THE COMPLEXITY OF PARTIAL DERIVATIVES

Walter BAUR and Volker STRASSEN
Seminar für Angewandte Mathematik, Universität Zürich, CH-8032 Zürich, Switzerland

Communicated by A. Schönhage
Received January 1982

Abstract. Let L denote the nonscalar complexity in $k(x_1, \ldots, x_n)$. We prove $L(f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}) \leq 3L(f)$. Using this we determine the complexity of single power sums, single elementary symmetric functions, the resultant and the discriminant as root functions, up to order of magnitude. Also we linearly reduce matrix inversion to computing the determinant.

1. Introduction

Let k be an infinite field, x_1, \ldots, x_n be indeterminates over k. Given $f_1, \ldots, f_q \in k(x)$, let $L(f_1, \ldots, f_q)$ be the minimal number of nonscalar multiplications/divisions sufficient to compute f_1, \ldots, f_q from x_1, \ldots, x_n allowing additions/subtractions and multiplications by arbitrary scalars from k for free. $L(f_1, \ldots, f_q)$ is called the complexity of f_1, \ldots, f_q. (For details see e.g. Borodin and Munro [1], Strassen [6]).

One way to obtain lower bounds for the complexity of a set f_1, \ldots, f_q of quolynomials (=rational functions) is by the degree method (Strassen [7]). Unfortunately in the case of single quolynomials one gets only trivial results. An interesting recent paper of Schnorr [4] deals with this problem and extends the method to yield nontrivial lower bounds for certain single functions. In the present paper we reduce the complexity of a single quolynomial to that of several quolynomials by means of the following simple but surprising inequality

$$L\left(f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right) \leq 3L(f), \quad (1)$$

proved in a completely elementary way. Combining (1) with the degree bound in its original form we obtain rather sharp complexity bounds, such as

$$L\left(\sum_{i=1}^{n} x_i^m\right) \asymp n \log m,$$

$$L(\sigma_q) \asymp n \log \min(q, n-q).$$
where σ_q is the qth elementary symmetric function in n variables,

$$L\left(\prod_{i \neq j} (x_i - x_j)\right) \asymp n \log n.$$

Here \asymp means equality of order of magnitude.

Of course (1) is useful not only for proving lower bounds. It easily implies, e.g. that computing the inverse of a matrix is not much harder than computing its determinant. In this connection we remark that inequalities similar to (1) hold for other cost measures (e.g. when counting all operations).

Throughout the paper log means \log_z. We apply Bezout's theorem in the form of Bezout's inequality for affine space (see Heintz [2], Schnorr [4]).

2. Main result

Theorem 1. Let $f \in k(x)$. Then

$$L\left(f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \right) \approx 3L(f).$$

For the proof we need the following

Lemma. Let K be a field, $y_i \in K$ nonzero ($1 \leq i \leq s$), $\alpha_{ij} \in K$ ($1 \leq j < i \leq s$) and z_1, \ldots, z_s indeterminates over K. Define h_1, \ldots, h_s by

$$h_i = y_i \left(\sum_{j=1}^{i-1} \alpha_{ij} h_j + z_i \right), \quad i \leq s. \tag{2}$$

Write

$$h_s - \sum_{\alpha \neq 1} d_\alpha z_\alpha$$

with $d_\alpha \in K$. Then

$$d_s = y_s, \quad d_i = \left(\sum_{\alpha \neq 1} d_\alpha \alpha_{is} \right) y_i \quad \text{for } i < s. \tag{3}$$

Proof. Let $h_i = \sum_{\alpha \neq 1} d_\alpha z_\alpha$. Then from (2)

$$d_{is} = y_i \left(\sum_{j=1}^{i-1} \alpha_{ij} d_{jr} + \delta_{ir} \right). \tag{4}$$
We introduce \((s \times s)\)-matrices
\[
D = (d_{ij}) = \begin{pmatrix}
 d_{11} & 0 \\
 \vdots & \ddots \\
 d_{ss} & \cdots & d_{ss}
\end{pmatrix},
\]
\[
A = \begin{pmatrix}
 0 & & \\
 \alpha_{21} & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 \alpha_{s1} & \cdots & \alpha_{ss}
\end{pmatrix},
\]
\[
Y = \begin{pmatrix}
 y_1 & & \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & y_s
\end{pmatrix}.
\]

