig. 3. Obvi-
ously, there must be a zero-sliding point (dm is used to denote
the slip at this point, and dm = 0) somewhere in the middle of the
bonded length. Instead of solving the differential Eq. (15), let’s
consider an equivalent integral form as shown below,

Z
d00ddþ h1þh2

2ðD1þD2Þ

Z
Q T dd¼ 1

A1
þ 1

A2

� �
þ ðh1þh2Þ2

4ðD1þD2Þ

" #Z
sðdÞdd ð16Þ

It can be observed that Eq. (16) is completely equivalent to Eq.
(15). In other words, Eq. (15) is the equivalent differential form of
the integral Eq. (16). However, it should be noted that such
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equivalent integral form requires that each d corresponds to a single
value of the coordinate x, or this correspondence exists piecewisely
along the bond length. Note that the change of x or d along the longi-
tudinal direction does not affect the value of QT, which is a constant
along the x direction. Therefore, Eq. (16) can be rewritten byZ

od0

od
d0

� �
ddþ ðh1 þ h2ÞQ T

2ðD1 þ D2Þ

Z
dd

¼ 1
A1
þ 1

A2

� �
þ ðh1 þ h2Þ2

4ðD1 þ D2Þ

" #Z
sðdÞdd ð17Þ

By integrating the interface slip d from 0 to d, it can be derived
that,

1
2
½ðd0Þ2 � ðd0mÞ

2� þ ðh1 þ h2ÞQ T

2ðD1 þ D2Þ
d

¼ 1
A1
þ 1

A2
þ ðh1 þ h2Þ2

4ðD1 þ D2Þ

" #
�
Z d

0
sðdÞdd ð18Þ

where d0m is used to represent the derivative of d at the zero slip
point (dm = 0).

It is important to notice that the integral limits on both sides of
Eq. (17) must be correspondent to each other. Obviously,
d0m $ dm ¼ 0 (zero slip point) and d0 M d. It is also noted that
d0m–0 unless L-a ?1. However, d0m ! 0 or can be ignored when
L-a is long enough as seen in Fig. 3. Therefore, for the specimens
with sufficiently long entire bond length and L-a, by denoting the
tangential cohesive slip at the crack tip by d0, Eq. (18) can be sim-
plified to,

1
2
ðd00Þ

2þðh1þh2ÞQ T

2ðD1þD2Þ
d0¼

1
A1
þ 1

A2
þ ðh1þh2Þ2

4ðD1þD2Þ

" #
�
Z d0

0
sðdÞdd ð19Þ

Note that QT = Q1 + Q2 and M1 = a � Q1 and M2 = a � Q2, N1 = N2 = 0
at the ends. Associated with Eq. (9), the value of d00 can be readily
expressed as a function of the transverse shear forces Q1 and Q2.
Consequently, the Mode II energy release rate JII can be written by

JIIðd0Þ ¼
Z d0

0
sðdÞdd

¼
1
2

h1a
2D1

Q 1 þ h2a
2D2

Q2

h i2
þ ðh1 þ h2ÞðQ 1 þ Q 2Þ

2ðD1 þ D2Þ d0

1
A1
þ 1

A2
þ ðh1 þ h2Þ2

4ðD1 þ D2Þ

ð20Þ

Replacing Q1 + Q2 by the resultant shear force QT, and noticing
that h1/D1 = h2/D2, the compact form of JII is written by,

JIIðd0Þ¼
1
2

h1a
2D1

QT

h i2
þðh1þh2ÞQ T

2ðD1þD2Þ d0

1
A1
þ 1

A2
þ ðh1þh2Þ2

4ðD1þD2Þ

ð21Þ
Obviously, QT = P/2 as illustrated by Fig. 1. It can also be
observed that Eq. (21) is indeed a quadratic equation of QT. By solv-
ing the quadratic equation, the positive root of QT is derived as the
explicit function of the crack tip cohesive sliding d0 as follows:

