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Abstract

p73, a member of the p53 family, is overexpressed in

many cancers. To understand the mechanism(s) under-

lying this overexpression, we have undertaken a de-

tailed characterization of the human p73 promoter. The

promoter is strongly activated in cells expressing

exogenous E2F1 and suppressed by exogenous Rb. At

least three functional E2F binding sites, located imme-

diately upstream of exon 1 (at ���284, ���155 and ���132)

mediate this induction. 50 serially deleted promoter

constructs and constructs harboring mutated E2F sites

were analyzed for their response to exogenously ex-

pressed E2F1 or Rb to establish functionality of these

sites. Authenticity of E2F sites was further confirmed by

electrophoretic mobility shift assay (EMSA) using

E2F1/DP1 heterodimers synthesized in vitro, followed

by competition assays with unlabeled wild- type or

mutant oligonucleotides and supershift analysis using

anti -E2F1 antibodies. In vivo binding of E2F1 to the p73

promoter was demonstrated using nuclear extracts

prepared from E2F1-inducible Saos2 cells. The region

conferring the highest promoter activity was found to

reside between ���113 to ���217 of the p73 gene. Two of

the three functional E2F sites (at ���155 and ���132) reside

within this region. Our results suggest that regulation

of p73 expression is primarily mediated through binding

of E2F1 to target sites at ���155 and ���132.
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Introduction

p53 is mutated in about half of all cancers. p73, a member of

the p53 gene family, not only shows significant sequence

conservation with p53 [1] but also exhibits some functional

overlap. p73 can induce p21Waf1 /Cip1, a cyclin-dependent

kinase inhibitor, and several p53-responsive genes such as

BAX, 14-3-3�, GADD45, and HDM2 [2-4,5,6 ]. Although

p53 and p73 induce similar sets of genes, the level of

response can differ [2,4,5]. p73 also promotes apoptosis

when overexpressed in vitro [1,2,7-9,10]. p73 is regulated

by HDM2 (the human homolog of MDM2) by an auto-

feedback regulatory mechanism but in a manner quite

distinct from that of p53 [3,11,12]. Some viral proteins that

inactivate p53, such as the adenoviral protein E1A, can also

inhibit p73 function [13]. The human p73 gene is located at

1p36.33 [1], a region that is frequently lost in neuro-

blastomas, melanomas, oligodendrogliomas, breast, liver,

and lung cancers. These similarities raised the possibility that

p73 could be a tumor suppressor gene.

There are, however, differences between p73 and p53.

p73 exists in at least six carboxy- terminal isoforms (�, �, �,

�, ", � ) that arise by alternative splicing [1,14-16]. At least,

two N-terminal isoforms of p73 encompass all of these

carboxy splicing variants [17] — �Np73, which lacks the

transactivation (TA) domain, and TA-p73 ( full - length [FL]

p73); the former, transcribed from an intron 3 promoter, is a

dominant -negative version of p73 and is the predominant

form expressed in murine tissues [17]. The interaction of

p73 with HDM2 suppresses the efficient transcription of the

p73 gene and its ability to transactivate target genes [11,18]

whereas a similar interaction with p53 targets p53 for

degradation. Viral oncoproteins such as adenovirus E1B,

SV40 large T antigen, and HPV E6 inactivate p53 by

protein–protein interactions but do not appear to interact

with p73 [13,19,20]. DNA-damaging agents such as � -

irradiation and cisplatin, but not UV irradiation or actino-

mycin D, induce p73 [21-23]. Thus, p53 and p73 respond to

certain DNA-damaging agents through different mecha-

nisms. The p73 gene also appears to be imprinted in certain

tissues, unlike p53, but with data showing considerable

inter - and intraindividual variations, the tissue specificity

of the imprinting process remains unclear at present

[10,17,24].

Extensive analyses of the p73 gene in various cancers

indicate that it is rarely mutated [10,25,26]. On the contrary,

overexpression has been observed in a variety of cancers

such as those of the lung [27,28], bladder [29,30], and breast

[15] and has been attributed, in part, to biallelic expression

involving the reactivation of the normally imprinted silent

allele. However, this is not always the case [15,30]. Thus,
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other mechanisms must account for p73 overexpression.