Then (4) is equivalent to
\[
D = Y(AD + 1).
\]
(5)

Since \(d_{ii} = y_i \neq 0\), \(D\) and \(Y\) are invertible. Multiplying (5) from the left by \(Y^{-1}\) and from the right by \(D^{-1}\) we get
\[
Y^{-1} = A + D^{-1}.
\]

Multiplication from the left by \(D\) and from the right by \(Y\) yields
\[
D = (DA + 1)Y.
\]

This means
\[
d_{ii} = \left(\sum_{j=1}^{s} d_{ij} \alpha_{ij} + \delta_{ii} \right) y_j.
\]

For \(i = s\) this is (3). \(\square\)

Proof of Theorem 1. Let \(L(f) \leq r\). Then there is a sequence \(g_1, \ldots, g_r \in k(x)\) such that for all \(i \leq r\) we have \(g_i = u_i / v_i\), where
\[
u_i = \sum_{j=1}^{i-1} \gamma_{ij} g_j + q_i
\]
for some \(\beta_{ij}, \gamma_{ii} \in k, p_i \in k + \sum_{i=1}^{n} kx_i\), and such that
\[
f = \sum_{i=1}^{r} \alpha_i g_i + m
\]
for some \(\alpha_i \in k, m \in k + \sum_{i=1}^{n} kx_i\). In addition we may assume that all \(u, v_i\) are nonzero.

The proof now proceeds as follows: It will first be shown that any partial derivative \(\partial f / \partial x_\nu \ (\nu \leq n)\) is of the form
\[
\frac{\partial f}{\partial x_\nu} = h_\nu(x_1, \ldots, x_n)
\]
(7)
where $h_t(z_1, \ldots, z_r)$ is defined as in the lemma (relative to suitable parameters s, α_{ii}, y_i) and the ζ_{ve} are elements from the ground field k. Since scalar multiplications are free it will then be sufficient to show that the coefficients d_σ of h_t can be computed from g_1, \ldots, g_r with at most $2r$ multiplications/divisions. This will be done according to the recursion (3).

Now fix $\nu \leq n$. Using (6) and Leibniz’s formula we obtain for all $i \leq r$

$$\frac{\partial g_i}{\partial x_{\nu}} = v_l \left(\sum_{j=1}^{i-1} \beta_{ij} \frac{\partial g_j}{\partial x_{\nu}} + \frac{\partial p_l}{\partial x_{\nu}} \right) + u_i \left(\sum_{j=1}^{i-1} \gamma_{ij} \frac{\partial g_j}{\partial x_{\nu}} + \frac{\partial q_l}{\partial x_{\nu}} \right)$$

(8)

if $g_i = u_i \ast v_{\nu}$ and

$$\frac{\partial g_i}{\partial x_{\nu}} = \frac{1}{v_l} \left[\left(\sum_{j=1}^{i-1} \beta_{ij} \frac{\partial g_j}{\partial x_{\nu}} + \frac{\partial p_l}{\partial x_{\nu}} \right) + \frac{\partial u_i}{v_l} \right] \left(\sum_{j=1}^{i-1} \gamma_{ij} \frac{\partial g_j}{\partial x_{\nu}} + \frac{\partial q_l}{\partial x_{\nu}} \right)$$

(9)

if $g_i = u_i / v_{\nu}$. Moreover

$$\frac{\partial f}{\partial x_{\nu}} = \sum_{i=1}^{r} a_i \frac{\partial g_i}{\partial x_{\nu}} + \frac{\partial m}{\partial x_{\nu}}.$$

(10)

In order to get into the situation of the lemma put $s = 3r + 1$, and define α_{il} for

$$1 \leq l < t \leq s$$

by

$$\alpha_{3i-2, l} = \begin{cases} \beta_{ij} & \text{if } l = 3j, \\ 0 & \text{if } 3 \not| l, \end{cases}$$

$$\alpha_{3i-1, l} = \begin{cases} \gamma_{ij} & \text{if } l = 3j, \\ 0 & \text{if } 3 \not| l, \end{cases}$$