QT ¼ f ðd0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

2 þ 4X1X3

q
� X2

2X1
ð22Þ

where

X1 ¼
1
2
� h1a

2D1

� �2

; X2 ¼
ðh1 þ h2Þ

2ðD1 þ D2Þ
� d0

X3 ¼
1
A1
þ 1

A2
þ ðh1 þ h2Þ2

4ðD1 þ D2Þ

" #
�
Z d0

0
sðdÞdd

ð23Þ

It is noted that the expression of QT shown in Eq. (22) is always
positive since the term X1 � X3 is always positive unless X1 = 0.
When X1 = 0, which can happen only when the initial crack length
a ? 0, it implies that the first term on the left hand side of Eq. (19)
is zero. With the reduced Eq. (19) (when a ? 0), Eq. (22) can be fur-
ther reduced to

QT ¼
1
A1
þ 1

A2
þ ðh1 þ h2Þ2

4ðD1 þ D2Þ

� �
�
R d0

0 sðdÞdd

ðh1 þ h2Þ
2ðD1 þ D2Þ � d0

ð24Þ

Eq. (22) explicitly correlates the crack tip cohesive sliding d0 to
the resultant external force QT acting at the end of the ENF specimen
if the overlap length is long enough. This means that the full crack
initiation process under pure Mode II loading conditions can be sim-
ply described by a single function as shown in Eqs. (22) and (24). In
order to predict the critical load Pcr (the maximum load capacity), a
failure criterion is usually required. However, the current model for
predicting the critical load of ENF specimen under pure Mode II load-
ing does not have to specify a criterion, because with a properly
defined interface cohesive law, the full QT-d0 curve can be obtained
through Eq. (22), and the critical load can be identified.

It is important to note that the maximum load capacity nor-
mally does not correspond to the final crack tip cohesive sliding
df. We introduce a characteristic crack tip cohesive sliding dC, at
which the load capacity QT reaches its maximum. The value of dC

can be determined by Eq. (25) as follows:

dQT

dd0
¼

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

2þ4X1X3

p
�X2

2X1

� �
dd0

¼ 0 ð25Þ

With Eq. (23), after simplification, Eq. (25) can be rewritten by

K1K3

K2
2

s2ðdCÞ þ dCsðdCÞ ¼
Z dC

0
sðdÞdd ð26Þ

where

K1 ¼
1
2
� h1a

2D1

� �2

; K2¼
ðh1þh2Þ

2ðD1þD2Þ
; K3¼

1
A1
þ 1

A2
þ ðh1þh2Þ2

4ðD1þD2Þ

" #
ð27Þ

If a standard end notched flexure (ENF) specimen (the adher-
ends have identical thickness and are made of the same material)
is considered, denoting E1 = E2 = E, h1 = h2 = h, D1 = D2 = D, Eq. (26)
can be further simplified as follows:

4a2

Eh
s2ðdCÞ þ dCsðdCÞ ¼

Z dC

0
sðdÞdd ð28Þ

When a ? 0, both Eqs. (26) and (28) can be further reduced to,

dCsðdCÞ ¼
Z dC

0
sðdÞdd ð29Þ
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Eq. (29) indicates that when the crack length a ? 0, the value of
the characteristic sliding dC is only dependent on the interface
cohesive law; it is independent of the geometry and material prop-
erty of the adherends.

It is also important to note that the characteristic sliding dC not
necessarily exists for all cohesive laws. For a monotonically
increasing cohesive law, the characteristic sliding dC does not exist
since the integral (the area under the cohesive law curve) is always
less than the product of s and d. This means the critical load (max-
imum load capacity) will not be achieved until the final separation
df (macro-debonding) is reached.

However, most real interface cohesive behaviors are governed
by the ascending-descending types of cohesive laws as seen in
Fig. 4. Therefore, the critical load is usually reached before the final
separation df. Comparing Eqs. (26) and (28) with Eq. (29), one can
see that it is likely that the critical load is achieved at the charac-
teristic sliding dC before the final separation df due to the contribu-
tion of the first term in Eqs. (26) and (28).