Overall, the lack of mutations and its overexpression in

cancer tissues indicate that p73 is unlikely to be a tumor

suppressor gene.

A knowledge of p73 gene regulation is, thus, critical to our

understanding of p73 function in both normal and tumor

tissues. Recently, we and others demonstrated that ectopi-

cally expressed E2F1 could induce p73 gene expression

leading to apoptosis [31,32]. Here, we provide a more

detailed analysis of the p73 promoter and provide functional

evidence for its regulation by E2F1.

Materials and Methods

Materials

HeLa cells (CCL 2.3) were obtained from ATCC

(Manassas, VA). Saos2 cell subclones in which E2F1 cDNA

is under the control of a doxycycline- inducible promoter

have been previously described [31]. The p73 positive BAC,

190O18, was from Research Genetics (Huntsville, AL). All

other reagents, unless otherwise indicated, were from

Promega (Madison, WI), Gibco Life Technologies (Rockville,

MD), or Fisher (Hanover Park, IL). Oligonucleotide synthesis

and automated nucleotide sequencing were carried out at

the Mayo Core Facility, Mayo Clinic.

Isolation of the p73 Promoter

Multiplex restriction site polymerase chain reaction was

performed [33] with 5% DMSO, using two antisense primers

made to exon 1 (p73as1: 50 -CCGTCGCAGCCCCGGGCA

and a nested primer p73as2: 50 -GCGTCCGTCCCGGC-

TGGCC) and the p73 positive BAC DNA. A distinct PCR

band was obtained that was sequenced to affirm its

authenticity. An antisense primer (p73as3: 50 -AGCCCGG-

CGCGCGGGAAGGCAG) was then designed toward the 50

end of this sequence and used for direct sequencing of the

BAC DNA. The resulting sequence data was used for the

synthesis of a third antisense primer (p73as4: 50 -GAC-

GCCGGTGCCGACTCTGTG) for direct sequencing. A total

of 930 bp of sequence, inclusive of exon 1, was thus

obtained. An intact fragment harboring this sequence was

finally obtained from the BAC DNA by PCR using p73as1

and a sense primer (p73s5: 50 -GATCCAGAGCCCGA-

GCCCACA) and was cloned into pGEM-T Easy vector

(Promega). This plasmid, p73 pGEM-T, was used for the

construction of various reporter constructs described below.

p73 Promoter Constructs

5 0 Deletion constructs A luciferase reporter vector, pGL3

Basic (Promega), was used to clone the FL 930-bp

promoter fragment by digesting p73 pGEM-T with NcoI,

filling in with Klenow polymerase, then digesting with SalI

and cloning the resultant fragment into SmaI–XhoI digested

pGL3 Basic vector. Various 50 deletion constructs were then

made by utilizing unique restriction sites located upstream in

the p73 promoter (BstI, PstI, PvuII, NotI, and AvrII ). All

deletion constructs terminate at nt +71 of exon 1 where +1

represents the first nt of exon 1 [1].

E2F1 mutant constructs ThePvuII construct (Figure 1,A and

B ) was chosen as a parent plasmid to introduce mutations

at the five putative E2F binding sites (E2F1�189, �155,

�143, �132, and �6) using the QuickChange site-directed

mutagenesis kit (Stratagene, La Jolla, CA). In general, a 2 nt

substitution (AT) was incorporated at the conserved G/C

core of these sites (Table 1) as this substitution has been

shown to eliminate E2F binding [34]. The E2F1�155/�132

double mutant was created using the mutant primers for

E2F1�155 on a plasmid carrying the mutant E2F1�132

site. All mutant plasmids were sequenced to confirm the

mutations.

Kpn constructs Because the PvuII–NotI region is critical for

p73 expression, a KpnI site was introduced between nts

�170 and �165 in the PvuII construct by altering two

nucleotides (Figure 1B, see legend) through site-directed

mutagenesis (QuickChange, Stratagene), and deleting all

sequences upstream of this site. Further deletions at

�10-bp intervals were made in an identical manner exten-

ding downstream to the NotI site at �113.