(11)

$$\alpha_{3i, l} = \begin{cases} 1 & \text{if } l = 3i - 2, \\ 1 & \text{if } l = 3i - 1, g_i = u_i \ast v_{\nu}, \\ -1 & \text{if } l = 3i - 1, g_i = u_i / v_{\nu}, \\ 0 & \text{otherwise}, \end{cases}$$

for $i \leq r$, and

$$\alpha_{3r+1, l} = \begin{cases} \alpha_{ij} & \text{if } l = 3j, \\ 0 & \text{if } 3 \not| l. \end{cases}$$

Furthermore, put $y_1 = 1$ and for $i \leq r$ put

$$y_{3i - 2} = v_{\nu}, \quad y_{3i - 1} = u_i, \quad y_{3i} = 1$$

(12)

in case $g_i = u_i \ast v_{\nu}$, and

$$y_{3i - 2} = 1, \quad y_{3i - 1} = \frac{u_i}{v_i}, \quad y_{3i} = \frac{1}{v_i}$$

(13)

in case $g_i = u_i / v_{\nu}$. Note that all $y_i \neq 0$.

Finally put
\[\xi_{3i-2} = \frac{\partial p_i}{\partial x_\nu}, \quad \xi_{3i-1} = \frac{\partial q_i}{\partial x_\nu}, \quad \xi_{3i} = 0 \quad (i \leq r), \]
(14)
and
\[\xi_3 = \frac{\partial m}{\partial x}. \]

Let \(h_1, \ldots, h_s \) be defined as in the lemma.

Claim. For all \(i \leq r \) we have
\[\frac{\partial g_i}{\partial x_\nu} = h_{3i}(\xi_1, \ldots, \xi_s) = h_{3i}(\xi) \quad \text{and} \quad \frac{\partial f}{\partial x_\nu} = h_s(\xi). \]

The first assertion is proved by induction on \(i \leq r \). We treat the case \(g_i = u_i/v_i \), leaving the case \(g_i = u_i \cdot v_i \) and the second assertion to the reader.

\[\frac{\partial g_i}{\partial x_\nu} = \frac{1}{v_i} \left[\left(\sum_{j=1}^{i-1} \beta_{ij} \frac{\partial g_i}{\partial x_j} + \frac{\partial p_i}{\partial x_\nu} \right) - \frac{u_i}{v_i} \left(\sum_{j=1}^{i-1} \gamma_{ij} \frac{\partial g_i}{\partial x_j} + \frac{\partial q_i}{\partial x_\nu} \right) \right] \quad \text{(by (9))} \]

\[= \frac{1}{v_i} \left[y_{3i-2} \left(\sum_{l=1}^{3i-2} \alpha_{3i-2,l} h_1(\xi) + \xi_{3i-2} \right) + y_{3i-1} \left(\sum_{l=1}^{3i-2} \alpha_{3i-1,l} h_1(\xi) + \xi_{3i-1} \right) \right] \quad \text{(by induction hypothesis, (11), (13), (14))} \]

\[= \frac{1}{v_i} \left[h_{3i-2}(\xi) + h_{3i-1}(\xi) \right] \quad \text{(by (2))} \]

\[= y_{3i} \left[\sum_{l=1}^{3i-1} \alpha_{3i,l} h_1(\xi) + \xi_{3i} \right] \quad \text{(by (11), (13), (14))} \]

\[= h_{3i}(\xi). \quad \text{(by (2)).} \]

It follows from our claim that any partial derivative \(\frac{\partial f}{\partial x_\nu} (\nu \leq n) \) is of the desired form (7). Therefore
\[L \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \bigg| g_1, \ldots, g_r \right) \leq L(d_1, \ldots, d_s | g_1, \ldots, g_r) \]
(15)
where \(d_1, \ldots, d_s \) are the coefficients of \(h_\nu \). By (3) each \(d_j \) \((j < s)\) is obtained from \(d_{j+1}, \ldots, d_s \) using just one (nonscalar) multiplication, one factor being \(y_j \). By (12) and (13) multiplication by \(y_j \) means either multiplication or division by some element from \(k + \sum_{\nu=1}^n k x_\nu + \sum_{\nu=1}^r k g_\nu \). Furthermore, at least \(r \) of these multiplications are
multiplications by 1, and also $y_s = 1$. Hence

$$L(d_1, \ldots, d_s \mid g_1, \ldots, g_r) \leq (s - 1) - r = 2r.$$

This and (15) imply the theorem. □

To a reader who would like to improve the constant 3 in Theorem 1 we suggest to look at the example

$$f = \sum_{i=1}^{n} \frac{x_i}{y_i} \in k(x_1, \ldots, y_n).$$

3. Applications

Corollary 1. Assume $\text{char } k \nmid m$. Then

$$\frac{1}{3} n \log(m - 1) \leq L \left(\sum_{i=1}^{n} x_i^m \right) \leq nl(m)$$

where $l(m)$ is the length of a shortest addition chain for m (see Knuth [3]: $l(m) \leq 2 \log m$ always, $l(m) \sim \log m$).