On the other hand, by taking the derivative of both sides in Eq.
(21) with respect to d0, together with the relationship between the
energy release rate and the interface shear stress, the tangential
cohesive shear stress s can thus be determined as follows:

dJIIðd0Þ
dd0

¼ sðd0Þ¼
h1a
2D1

� �2
QT þ

ðh1þh2Þ
2ðD1þD2Þd0

� �
dQT
dd0
þðh1þh2ÞQT

2ðD1þD2Þ

1
A1
þ 1

A2
þ ðh1þh2Þ2

4ðD1þD2Þ

ð30Þ

Considering a typical ascending-descending type of cohesive
law, we assume that the characteristic sliding dC exists. With the
corresponding characteristic shear stress s(dC) as determined by
Eq. (25), by inserting Eq. (26) into Eq. (24), the maximum load
capacity QTmax can be derived as follows:

Q Tmax ¼
2ðD1 þ D2Þ
ðh1 þ h2Þ

1
A1
þ 1

A2
þ ðh1 þ h2Þ2

4ðD1 þ D2Þ

" #
� sðdCÞ ð31Þ

For a standard end notched flexure (ENF) specimen with identi-
cal adherends, the maximum load capacity QTmax can be further
simplified to

Q Tmax ¼
4
3

h � sðdCÞ ð32Þ

Note that the characteristic sliding dC in Eqs. (31) and (32) can
be obtained by Eq. (26). It is also noted that QT and QTmax are the
vertical forces per unit width. With Eqs. (31) and (32), one can
see that the maximum load capacity QTmax is proportional to the
interface shear stress at the characteristic sliding dC. Eqs. (31)
and (32) also indicate that the maximum interface shear stress
has a significant effect on the critical load capacity QTmax. For the
joint with very high Mode II toughness, while with relatively low
interface shear strength, the load capacity of the ENF specimen is
still limited as implied by Eqs. (31) and (32).
4. Validations and parametric studies

4.1. Experimental verifications

In order to verify the present model, a comprehensive compar-
ison with the test results reported by Bachrach et al. (1991) is
conducted. However, the detailed cohesive laws are not available
for the specimens in their experiment. In order to calibrate the
cohesive law according to their experimental data, a typical non-
linear law: exponential type of cohesive law is employed. This
exponential law is described as follows:

sðdÞ¼ e �sf
d
d1

exp½�ðd=d1Þ� ¼ ðe �sf Þ2
d

GIIC
exp � d

GIIC
�esf

� �� �
ð33Þ

where sf is the interface shear strength (maximum shear stress), d1

is the cohesive sliding at which the interface shear stress s reaches
its maximum as seen in Fig. 4.

The current exponential type of cohesive law is a two-parame-
ter model. With the given interface shear strength sf, the law is
determined by adjusting the value of GIIc until the experimental
critical load is matched by Eq. (31). A typical interface shear
strength sf = 25 MPa is assumed. And the Mode II toughness GIIc

is calibrated to be 0.64 kJ/m2. Note that only one set of test data
(specimen A5 in Table 1) is used to calibrate the cohesive law.
The calibrated cohesive zone model is then used to calculate the
critical loads of all the remaining specimens. There are 28 test
results with the predicted critical loads as listed in Table 1. The
width b and total span length 2L of all the ENF specimens in their
test (Bachrach et al., 1991) were 25.4 mm and 101.6 mm, respec-
tively. A typical Poisson’s ratio t = 0.39 of the carbon fiber rein-
forced composite laminate is assumed in the current study. The
AS4/3501-6 graphite/epoxy unidirectional composite laminate
was used for the specimens (32 plies in total) in their test. The ini-
tial crack was created by inserting Teflon between the two center
plies. More details can be found in their original experimental
study. The experimental and analytical results of the critical load
are also plotted as a function of the initial crack length in Fig. 5.
As pointed out by Bachrach et al. (1991), the experimental results
are always difficult to compare for composite materials because of
the different manufacturing processes and ply layups. From Table 1
and Fig. 5, one can see that the present prediction of the critical
load agrees very well with the experimental data, and the total
average error is less than 1%.

On the other hand, with the linear elastic fracture mechanics
(LEFM) based model and the identical experimental data, Bachrach
et al. (1991) calculated the values of Mode II toughness GIIc as a
function of the initial crack length a0. They found that the Mode
II toughness GIIc was strongly dependent on the initial crack length
a0. According to their model (Bachrach et al., 1991), the value of GIIc

increased by approximately 50% when the initial crack length a0

was increased from 0.4 L to 0.8 L (L = 50.8 mm). If a larger variation
range of the initial crack length is considered, such as the initial
crack length is varied from zero to 0.8 L, it is expected that the var-
iation in GIIc with the change of the initial crack length should be
more significant with their model.