Electrophoretic Mobility Shift Assays (EMSA)

Thirty -mer oligonucleotides corresponding to the wild-

type and mutant putative E2F binding sites were synthe-

sized, annealed to complementary synthetic oligonucleotide

in vitro and radiolabeled with [� -32P]dCTP and dGTP by

using Klenow DNA polymerase (New England Biolabs, MA).

E2F1/DP1 heterodimers were produced by in vitro trans-

lation with the TNT translation system (Promega). DNA

binding reactions were performed in 20 �l containing 2 �l of

the indicated protein in vitro translation product (or unprog-

rammed reticulocyte lysate labeled as mock), 10 �l of 2�
DNA binding buffer (50 mM Tris, 7.5 /40% glycerol /100 mM

KCl/100 mM DTT/2 mg/ml BSA/0.2% Triton X-100), 1 ng

of labeled probe, and 300 ng of sonicated salmon sperm

DNA. Forty nanograms of unlabeled oligonucleotides corre-

sponding to wild- type or mutated (Table 1) p73 E2F binding

sites or the known E2F binding sites of the DHFR promoter

were added as specific competitors. Antibody supershift

experiments were performed by adding 1 �l of anti -E2F1

(Santa Cruz, Santa Cruz, CA — sc 193) or isotype matched

control anti -myc antibody (Santa Cruz — sc 789). Binding

reactions were preincubated for 10 minutes at room temper-

ature, labeled probe was added and incubated for an

additional 15 minutes and then resolved by 4% PAGE at

48C in 0.5� Tris–Borate–EDTA buffer (2 to 3 hours at

200 V). Gels were dried and exposed to film at �708C.
EMSA was also performed using nuclear extracts

prepared, using NE-PER nuclear and cytoplasmic extraction

reagents (Pierce, Rockford, IL), from Saos2 cells treated

with doxycycline (2 �g/ml) for 48 hours. For DNA-binding

reactions, 2 �l (3 �g) of nuclear extract was preincubated for

15 minutes in a 20-�l reaction with 10 �l of 2� DNA binding

buffer, 300 ng of sonicated salmon sperm DNA, and BSA
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( final concentration, 10 mg/ml) in the presence or absence

of unlabeled oligonucleotides and antibodies, after which

1 ng of the labeled probe was then added as described

above.

Transfection Experiments

HeLa cells (1�105 cells /well ), grown in serum-free RPMI

media (ATCC) containing 2% TCH (Celox, St. Paul, MN),

were cotransfected with the luciferase reporter plasmid

(1 �g) and 100 ng of pRL-TK (Promega), a control plasmid

expressing Renilla luciferase. For E2F1 cotransfection, 1 �g

of the reporter plasmid, 100 ng of pRL-TK, and 1 �g of the

E2F1 expression plasmid, pRC-CMV HA E2F1, were used.

The amount of DNA was kept constant by the addition of an

appropriate empty vector. Transfections were done in six -

well plates using Fugene 6 reagent (Boehringer Mannheim,

Indianapolis, IN) and were carried out 24 hours after seeding.

Cells were harvested 48 hours later using the Dual -

Luciferase assay system (Promega). Firefly and Renilla

luciferase activities were measured in a Monolight 2010

(Analytical Luminescence Laboratory, San Diego, CA). All

values, from experiments performed at least thrice with

duplicates, were normalized and expressed as percent of the

activity of the appropriate construct described in the legends

to each figure.

Transfection of HeLa cells with Rb was essentially as

described above using 1 �g of the FL construct, 100 ng of

pRL-TK, and increasing amounts (0 to 2 �g) of the Rb-

expressing plasmid, pCMV Rb 379-928, supplemented with

appropriate amounts of the empty vector tomaintain constant

amount of DNA. For transfections examining the effect of Rb

on E2F1- induced promoter activity of the FL, deletion and

Figure 1. (A ) 5 0 Deletion analysis of the p73 promoter. Constructs harboring various 5 0 deletions of the p73 promoter were cloned into pGL3 Basic (Promega ).