Proof. It suffices to show that the left inequality. The theorem yields

$$L \left(\sum_{i=1}^{n} x_i^m \right) \geq \frac{1}{3} L(x_1^{m^{-1}}, \ldots, x_n^{m^{-1}}).$$

Now we apply the degree bound (Strassen [7]). W.l.o.g. k algebraically closed. In case $\text{char } k \nmid m - 1$

$$\deg \text{graph}(x_1^{m^{-1}}, \ldots, x_n^{m^{-1}})$$

$$\geq \# \{(\xi_1, \ldots, \xi_n) \in k^n \mid \xi_1^{m^{-1}} = \cdots = \xi_n^{m^{-1}} = 1\}$$

$$= (m - 1)^n.$$

hence $L(x_1^{m^{-1}}, \ldots, x_n^{m^{-1}}) \geq n \log(m - 1)$. In case $k \mid m - 1$

$$\deg \text{graph}(x_1^{m^{-1}} + x_1, \ldots, x_n^{m^{-1}} + x_n)$$

$$\geq \# \{(\xi_1, \ldots, \xi_n) \mid \xi_1^{m^{-1}} + \xi_1 = \cdots = \xi_n^{m^{-1}} + \xi_n = 0\}$$

$$= (m - 1)^n.$$

hence $L(x_1^{m^{-1}}, \ldots, x_n^{m^{-1}}) = L(x_1^{m^{-1}} + x_1, \ldots, x_n^{m^{-1}} + x_1) \geq n \log(m - 1)$. □
Corollary 2. Let $\sigma_1, \ldots, \sigma_n$ be the elementary symmetric functions in x_1, \ldots, x_n, $q \leq \frac{1}{2} n$. Then

$$\frac{1}{3}(n-q+1) \log (q-1) \leq L(q) \leq n \log q + 2n,$$

and

$$|I(\sigma_{n-q}) - I(\sigma_q)| \leq 2n.$$

Proof. Left inequality of (16): W.l.o.g. k algebraically closed and of infinite degree of transcendency over its prime field. Denote by $\sigma_q^{(m)}$ the qth elementary symmetric function in m variables. Obviously

$$\frac{\partial \sigma_q^{(m)}}{\partial x_i} = \sigma_{q-1}^{(m)}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n),$$

and

$$\sigma_j^{(m-1)}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)
= \sigma_j^{(m)}(x_1, \ldots, x_n) - x_j \sigma_{j-1}^{(m)}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).$$

The last recursion yields

$$\sigma_q^{(m-1)}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)
= \sigma_q^{(m)} - x_i \sigma_q^{(m-2)} + x_i^2 \sigma_q^{(m-3)} - \cdots + (-1)^{q-1} x_i^{q-1}.$$

This together with (18) gives

$$\frac{\partial \sigma_q}{\partial x_i} = \sigma_{q-1} - x_i \sigma_{q-2} + \cdots + (-1)^{q-1} x_i^{q-1}.$$

The theorem tells us

$$L(\sigma_q) \geq \frac{1}{3} L\left(\frac{\partial \sigma_q}{\partial x_1}, \ldots, \frac{\partial \sigma_q}{\partial x_n}\right).$$

