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Abstract

For the study of complexity and chaos in many-particle nuclear wavefunctions in large shell-model basis spaces, the
localization length related to the number of principal components is calculated for several Ca, Sc and Ti isotopes, and compared
to the predictions of the embedded Gaussian orthogonal ensemble. The large dimensionalities involved, up to many thousands,
ensure good statistics, and the agreement is very good in the chaotic region of the spectra. The localization length of shell-
model wavefunctions in Ca isotopes is much smaller than in Sc, showing a strong isospin dependence of nuclear chaos, in good
agreement with previous results based on energy level fluctuation properties.
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1. Introduction inadequate to explain the strong energy dependence of
these quantities.

On the other hand the study of statistical spec-
troscopy in nuclei long ago [4-9] developed the em-
bedded Gaussian orthogonal ensemble (EGOE), and

measures for the study of complexity and chaos in the I the last few years it has been realized that this en-
system is of great current interest. Firstly the inves- Semble is well suited for the study of chaos in quantum

tigation of Izrailev [1] and then results from detailed Mechanical many-particle systems. Kota ans Sahu [10]
nuclear shell-model studies by Zelevinsky and collab- d€rived expressions for the information entropy and

orators [2,3] established the importance of these mea- 1€ number of principal components for EGOE and
sures. It also became clear that the Gaussian orthog-Made numerical tests for their goodness [11].

onal ensemble (GOE) of random matrices is totally  1h€ predictions of EGOE for strength sums of nu-
clear excitation operators and their agreement with the

results from shell-model calculations in large12f
E-mail address: gomezk@nuclear.fis.ucm.es (J.M.G. Gémez). and 31d—2plf spaces has been looked into recently

The study of the eigenvector amplitudes of many-
fermion systems and the construction of information
entropy, number of principal components and similar
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in detail [12—14]. It was found that the agreement is normalized mean field basis = |k), i.e.,
very good in the chaotic regime of the nuclear mo-
|E)=>_CFlk),
k

tion. In this Letter we look into complementary as-

pects of such shell-model studies, i.e., agreement with

EGOE predictions of the measures of complexity and whereC? are the amplitudes in the expansion. Then,
chaos. In the process we develop possible correc-as a measure for the degree of the complexity of indi-
tion terms to the EGOE expressions for application vidual wavefunctions, one can define the information

)

to large but finite dimensional systems. We also find
realistic estimates of how much of the two-body in-
teraction is needed to generate chaos fql & 2)-

body Hamiltonian, and hence find the applicability of

entropyS™™ as

g0 =~ Y |cf [Fnlct P
k

: ®)

EGOE through this study of wavefunction amplitudes. ang the localization length; (E) as

Section 2 introduces the measures of complexity and -
give their EGOE expressions and methods for further [ (E) = expSg °]/0.484.

improving them. Section 3 gives the results in a num-
ber of 2p1f shell-model examples with very large di-
mensional Hamiltonian matrices and justifies the ap-
plicability of EGOE in these systems. Section 4 ends
with a discussion and some conclusions.

2. EGOE resaults
2.1. Localization length in wavefunctions

In the nuclear shell model one has fermions
distributed ovelV single-particle states with@ + 2)-
body interaction Hamiltonian. This Hamiltonian is
written as

H=h)+V(©), 1)

whereh(1) is the one-body mean-field part aid?2)

(4)

For GOE, the value 08" = In(0.484) is indepen-
dent of energy. Thusy (E) = 1 for GOE. The fac-
tor 0.48 arises from the assumption (well verified by
many numerical calculations) that the local strength
fluctuations for EGOE(2) are well described by the
Porter—Thomas distribution [10]. One can also define
the participation ratio or number of principal compo-
nents, NPC, as

-1
(NPOf = [Z|C,§|4] .
k

Its value for GOE,(NPC)g = d/3, is again indepen-
dent of energy.