Deletion constructs were made using unique restriction enzyme sites present in the promoter, as shown. The consensus E2F motif at �284 (E2F1 ) and the TATA

box at �77 (TATAA ) are indicated. The downward arrows indicate putative E2F motifs. Transfections were carried out in HeLa cells with ( +E2F1 ) and without

( �E2F1 ) E2F1 cotransfection. Normalized luciferase activity, expressed as a percentage of the FL construct without exogenous expression of E2F1, is shown. FL,

full - length promoter construct; vector, pGL3 Basic. (B ) The minimal promoter of the p73 gene. The region conferring the highest promoter activity resides within a

104 -bp fragment located between the PvuII ( �217 ) and NotI sites ( �113 ). The five putative E2F elements (E2F1�189, E2F1�155, E2F1�143, E2F1�132,

and E2F1�6 ) identified within this region, a TATA box and the various restriction sites are indicated. A construct that deletes sequences upstream of �165 was

made by introducing a KpnI site at �165 ( shown ) by altering the sequence GGTGGC to GGTACC and then digesting with KpnI. Nucleotide positions are numbered

every 50 nts ( underlined ) with reference to the first nt of exon 1 [1 ].
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mutant constructs, 1 �g of the reporter construct, 100 ng of

the Renilla plasmid, 0.5 �g of the E2F1 expression plasmid,

and either 0.5 or 2 �g of the Rb-expressing plasmid were

used. The total DNA for all reactions was kept the same by

the addition of the empty vector.

Results

Identification and Characterization of the p73 Promoter

The 50 flanking sequence of p73 that we have charac-

terized extends from +71 ( in exon 1) to �857 and matches

perfectly the sequence derived by Ding et al. [35]. +1 refers

to the first nt of exon 1 [1]. Despite numerous attempts, we

were unable to identify the transcriptional start site presum-

ably due to the high GC content in this region, a problem

evidently shared by others [32,35]. Salient features of the

flanking sequence include the high GC content (76%) and

the high proportion of CpGs (1 per 8.2 bp), consistent with

the gene residing within a CpG island, and the presence of a

consensus E2F binding site (TTTTGGCGC at �284) and a

canonical TATA box (TATAA, at �77) (Figure 1B ) identified

by computer analysis programs (MatInspector V2.2 [36],

TFSEARCH [37] and FindPatterns [www.gcg.com]). Puta-

tive binding sites for several other factors such as Sp1,

MAZ1, AP-2 and EGR-1 are also found to be present (data

not shown).

Analysis of the various deletion constructs (Figure 1A;

�E2F1) indicates that the PvuII construct harbors the

minimal promoter of this gene as it is the smallest construct

with a promoter activity (�112%) comparable to that of the

FL construct (set at 100%). Deletions further downstream to

theNotI or AvrII sites result in a steep drop in activity to about

13% to 16% (Figure 1A ). Thus, the 104-bp region located

between the NotI (�113) and PvuII (�217) sites plays a

critical role in p73 promoter function (Figure 1, A and B ).

E2F Responsiveness of the p73 Promoter

The identification of a consensus E2F site at �284

prompted us to evaluate if the FL promoter fragment was

E2F regulated. Because Rb forms complexes with E2F

thereby reducing the pool of free E2F, we used Rb to assess

its inhibitory effect on the promoter activity of the p73 gene.

As shown in Figure 2A, the promoter activity of the FL

construct can be suppressed with increasing concentrations

of a plasmid expressing Rb, suggesting that E2F regulates

the basal promoter activity in HeLa cells. As expected,

ectopic expression of E2F1 significantly stimulates the basal

activity of the FL construct (Figure 2B ); this induced activity

is inhibited in a dose-dependent manner by Rb with �80%

inhibition observed at 2 �g, the highest concentration used.