Again we apply the degree bound to the right-hand side of this inequality, getting

$$L\left(\frac{\partial \sigma_q}{\partial x_1}, \ldots, \frac{\partial \sigma_q}{\partial x_n}\right) \geq \log \deg W,$$

where $W \subseteq k^{2n}$ is the graph of the polynomial map given by the equations

$$y_1 = \frac{\partial \sigma_q}{\partial x_1}(x_1, \ldots, x_n)$$
$$\vdots$$
$$y_n = \frac{\partial \sigma_q}{\partial x_n}(x_1, \ldots, x_n).$$
Choose $\lambda_1, \ldots, \lambda_{q-1}, \mu_q, \ldots, \mu_n \in k$ algebraically independent and intersect W with the hypersurfaces

$$
\sigma_1(x_1, \ldots, x_n) = \lambda_1 \\
\vdots \\
\sigma_{q-1}(x_1, \ldots, x_n) = \lambda_{q-1}
$$

and with the hyperplanes

$$y_q = \mu_q, \ldots, y_n = \mu_n.$$

For the intersection W_0 we obtain by Bezout's inequality

$$\deg W_0 \leq \deg W \cdot (q - 1)!!.$$

By (20) and (21) it suffices to show that W_0 is finite, and

$$\# W_0 = (q-1)^{n-q+1}(q-1)!!.
$$

(22)

For $(\xi, \eta) \in k^{2n}$ we have $(\xi, \eta) \in W_0$ if and only if (23), (24) and (25), where

$$
\eta_i = \frac{\partial \sigma_i}{\partial x_i}(\xi), \quad 1 \leq i \leq n, \quad (23)
$$

$$
\sigma_i(\xi) = \lambda_i, \quad 1 \leq i < q, \quad (24)
$$

$$
\xi_i^{n-1} - \lambda_i \xi_i^{n-2} + \cdots + (-1)^{q-1} \lambda_i^{q-1} = (-1)^{q-1} \mu_i, \quad q \leq i \leq n. \quad (25)
$$

the last group of equations coming from (19). Since $\lambda_1, \ldots, \lambda_{q-1}, \mu_q, \ldots, \mu_n$ are algebraically independent there are precisely $(q-1)^{n-q+1}$ vectors (ξ_q, \ldots, ξ_n) satisfying (25). Hence it suffices to show that any such vector has precisely $(q-1)!$ extensions to a vector (ξ_1, \ldots, ξ_n) satisfying (24).

Now fix (ξ_n, \ldots, ξ_n) satisfying (25). Since obviously

$$
\sum_{j=0}^{n} (-1)^j \sigma_j(\xi) \xi_j^{n-j} = 0,
$$

(24) and (25) imply

$$
\sum_{j=q}^{n} (-1)^j \sigma_j(\xi) \xi_j^{n-j} = (-1)^{q} \mu_i \xi_i^{n-q+1}, \quad q \leq i \leq n. \quad (26)
$$

Since the components of (ξ_n, \ldots, ξ_n) are pairwise different, the system of linear equations

$$
\sum_{j=q}^{n} z_j (-1)^j \xi_j^{n-j} = (-1)^{q} \mu_i \xi_i^{n-q+1}, \quad q \leq i \leq n
$$

has a unique solution ξ_q, \ldots, ξ_n. Therefore, using (26), an extension (ξ_1, \ldots, ξ_n) of (ξ_n, \ldots, ξ_n) satisfies (24) if and only if

$$
\sigma_i(\xi) = \lambda_i, \quad 1 \leq i < q, \quad (27)
$$

$$
\sigma_j(\xi) = \xi_j, \quad q \leq j \leq n.
$$
Introducing
\[f(t) = t^n - \lambda_1 t^{n-1} + \cdots + (-1)^q \lambda_{q-1} t^{n-q+1} \]
\[+ (-1)^q \xi_q t^{n-q} + \cdots + (-1)^n \xi_n. \]

(27) is equivalent to
\[f(t) = \prod_{i=1}^{n} (t - \xi_i). \] \hspace{1cm} (28)

Since by the definition of the \(\xi_i \) and by (25), \(\xi_q, \ldots, \xi_n \) are roots of \(f(t) \) there is at least one solution \((\xi_1, \ldots, \xi_n)\) (extending \((\xi_q, \ldots, \xi_n)\)) of equation (28). Choosing any such solution we get all solutions by permuting the first \(q-1 \) components \(\xi_1, \ldots, \xi_{q-1} \). So it remains to show that \(\xi_1, \ldots, \xi_{q-1} \) are pairwise different. But in fact \(\xi_1, \ldots, \xi_n \) are algebraically independent since by (24) and (25) \(\lambda_1, \ldots, \lambda_{q-1}, \mu_q, \ldots, \mu_n \) are rational functions of them. Thus we have shown
\[L(\sigma_q) \geq \frac{1}{2} (n - q + 1) \log(q - 1). \]