However, with the same experimental data, the current model
presents a distinctly different conclusion. The current results indi-
cate that the Mode II toughness GIIc under pure Mode II shear
cracking is indeed independent of or very weakly dependent on
the initial crack length a0. This conclusion is well supported by
the good agreement with their experimental results as listed in
Table 1 and shown in Fig. 5. It is important to note that only one
test result of a single specimen is used to calibrate the interface
cohesive law. However, with this calibrated cohesive law, the crit-
ical loads of the entire 28 specimens with completely different



P c
r (

N
) 

a0 (mm) 

400

450

500

550

600

650

700

750

20 25 30 35 40 45

Group A

Present

Experiment

Present

Experiment

400

450

500

550

600

650

700

750

Group A

Present

Experiment

Present

Experiment

P c
r (

N
) 

a0 (mm) 

400

500

600

700

800

900

1000

Group B

Present

Experimen t

Present

Experimen t

400

500

600

700

800

900

1000

20 25 30 35 40 45

Group B

Present

Experimen t

Present

Experimen t

P c
r (

N
) 

a0 (mm) 

400

500

600

700

800

900

1000

1100

Group D

Present

Experiment

Present

Experiment

400

500

600

700

800

900

1000

1100

20 25 30 35 40 450

Group D

Present

Experiment

Present

Experiment

P c
r (

N
) 

a0 (mm) 

400

500

600

700

800

900

Present

Experiment

Present

Experiment

Group C

400

500

600

700

800

900

1000

20 25 30 35 40 45

Present

Experiment

Present

Experiment

Group C

Fig. 5. Comparison of experimental results (Bachrach et al., 1991) and analytical results of the critical load Pcr at different crack length.

Table 1
Comparison of experimental results (Bachrach et al., 1991) and the present analytical solution of the critical loads.

Specimen Number a (mm) h (mm) Pcr (test) (N) Present (N) Error (%)

Group A A1 40.13 1.723 533.3 484.0 9.3
A2 38.10 1.727 514.2 505.8 1.6
A3 34.54 1.725 540.9 546.2 �1.0
A4 30.99 1.734 582.7 595.2 �2.1
A5 27.94 1.728 643.2 646.3 �0.5
A6 26.42 1.721 654.3 671.2 �2.6
A7 24.89 1.715 699.7 703.3 �0.5

Group B B1 39.12 1.977 643.2 596.9 7.2
B2 35.56 1.989 654.3 652.1 0.3
B3 31.50 1.995 688.6 718.8 �4.4
B4 28.49 2.002 752.6 783.3 �4.1
B5 25.40 2.009 839.8 857.6 �2.1
B6 24.89 2.007 824.7 871.0 �5.6
B7 21.84 2.005 949.2 959.9 �1.1

Group C C1 40.64 2.137 684.6 646.3 5.6
C2 37.59 2.149 703.7 701.0 0.4
C3 34.54 2.173 749.1 755.7 �0.9
C4 32.51 2.184 790.4 797.1 �0.8
C5 29.97 2.193 798.0 849.2 �6.4
C6 25.40 2.203 888.8 978.2 �10.1
C7 24.89 2.209 979.5 988.4 �0.9

Group D D1 38.61 2.139 699.7 684.6 2.2
D2 36.58 2.145 711.3 710.4 0.1
D3 34.04 2.160 752.6 762.9 �1.4
D4 32.51 2.176 760.2 790.0 �3.9
D5 28.96 2.183 839.8 872.3 �3.9
D6 24.89 2.189 979.5 987.9 �0.9
D7 22.86 2.182 1081.8 1052.9 2.7

Total average error �0.8
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crack lengths are well predicted by the single identical cohesive
zone model. If the calibration is conducted for each group (four
groups in total), the prediction should be even better. Considering
the possible constraint effect of geometry, the real cohesive behav-
ior may be slightly affected. However, this variation due to
different initial crack length is very limited, which is much lower
than 50% as reported by Bachrach et al. (1991). In another word,
for the given physical interface properties and adhesive layer
thickness, the properly defined shear cohesive law seems relatively
stable under pure Mode II conditions for different initial crack
length. This phenomenon for the Mode II shear fracture seems
different from the well accepted understanding of the interface
fracture behavior of bonded joint under pure Mode I (peel loading)
conditions (Blackman et al., 2003).
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Fundamentally, the effect of the crack length and crack tip slid-
ing d0 on the external load has been included in the present model
as seen in Eq. (22). Therefore, it is not necessary to incorporate the
crack length into the expression of Mode II toughness GIIc due to its
weak correlation to the crack length. The value of GIIc can thus be
treated in a certain sense as a material constant for the provided
physical interface property and thickness of the adhesive layer.
Consequently, the relaxation of the dependence of the cohesive
law on the geometry may significantly facilitate the modeling of
interface shear fracture. Based on the crack length dependent mod-
els in the previous studies, the calculated Mode II toughness values
scattered very significantly. Also, the scattered value of GIIc causes
the difficulty in the accurate prediction of the critical loads for the
interface shear fracture of ENF specimens. The present model may
provide better prediction capabilities.