Figure 2. (A ) Rb represses p73 promoter activity in HeLa cells. A p73 reporter

construct harboring sequences from �857 to +71 of the p73 gene was

cotransfected with increasing amounts ( 0, 0.5, 1.0, 1.5, and 2 �g ) of a plasmid

expressing Rb. Normalized luciferase activity was determined and the activity

of the reporter construct without cotransfection of the Rb expressing plasmid

was taken as 100%. The experiment was repeated twice with duplicates. (B )

Effect of Rb on E2F1 - induced promoter activity in HeLa cells. The experi-

ments were as in (A ) but 0.5 �g of an E2F1 expressing plasmid was added to

HeLa cells. Increasing amounts of a plasmid expressing Rb (0.5 to 2 �g ) was

cotransfected with E2F1 to assess suppression of E2F1 - induced activity.

Table 1. Mutation of Putative E2F Sites in the p73 Promoter.

Mutation Position Sequence Change (>AT )

Mut�189 �189 to �182 CTTGGCCC

Mut�155 �155 to �148 CTTCCCGC

Mut�143 �143 to �136 CGGGCTAA

Mut�132 �132 to �125 GGCGCTAA

Mut�6 �7 to +2 CCGCGAAG

All mutations were incorporated using the Quickchange site - directed

mutagenesis kit (Stratagene ). The putative E2F sites and the nucleotides

changed (underlined ) are highlighted. An AT dinucleotide was substituted for

the underlined nucleotides. The double mutant (Mut�155 / �132 ) incorpo-

rates the mutational changes described for Mut�155 and Mut�132.
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These results suggest that the p73 promoter is E2F1

regulated.

Analysis of Potential E2F Binding Sites in the p73 Promoter

Analysis of deletion constructs indicates that the con-

sensus E2F site at �284 (Figure 1A ) is not necessary for

p73 induction by E2F. To identify potential E2F motifs that

may be modulating p73 regulation, we scanned sequences

downstream of the PvuII site (�217) because the PvuII

construct is the smallest construct exhibiting maximal E2F1-

induced activity (Figure 1A ). Five potential sites showing

similarity to the E2F consensus binding site [38], TT(G/

C)(G/C)CG(G/C), were identified at �189, �155, �143,

�132 and �6 (Figure 1B ). All but the one at �6 occur in

close proximity to each other within the 104-bp critically

important PvuII–NotI region.

Electrophoretic mobility shift analysis (EMSA) All the six

putative E2F sites, including that at �284, were subjected to

gel -shift analysis. Althoughall six sites showvariable levels of

binding in vitro, only three sites (at �284, �155 and �132)

exhibit specific binding to E2F1/DP1 heterodimers. It should

benoted thatDP1 is anobligate binding partner ofE2F1and is

necessary for the binding of E2F1 to target binding sites

[39,40]. Figure 3 shows binding of E2F1/DP1 heterodimers

to a DHFR E2F element, used as positive control (A, left

panel ), and to the E2F sites at �284 (A, right panel ), �155

(B, left panel ) and �132 (B, right panel ). Binding to these

sites can be effectively competed by unlabeled oligonucleo-

tides containing these sites or by an oligonucleotide contain-

ing the DHFR E2F site. Mutant versions of these

oligonucleotides do not compete. Further confirmation comes

from supershift analysis using anti -E2F1 antibody. A high

molecular weight antibody complex is formed with all three

sites whereas none is seen with the nonspecific antibody.

Site 132 shows reduced affinity for E2F1 presumably

because the nt at position 3 of this site varies from the E2F

binding consensus sequence [34,38].

Specificity of E2F binding was further confirmed by

performing gel shift analyses using [32P]- labeled mutant

versions of oligonucleotides containing E2F�284,

E2F�155 or E2F�132. These mutant versions (Table 1),

are not bound by E2F1/DP1 heterodimers (data not shown).

In vivo binding of E2F1 to the p73 promoter was demon-

strated using nuclear extracts prepared from Saos2 cells that

overproduce E2F1 following treatment with doxycycline.

Induced extracts demonstrated binding to an oligonucleotide

containing the E2F binding site in the DHFR promoter

(Figure 3C ) as well as the E2F-DNA binding sites of the p73

promoter (Figure 3D and data not shown).