Right inequality of (16). Let \(m = \lfloor n/q \rfloor \) and \(p = n - mq \). For any \(i = 0, \ldots, m - 1 \) compute all the elementary symmetric functions \(\sigma_{i+1}, \ldots, \sigma_{i+q} \) in \(x_{iq+1}, \ldots, x_{i+1} \), and all elementary symmetric functions \(\sigma_{m+1}, \ldots, \sigma_{mp} \) in \(x_{mq+1}, \ldots, x_{m} \). This can be done with cost
\[mq \log q + p \log p \leq n \log q \]
(see e.g. Strassen [7, p. 243]). We introduce the polynomials
\[Q_i = 1 - \sigma_i t + \cdots + (-1)^q \sigma_{iq} t^q, \]
\[Q_m = 1 - \sigma_{m+1} t + \cdots + (-1)^p \sigma_{mp} t^p. \]

Then
\[\prod_{i=0}^{m} Q_i = 1 - \sigma_1 t + \cdots + (-1)^q \sigma_{q+1} t^{q+1} \text{ (mod } t^{q+1}). \]

Since symbolic multiplication mod \(t^{q+1} \) of two polynomials with constant term 1 can be done with \(2q \) nonscalar operations, we can compute \(\sigma_1, \ldots, \sigma_q \) from the \(\sigma_{i+1} \) in time \(2qm \leq 2n \). Thus
\[L(\sigma_q) \leq L(\sigma_1, \ldots, \sigma_q) \leq n \log q + 2n. \]

(17) follows from the equation
\[\sigma_{n-q} = \sigma_q \left(\frac{1}{x_1}, \ldots, \frac{1}{x_n} \right) \cdot x_1 \cdots x_n, \]
valid for \(1 \leq q \leq n \). \(\square \)
An interesting consequence of Corollary 2 is the following: There is a polynomial
\[f(x_1, \ldots, x_{2n}, t) = \sum_{i=0}^{2n} f_i(x_1, \ldots, x_{2n}) t^i \]
such that
\[L(f) = 2n - 1, \quad L(f_n) \geq \frac{1}{2} n \log(n - 1). \]
(Take \(f = (t - x_1) \cdot \ldots \cdot (t - x_{2n}) \). Compare this also with Valiant [9;§4].)

Corollary 3 (resultant). Let \(x_1, \ldots, x_n, y_1, \ldots, y_n \) be indeterminates over \(k \). Then
\[\frac{1}{2} n \log n \leq L \left(\prod_{i,j} (x_i - y_j) \right) < n (9 \log n + 1). \]

Proof. *Left inequality:* It suffices to show that
\[L \left(\prod_{i,j} (x_i - \eta_j) \right) \geq \frac{1}{2} n \log n, \]
where \(\eta_1, \ldots, \eta_n \in k \) are algebraically independent over the prime field. (Just adjoin the \(y_i \) to the ground field \(k \).) Put
\[f = \prod_{i,j} (x_i - \eta_j), \quad g = \prod_j (t - \eta_j), \]
where \(t \) is a new indeterminate. Then
\[f = \prod_i^n g(x_i), \quad \frac{\partial f}{\partial x_i} = \frac{g'(x_i)}{g(x_i)}. \]

The theorem and the degree bound yield
\[L(f) \geq \frac{1}{2} L \left(f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \right) \geq \frac{1}{2} n \deg \text{graph } \phi. \]

where \(\phi \) is the polynomial map defined by \(f, \partial f/\partial x_1, \ldots, \partial f/\partial x_n \). We intersect graph \(\phi \), which lives in \(k^{2n - 1} \) with coordinate variables \(x_1, \ldots, x_n, z_1, \ldots, z_n \) (say), with the equations
\[x_n = z_1, \ldots, z_n = z_n. \]

By (29) and (30), the intersection is
\[V = \{ (\xi, \phi(\xi)) | \text{either } f(\xi) = 0 \text{ or } \forall i \ g(\xi_i) - g'(\xi_i) = 0 \}. \]

By Bezout's inequality,
\[\deg \text{graph } \phi \geq \deg V. \]
Now g and therefore $g - g'$ have algebraically independent coefficients (except for the highest which is 1). Thus $g - g'$ has n distinct roots, i.e.

$$\# \{ (\xi, \phi(\xi)) | \forall i (g(\xi_i) - g'(\xi_i) = 0) \} = n^n.$$

Now (29) implies that the above n^n points satisfy $f(\xi) \neq 0$. This means that V contains n^n isolated points, so $\deg V \geq n^n$.