4.2. Parametric studies

With the verified model, a comprehensive parametric study is
conducted in this section. The effect of the specimen’s geometry
and material property, the interface shear strength, the type of
cohesive law and the Mode II toughness on critical loads is inves-
tigated. In all of the parametric studies, the identical interface
cohesive law is assumed to be exponential type of model as
described by Eq. (33), expect for the parametric study on the type
of cohesive laws. For all cohesive laws, the interface shear strength
sf = 25 MPa except for the parametric study on the interface shear
strength. The Mode II toughness GIIc is set as 0.64 kJ/m2 except for
the parametric study on Mode II toughness. The span and width of
all ENF specimens are 2L = 200 mm and 1 mm, respectively, for all
parametric studies. The Poisson’s ratio of all adherends (identical
or dissimilar adherends) are t = 0.32. The elastic modulus and
thickness of all adherends are 150 GPa and 4 mm, respectively,
except for the parametric study on the geometry.

4.2.1. Effect of geometry and material properties
The critical load at crack length a = 0 is denoted by Pcr0. Note Pcr0

is the highest critical load for the given configuration. The normal-
ized critical loads Pcr/Pcr0 for the specimen joined with identical
adherends are plotted as a function of the initial crack length a0

in Fig. 6. Note that for the specimens with identical adherends,
E1 = E2 = E = 150 GPa, h1 = h2 = h, as illustrated in Fig. 6, the critical
load Pcr0 (at crack length a = 0) is proportional to the thickness h.
This phenomenon is valid for most ascending-descending types
of nonlinear cohesive laws and can be explained by Eqs. (29) and
(32) as discussed before. However, with the growth of crack length,
the critical load Pcr is no longer proportional to the thickness of the
adherend. It is interesting to find that thicker adherends not only
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h = 2, 4, 8 mm.
lead to higher Pcr but also reduce the rate of decrease with the
increase of the crack length.

In order to investigate the shear fracture behavior of specimens
bonded with two dissimilar adherends, a specimen with a total
thickness of h1 + h2 = 8 mm is considered. In the specimen,
E2 = 220 GPa, and four different elastic modulus ratios E2/E1 are
considered: E2/E1 = 9, 4, 2, and 1. According to the decoupling con-
dition Eq. (14), the thickness ratio h1/h2 for the specimen can be
calculated by the square root of E2/E1. By maintaining the total
thickness of h1 + h2 = 8 mm, the individual thickness h1 and h2

can thus be determined. Fig. 7 plots the relationship between the
normalized critical load Pcr and crack length with different modu-
lus ratios. One can see that when the crack length approaches zero,
the difference between the critical loads disappears. While at a rel-
atively small crack length, such as a/L = 0.2 (L = 100 mm), the crit-
ical loads show the largest difference although the specimens have
the identical total thickness. Fig. 7 also indicates that the identical
adherend configuration (E1/E2 = 1) leads to the highest shear frac-
ture resistance for all the different crack lengths considered. On
the other hand, when the crack length a0 is very small, by adjusting
the modulus ratio, the bending stiffness can be conveniently
increased while maintaining identical total thickness and shear
fracture load capacity.

4.2.2. Effect of interface shear strength
With the identical Mode II toughness GIIc = 0.64 kJ/m2 and the

same type of cohesive law (exponential type law), the effect of
interface shear strength sf on the relationship between the crack
tip sliding and external load is shown in Figs. 8a–c for different ini-
tial crack lengths. Four different interface shear strength sf = 2.5,
10, 25 and 40 MPa are investigated. As illustrated in Fig. 8, the
interface shear strength has a dominant effect on the critical loads
(the peak external loads in the P-d0 curves) when the initial crack
length approaches zero. While in Fig. 8b and c, the interface shear
strength still significantly affects the critical loads with medium or
long crack length. It is noted that all the curves have the same
Mode II toughness GIIc. From Fig. 8, one can also see that the
increase in crack length reduces the difference in the critical load
caused by the different interface shear strength. The strong depen-
dency of the critical load on the interface shear strength sf can be
explained by Eq. (31) as discussed previously.