Transfection analysis of various deletion constructs The

promoter activities of the various deletion reporter constructs

were also examined after E2F1 cotransfection to identify

constructs that would significantly respond to E2F1 stim-

ulation, thereby limiting the E2F1-responsive region (Figure

1A; +E2F1). The FL construct exhibited 250% activity in the

presence of exogenous E2F1 (compared to its unstimulated

state). Inducibility of the BstI (375%), PstI (288%), and

PvuII (298%) constructs were as high as the FL construct

whereas very little induction was observed with either the

NotI (26%) or the AvrII construct (75%). This again

suggests that the PvuII construct must account for most, if

not all, of the potential E2F binding element(s) and that

these sites should lie within the PvuII–NotI region (�217 to

�113). The reason for the consistently higher luciferase

activity with the BstI construct (compared to the larger FL

construct ) and the milder E2F1 induction (75%) with the

smallest AvrII construct (compared to the larger NotI

construct ) is presumably due to the removal of potential

negative elements.

Transfection analysis of E2F mutant constructs Because the

PvuII construct harbors five of the putative E2F motifs,

respective mutations (Mut�189, Mut�155, Mut�143,

Mut�132 and Mut�6) were introduced at these sites

(Table 1) and their effect on promoter activity was assessed

with and without E2F1, and with E2F1 cotransfected with Rb

(0.5 and 2 �g). Additionally a plasmid doubly mutant at sites

�155 and �132 (Mut�155/�132) was constructed and

similarly analyzed. E2F1- induced Mut�189 promoter activ-

ity was taken as 100% because the response of this

construct was similar to the unmutated parent PvuII

construct (data not shown). From Figure 4A, it is clear that

E2F sites at �155 and �132 are the most critical for

promoter regulation because mutation of either site signifi-

cantly reduces basal activity ( to �5%) compared to

Mut�189 (�10%) whereas activities of the reporters with

mutant sites at �143 and �6 are comparable to that of

Mut�189. A steep drop in activity ( to �1%) is observed

when sites �155 and �132 are mutated together. Cotrans-

fection with E2F1 enhances the relative activity of all mutant

constructs: Mut�189 (set at 100%), Mut�155 (�62%),

Mut�143 (�95%), Mut�132 (�60%), and Mut�6 (�82%)

with the lowest induction observed with Mut�132 and

Mut�155. The double mutant exhibited only �25% induc-

tion. The observation that all of the single mutant reporter

plasmids display residual E2F1 induction presumably

reflects the fact that they all possess at least one, if not

two, intact E2F binding sites at �155 and �132. Although

E2F1 induction of the double mutant is considerably

diminished, it is not totally abrogated. We presume that

some of this residual activity arises from binding to cryptic

sites, or to an indirect effect of E2F1. We conclude that

binding sites at �155 and �132 play important roles in p73

regulation consistent with our EMSA studies and that both

sites are required for maximal induction of promoter activity.

E2F1- induced promoter activity of all constructs (except for

the double mutant) shows dose-dependent suppression

with ectopically expressed Rb where 2 �g of Rb is able to

suppress �75% to 80% of the induced activity.

Effect of Rb on E2F1-Induced Promoter Activity of the

Deletion Constructs

The above results clearly implicate the 104-bp PvuII–

NotI region, which contains the E2F sites at �155 and
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�132, as being critical for p73 promoter function and E2F1

responsiveness. To further narrow down the region

harboring key regulatory elements, a plasmid (a Kpn

construct ) that removed all sequences upstream of nt

�165 was created. This plasmid, which truncates by half

the 104-bp region at the 50 end and removes the putative

E2F element at �189 (Figure 1B ) retains most of the

promoter activity of the FL construct (Figure 4B ) confirm-

ing the minimal role of E2F1�189 in promoter regulation.