Right inequality: First compute the elementary symmetric functions in y_1, \ldots, y_n in time $n \log n$, next evaluate the polynomial $t^n - \sigma_1(y)t^{n-1} + \cdots + (-1)^n\sigma_n(y)$ at the points x_1, \ldots, x_n in time $8n \log n$ and finally multiply the values. (Compare Borodin and Munro [1]).

We do not know whether our method allows to prove a nonlinear lower bound for the complexity of the resultant of two polynomials as a function of their coefficients.

Corollary 4 (discriminant). Let x_1, \ldots, x_n be indeterminates over k. Then

$$\frac{1}{e} n \log n \leq \frac{1}{2} n < L \left(\prod_{i \neq j} (x_i - x_j) \right) < n(\log n + 1).$$

Proof. Upper bound (suggested by J. Stoss): First compute the coefficients of $A(t) = \Pi_{i=1}^n (t - x_i)$ with cost $n \log n$, then the coefficients of $dA/dt = \sum_{i=1}^n n_{i-1} (t - x_i)$ without additional cost. Now evaluate dA/dt at x_1, \ldots, x_n and multiply the values. This can be done with cost $8n \log n + n - 1$ (actually $7n \log n + n - 1$ is sufficient, using byproducts of step 1).

Lower bound: Let $f = \Pi_{i \neq j} (x_i - x_j)$, $p = \lfloor n/2 \rfloor$, $q = \lfloor n/2 \rfloor$. For clarity replace x_1, \ldots, x_n by x_1, \ldots, x_p, y_1, \ldots, y_q. Then

$$f = g(x) \cdot \prod_{i,j} (x_j - y_j)^2 \cdot h(y),$$

and therefore

$$\frac{\partial f}{\partial y_i} = f \cdot \left(-\sum_{i=1}^p \frac{2}{x_i - y_i} + \frac{\partial h}{\partial y_i}(y) \cdot \frac{1}{h(y)} \right).$$

The theorem yields

$$L \left(f, \frac{\partial f}{\partial y_1}, \ldots, \frac{\partial f}{\partial y_q} \right) \leq 3L(f).$$

Adjoining the y_j to the ground field and calling them η_i we get

$$L \left(f(x, \eta), f(x, \eta) \sum_{i=1}^p \frac{1}{x_i - \eta_1}, \ldots, f(x, \eta) \sum_{i=1}^p \frac{1}{x_i - \eta_q} \right) \leq 3L(f).$$
Dividing \(f(x, \eta) \) by the other \(q \) terms under the bracket we obtain

\[
L \left(\frac{\prod_{i=1}^{p} \left(x_i - \eta_1 \right)}{\sum_{i=1}^{p} \prod_{i \neq i} \left(x_i - \eta_i \right)} \cdots \frac{\prod_{i=1}^{p} \left(x_i - \eta_q \right)}{\sum_{i=1}^{p} \prod_{i \neq i} \left(x_i - \eta_q \right)} \right) \leq 3L(f) + q.
\]

If \(\phi \) is the rational map defined by the above \(q \) (reduced) quolynomials, the degree bound yields

\[
3L(f) + q \geq \log \deg \text{graph } \phi.
\]

Now

\[
\deg \text{graph } \phi \geq \# \text{ of components of } \phi^{-1}(0)
\]

\[
- \# \text{ of components of } \{ g \in k^p \mid \forall i \exists \xi_i = \eta_i \}
\]

\[
= p(p-1) \cdots (p-q+1) = p!,
\]

because the \(\eta_i \) are pairwise distinct. Therefore

\[
3L(f) \geq \log p! - q \geq \frac{n}{2} \log \frac{n}{2e} - \frac{n}{2}
\]

\[
> \frac{n}{2} \log n - 2n.
\]

Corollary 4 implies that the complexity of the Vandermonde determinant \(\prod_{i \neq j} \left(x_i - x_j \right) \) is at least \(\log n \log n - n \). (Its square is the discriminant.)