4.2.3. Effect of Mode II fracture toughness
With the same interface shear strength sf = 25 MPa and the

same type of cohesive law (exponential type law), the effect of
the Mode II toughness on the critical load is studied. Three Mode
II toughnesses GIIc = 0.32, 0.64 and 1.28 kJ/m2 are studied. The crit-
ical load is plotted as a function of the initial crack length in Fig. 9
for different Mode II toughnesses. As shown in Fig. 9, the critical
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load is identical when the crack length approaches zero, even with
completely different Mode II toughness. The trend is exactly oppo-
site to the trend in the effect of the interface shear strength on the
critical load. Therefore, when the initial crack length is very short,
higher critical fracture toughness indeed cannot increase the shear
fracture load capacity. In order to improve the critical load, high
interface shear strength should be applied if the initial crack length
is very short. One can also see that the critical load decreases with
the increase of the initial crack length. However, it is noted that the
decrease rate with the initial crack length is different. As illustrated
in Fig. 9, higher Mode II toughness decreases relatively slower.

4.2.4. Effect of the type of the cohesive law
With the identical interface shear strength sf = 25 MPa and the

same Mode II toughness GIIc = 0.64 kJ/m2, the effect of five different
types of cohesive laws are investigated. They are equivalent linear
elastic model, bilinear model, cubic model, equivalent constant
stress model and exponential model, as shown in Fig. 10. The
detailed expressions of these laws can be found in the Appendix.
The relationships between the external load and the crack tip slid-
ing are plotted in Fig. 11a–d for different initial crack lengths,
respectively. One can see that when the initial crack length is
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relatively small (such as a = 0 or a/L = 0.1), the shape of the cohe-
sive law has a significant effect on the P-d curves as well as the crit-
ical load Pcr. This dependence of the critical load on the cohesive
law is another important difference between Mode I peel fracture
and Mode II shear fracture. Previous studies (Williams and Hadavi-
nia, 2002; Blackman et al., 2003; Ouyang and Li, in press) indicated
that the critical load of DCB specimens under pure Mode I condi-
tion is weakly dependent on the detailed shape of the cohesive
law. With the same interface normal strength rf and Mode I tough-
ness GIc, the variation of the critical load due to the change of the
cohesive law can even be ignored. Evidently, this conclusion does
not seem to be applicable to the Mode II interface shear fracture.
However, this shape effect gradually decreases with the increase
of the initial crack length. The critical loads predicted by different
cohesive laws converge into the same value when a relatively long
initial crack length (a/L = 0.8) is considered as illustrated by Fig. 11.
One can also see from Fig. 11 that the equivalent linear elastic
model yields the lowest prediction, while the equivalent constant
stress model predicts the highest critical load. The other three typ-
ical nonlinear laws: bilinear, cubic and exponential offer relatively
similar predictions among them. The three typical nonlinear
In
te

rf
ac

e 
sh

ea
r 

st
re

ss
 (

M
Pa

) 

Interface cohesive sliding (mm) 

0

5

10

15

20

25

30

0 0.01 0.02 0.03 0.04 0.05 0.06

Exponential
Cubic

Equivalent linear

Bilinear

Constant

Fig. 10. Various interface cohesive laws with Mode II toughness GIIc = 0.64 kJ/m2

and sf = 25 MPa.