E2F1- induced promoter activity is repressible in a dose-

dependent fashion for the Kpn and all larger constructs and

is brought down to near-normal levels (�80% inhibition)

with Rb. These results suggest that functional E2F1

binding site(s) are localized within the 52-bp fragment

Figure 3. (A, B ) Binding of E2F1 to specific E2F binding sites in the p73 promoter. E2F1 /DP1 heterodimers produced by in vitro translation were coincubated with

radiolabeled probes containing the p73 promoter E2F binding sites at �284 (A, right panel ), �155 (B, left panel ), and �132 (B, right panel ) in the absence or

presence of unlabeled competitor oligonucleotides corresponding to wild - type or mutant (Table 1 ) versions of these sites. Oligonucleotides containing the wild - type

and mutant E2F binding sites of the DHFR promoter were used as positive and negative controls, respectively (A, left panel ). In addition, supershift analysis using

anti -E2F1 antibody or the isotype matched control anti -myc antibody was performed. E2F1 /DP1 heterodimers bind E2F site �132 with reduced affinity because

the nt at position 3 of this site varies from the E2F binding consensus sequence [ 34,38 ]. (C, D ) Cellular E2F1 binds specific E2F binding sites in the p73 promoter.

Nuclear extracts from subclones of Saos2 cells, which stably express E2F1 under the control of a doxycycline - inducible promoter, were prepared following no

treatment ( lanes 1 to 4 ) or treatment with doxycycline for 48 hours ( lanes 5 to 9 ). Extracts were coincubated with radiolabeled probes containing the E2F binding

sites of the DHFR promoter (C ) or the E2F site at �155 (D ) of the p73 promoter in the absence or presence of unlabeled competitor oligonucleotides corresponding

to the wild - type or mutant versions of the DHFR promoter. Supershift analysis using anti -E2F1 antibody and anti -myc antibody was performed. Extracts from cells

induced to express E2F1 demonstrate specific binding to the E2F site at �155. In contrast, extracts from cells not induced to express E2F1 do not demonstrate a

measurable level of binding. The asterisk indicates a nonspecific complex.
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spanning nts �165 and �113 (KpnI and NotI ) and do not

reside downstream of �113. Thus, E2F1- induced activity

of the p73 gene must be contributed primarily by the two

sites at �155 and �132.

Discussion

The data presented here provides a more detailed analysis

of E2F1 activation of the human p73 promoter [31,32]. The

activity of a promoter construct carrying sequences from

�857 to +71 of the p73 gene is significantly stimulated by

the exogenous addition of E2F1 and repressed by ectopically

expressed Rb. Repression by Rb presumably occurs by

depleting the pool of free E2F and formation of pRb–E2F

repressor complexes. Association of Rb with E2F1 is a key

step in determining cell -cycle progression. Hyperphosphor-

ylation of Rb or loss of Rb function, as seen in various

cancers, releases E2F, which activates target genes

involved in DNA replication and cell -cycle progression

[38,41,42]. The observation that E2F1 induces p73 expres-

sion suggests a key role for p73 in cellular function and is

consistent with an apoptotic role for p73 [7,8,21-23,31,32].

Gel shift analyses identified three sites within the

promoter that specifically bind E2F1/DP1 heterodimers:

E2F�284, E2F�155 and E2F�132. In vivo binding of E2F1

to these binding sites has also been demonstrated using

nuclear extracts prepared from E2F1- inducible Saos2 cell

lines, thus validating the binding specificities of the E2F1/

DP1 heterodimers to the p73 promoter both in vitro and in

vivo. Deletion of the most upstream site (�284) has

negligible effect on the overall promoter activity (Figure

1A ) but mutations in either of the two remaining sites reduce

activity by more than 50% suggesting that both these sites

are required for basal promoter activity (Figure 4A ), and by

more than 90% when these two sites are simultaneously

mutated. Ectopic expression of E2F1 induces promoter

activity of the Mut�155 and Mut�132 plasmids to only

about 60% and the Mut�155/�132 double mutant to about

25%, relative to that of the unmutated parent construct.

These results indicate that binding of E2F1 to both these

sites is necessary for maximal induction of the p73 promoter.