Corollary 5. Let \(a_{ij} \) (\(1 \leq i, j \leq n \)) be indeterminate\(s \) over \(k \), \((b_{ij}) = (a_{ij})^{-1} \) as matrices. Then

\[
L(\{b_{ij}\}; 1 \leq i, j \leq n) \leq 3L(\det(a_{ij})) + n^2.
\]

Proof. By Cramer's rule

\[
\frac{\partial}{\partial a_{ij}} \det(a) = b_{ij} \det(a).
\]

Thus

\[
L(\{b_{ij}\}; 1 \leq i, j \leq n) \leq L(\{\det(a)\}; \frac{\partial}{\partial a_{ij}} \det(a); 1 \leq i, j \leq n) + n^2
\]

\[
= 3L(\det(a)) + n^2.
\]

Corollary 5, in conjunction with e.g. Strassen [5, 8], shows that the determinant has roughly the same complexity as matrix multiplication or inversion. It would be interesting to have a similar result for solving a system of linear equations.
Corollary 6. Let \(f = \sum_{i,j,k} \tau_{ijk} x_i y_j z_k \) be a trilinear form. Then
\[
L(f) \geq \frac{1}{6} \text{rank}(\tau_{ijk}).
\]

Proof. Differentiate with respect to the \(x_i \) and apply Korollar 3 and Lemma 6 of Strassen \[8\]. □

4. An extension

Theorem 2. Let \(f \in k(x_1, \ldots, x_n) \) be computable from \(\{x_1, \ldots, x_n\} \cup k \) using \(A \) additions/subtractions, \(S \) scalar multiplications (i.e. multiplications by elements from \(k \)) and \(M \) further multiplications/divisions. Then \(\{f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\} \) can be computed from \(\{x_1, \ldots, x_n\} \cup k \) using \(2A + M \) additions/subtractions, \(2S \) scalar multiplications and \(3M \) further multiplications/divisions.

In particular, let \(L_1 \) denote the complexity when all operations have unit cost, \(L_2 \) the complexity when additions/subtractions are free but all multiplications/divisions (including scalar multiplications) count. Then
\[
L_1\left(f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right) \leq 4L_1(f),
\]
\[
L_2\left(f, \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right) \leq 3L_2(f).
\]

Sketch of proof of Theorem 2. We may assume that the given computation sequence is of the form \(g_1, \ldots, g_{n+m+r} \), where \(g_i = x_i \) for \(1 \leq i \leq n \), \(g_i \in k \) for \(n < i \leq n+m \), and any \(g_i \) with \(n+m < i \leq n+m+r \) is obtained by adding/subtracting or multiplying/dividing two previous \(g_i \)'s or by multiplying a previous \(g_i \) by some element from \(k \).

Proceed as in the proof of Theorem 1 with the following provisions:

1. Each addition/subtraction or multiplication/division in the given computation yields three rows of the matrix \((\alpha_{ij}) \) as before. Each scalar multiplication as well as each of the \(n+m \) initial steps give rise to only one row of \((\alpha_{ij}) \).

2. All \(\alpha_{ij} \in \{0, 1, -1\} \).

Since we may assume that in the original computation any intermediate result except the last one is being referred to, all columns of the matrix \((\alpha_{ij}) \) except the last one are nonzero.

Now the lemma can be applied and (7) holds with \(\xi_{cd} = \delta_{cs} \). It is clear that the given computation together with the new one provided by the lemma use \(2S \) scalar multiplications and \(3M \) further multiplications/divisions. It remains to estimate the total number of additions/subtractions. If we content ourselves first with computing the \(d_i \) up to sign only, the number \(B \) of additions/subtractions used can be made equal to \(A \) plus the number of nonzero \(\alpha_{ij} \) minus the number of nonzero
columns of the matrix α_{ij}, i.e.

$$B = A + (4A + S + 4M) - (n + m + 3A + S + 3M - 1)$$

$$= 2A + M - (n + m - 1).$$

Now we can adjust the signs of d_1, \ldots, d_{n+m} (we are interested only in d_1, \ldots, d_n) using at most $n + m - 1$ additional subtractions, since not all of d_1, \ldots, d_{n+m} have the wrong sign. (To see this observe that the first i such that our procedure yields d_i with the correct sign cannot exceed $n + m$).

References