0

40

80

120

160

200

240

280

0 0.01 0.02 0.03 0.04 0.05 0.06

Equivalent_Constant
Exponential
Cubic
Bilinear
Equivalent_linear

a0=0

0

40

80

120

160

200

240

280
Exponential
Cubic
Bilinear
Equivalent_linear

a0=0

Crack tip sliding (mm) 

E
xt

er
na

l l
oa

d 
P

(N
) 

0

40

80

120

160

0 0.01 0.02 0.03 0.04 0.05 0.06

Equivalent_Constant
Exponential
Cubic
Bilinear
Equivalent_linear

a0/L=0.1

0

40

80

120

160

200

Exponential
Cubic
Bilinear
Equivalent_linear

a0/L=0.1

Crack tip sliding (mm) 

E
xt

er
na

llo
ad

 P
(N

)

0

10

20

30

40

50

60

70

80

0 0.01 0.02 0.03 0.04 0.05 0.06

Equivalent_Constant Equivalent_Constant
Exponential
Cubic
Bilinear
Equivalent_linear

a0/L=0.4

0

10

20

30

40

50

60

70

80

Exponential
Cubic
Bilinear
Equivalent_linear

a0/L=0.4

Crack tip sliding (mm) 

E
xt

er
na

llo
ad

 P
(N

)

0

5

10

15

20

25

30

35

40

0 0.01 0.02 0.03 0.04 0.05 0.06

Exponential
Cubic
Bilinear
Equivalent_linear

a0/L=0.8

0

5

10

15

20

25

30

35

40

Exponential
Cubic
Bilinear
Equivalent_linear

a0/L=0.8

Crack tip sliding (mm) 
E

xt
er

na
llo

ad
 P

(N
)

a b

c d

Fig. 11. (a) External load P vs. crack tip sliding with various interface cohesive laws at a/L = 0 (L = 100 mm). (b) External load P vs. crack tip sliding with various interface
cohesive laws at a/L = 0.1 (L = 100 mm). (c) External load P vs. crack tip sliding with various interface cohesive laws at a/L = 0.4 (L = 100 mm). (d) External load P vs. crack tip
sliding with various interface cohesive laws at a/L = 0.8 (L = 100 mm).

Z. Ouyang, G. Li / International Journal of Solids and Structures 46 (2009) 2659–2668 2667
models may largely represent the real cohesive fracture behavior.
This implies that when short or medium initial crack length is con-
sidered, the equivalent linear elastic model may be difficult to well
simulate the interface shear fracture of ENF specimens.

5. Conclusions

In the current study, a cohesive zone model (CZM) based analyt-
ical modeling is developed for the interface shear fracture of end
notched flexure (ENF) specimens. It is found that the scatter and
inconsistency in Mode II toughness may be significantly reduced
by this model. The current work indicates that for the given physical
interface properties and adhesive layer thickness, the properly
defined shear cohesive law seems relatively stable under pure Mode
II conditions for different initial crack length; and this conclusion is
well supported by the good agreement with the experimental
results. By incorporating the crack length and external force and
crack tip sliding into a compact formulation, the Mode II toughness
GIIc under pure shear cracking condition is indeed independent of
or very weakly dependent on the initial crack length.

The comprehensive parametric studies show that the interface
shear strength has the most dominant effect on the critical load,
especially for relatively short initial crack length. It is also interesting
to find that with very short initial crack length, higher Mode II tough-
ness indeed cannot improve the critical load. Unlike the very weak
dependence of the critical load on the detailed shape of the cohesive
law for Mode I peel fracture, the shape of the cohesive law becomes
relatively important for the critical load under pure interlaminar
shear fracture conditions. The phenomenon seems especially signif-
icant when the initial crack length is short. The current study may
help researchers deepen the understanding of interface shear frac-
ture and clarify some previous concepts on this fracture mode.
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Appendix A

Constant stress type of law:

sðdÞ ¼
sf 0 � d < df

0 d � df

	
ðA1Þ

Linear elastic type of law:

sðdÞ ¼
s2

f

2Gf
d 0 � d < df

0 d � df

8<
: ðA2Þ

Bilinear type of law (d1 = df/4):

sðdÞ ¼
2s2

f d=Gf 0 6 d 6 d1

2sf ð2Gf � dsf Þ=3Gf d1 6 d 6 df

0 df 6 d

8><
>: ðA3Þ

Cubic type of law (d1 = df/3):

sðdÞ ¼ 27
4

sf
d
df

1� d
df

� �2

¼ 243
64

s2
f

Gf
d 1� 9

16
sf

Gf
d

� �2

ðA4Þ

Exponential type of law:

sðdÞ ¼ e � sf
d
d1

exp½�ðd=d1Þ�

¼ ðe � sf Þ2
d

GIIC
exp � d

GIIC
� esf

� �� �
ðA5Þ
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