The two sites are located within the 104-bp region found

critical for p73 promoter regulation. Indeed, shorter trunca-

tions of the 104-bp minimal region narrow it down to a 52-bp

segment (�165 to �113), containing these two E2F binding

sites, as harboring much of the p73 promoter activity (Kpn

construct; Figure 4B ). Stiewe and Pützer [32], who analyzed

a larger segment of the p73 promoter (�4040 to +3033),

also conclude that the major sites of E2F1 induction are

localized between �705 and +537. However, whereas they

used larger DNA fragments (105 to 605 bp) in GST-E2F1

pull -down assays to determine regions of binding and then

identified putative motifs contained therein, we have used

defined oligonucleotides spanning each motif to characterize

specific binding and validated their binding specificity by use

of competition assays and antibody supershifts. Although our

studies are focussed on a promoter region that is immedi-

ately proximal to exon 1, E2F sites in intron 1 or those located

further upstream in the 50 flanking region may also bind E2F

factors [32]. The observation that the p73 promoter is

significantly induced by E2F1 and is brought down to basal

levels by Rb underscores the importance of E2F1 in the

regulation of p73.

Interestingly, the minimal promoter region described here

is quite different from that observed by Ding et al. [35] who

identified a 138-bp sequence immediately downstream from

ours, spanning nts �119 and +19, as conferring maximal

Figure 4. (A ) Effect of mutations at putative E2F binding sites on p73

promoter activity. The five putative E2F sites at �189, �155, �143, �132,

and �6 were mutated individually by site - directed mutagenesis (Table 1 ) in

the context of the PvuII construct and a construct harboring a double mutant at

sites �155 / �132 was also included. Constructs were transfected into HeLa

cells with and without E2F1 cotransfection. To assess suppression of E2F1 -

induced activity, E2F1 transfected cells were cotransfected with 0.5 or 2 �g of

a plasmid expressing Rb. Normalized luciferase activity is expressed as a

percentage of the E2F1 - induced promoter activity of Mut�189, which has

been found to respond like the unmutated parent PvuII construct ( data not

shown ). The experiments were repeated thrice with duplicates. (B ) Effect of

Rb on E2F1 - induced promoter activity of the various 50 deletion constructs. A

total of 0.5 �g of a E2F1 expressing plasmid was added to induce promoter

activity of the various 50 deletion constructs of the p73 gene. A Kpn construct

was created and included to further narrow down the region harboring key

regulatory elements. Inhibition of induced activity was assessed in the

presence of exogenously expressed Rb (0.5 or 2 �g ). Normalized luciferase

activity is expressed as percentage of the FL construct induced with E2F1.

Experiments were repeated thrice with duplicates.
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basal activity. A human breast carcinoma cell line, MCF-7,

was used in their study whereas we used a HeLa (present

study) and Saos2 (osteosarcoma) cell lines (results not

shown), both of which provide similar results. Thus, tissue-

specific factor(s) may play a role in p73 regulation. Tissue-

specific regulation may underlie some of the differential

aspects of p73 overexpression observed in many, but not all,

cancers [27-29,30,43,44]. A Northern analysis of normal

tissues indicates a discrete expression pattern for p73, with

maximal expression in heart, liver, and pancreas [45].

Whereas the apoptotic role of TA-p73 is well recognized ,

an anti -apoptotic role has been assigned to �N-p73 in

mouse neuronal cells [46].�N-p73 lacks the N-terminal TA

domain and represents a dominant -negative version of the

FL form [17]. The regulation of these two functionally

opposite N-terminal p73 isoforms from different promoters

of the same gene must, therefore, be tightly controlled.

Identifying signals that modulate each of these promoters will

provide significant insights not only into their mode of

regulation but also to understanding the mechanisms

underlying p73 overexpression in various cancers. In keep-

ing with the above findings, we have recently observed a

direct correlation between elevated E2F1 levels and p73

overexpression in lung and bladder cancer samples (manu-

script in preparation). Whereas one should await the

characterization of the human �N-promoter to further

understand p73 regulation, the characterization of the TA-

promoter marks a step in that direction.
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