We now discuss the predictions of EGOE for
these quantities. First of all we note that with
particles in N states there is an underlying (N)
group structure, and with respect to this group one
can write the partV!% of V(2) that generates the

®)

is the residual interaction. For the GOE (Gaussian or- mean-field basis state energi€s as the sum of a
thogonal ensemble) one has a random real symmet-unitary scalai’[%-0 and irreducible parts with ranks 1

ric matrix (with invariance under orthogonal transfor-
mations) for the Hamiltonian in the-particle space,

and 2,VI91 and vI0.2_ Calculations for typicakd
and fp shell interactions show that the norm of

whereas the two-body random ensemble (TBRE) is V192 is less than 5% of the fulV (2) [16]. Thus,
generated by defining the Hamiltonian as a random as V%2 is usually very small in sizey[0-0 4 y01.1
matrix in the two-particle space and then propagating added tok(1) gives an effective one-body mean-field

it to the ¥ C,, dimensionaln-particle space by using
its direct product structure. The TBRE is a GOE in
the two-particle state and is called EGOE(2); we re-

parth. The location of the configuration centroids is
generated by this effective one-body operator, while
their spreading is due to the two-body operatd?-2.

fer to [15] for details. When one adds a one-body part The effective one-body part is denoted Hg in the

to this Hamiltonian, as in Eq. (1), it is often called
EGOH1+ 2).

following expressions. The Hamiltonidt, generates
the centroidsE; of the strength functiong (E) =

For large shell-model spaces one can define the (§(H — E))* = Y . ICEI?8(E — E'), and o3 is

normalized eigenfunctionyg = |E) in terms of the

the variance of the energieB;. Similarly ep
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(d)~13 ", (k|H|k) is the centroid of bothE and Ej
energies, whilesy, is the variance off; (E) and has
the form given below. Using these quantities one can
define the bivariate correlation coefficient p, as

H Hy)™ o2
G =L (1)
(H2)" (HE)™ H
o2 = 23w HIOP — | 2 S wIH k) 2
H=q d ’
k,k’ k
_ 1 2
of == )_|KIHIK)[,
ks£k
— 1
2 2
of — 0 =0f, = EZ(Ek —€n)",
k
1
Ev=(kIHIK),  en=>3 Ex. (6)

The EGOE formula foiy, with E = (E — eg)/on,

is [11]
;2
lH(E)z‘/l—gf,’erxp< H;“)
2 EZ
(945
17 (802)7?
(sl T Tre)

H
Y(E)= #
(A—25p)?
x {(1- 3 ) (B2 1)
+ 4413,Hk(1 - CI%I,H;()EZ + 24?1,}1,(}’
d0?) _

7 (o2 (1-¢2u)

f — 1/2
X [(d)l{Z(akz—akz) ” .
k
For details we refer to [15] and [10].
In Eqg. (7) the last factor involving’ (E) becomes
1 when Y (E)= 0, and the expression for the local-

@)

ization length becomes Gaussian in energy. So non-

zero Y(E) gives improvement over the Gaussian.
Alternately one can introduce correction terms to
the Gaussian in two different ways. Firstly one can
make an Edgeworth-type expansion multiplying the

253

Gaussian by a polynomial with a few low order terms,
given by

2 2152
Ig(E)=+v1— 72 exp(%) exp(—i)

2

x (1+UE+VE?), (8)

wherez is the correlation coefficient that we previ-
ously called¢y m,, andU andV are the coefficients

of the linear and quadratic terms. Secondly, in another
formalism, the expectation value of an operakdiin

a state with energ¥ is given by a polynomial expan-
sioninE as

(E|K|E) =) (K P,(H))P,(E),

v

©)

where (-- ) denotes average in the-particle space
and P,(x) are the orthogonal polynomials with the
densityp,, (E) as the weight function. Under EGOE,
as the density of states for the Hamiltoni&h as
well as the one for the perturbed Hamiltoniafy =

H + oK tend to Gaussians, only the first two terms in
the expansion (9) are unhindered [7]. The higher terms
give decreasingly small correction terms. So one can
use this expansion with the operator for the localiza-
tion length ask and get an expression fty (E).

2.2. Wavefunction structure for a regular to chaotic
transition of the Hamiltonian

For a specifig1+ 2)-body Hamiltonian, the EGOE
results mentioned above are good only in the domain
of chaos. The chaotic regime sets in at an energy of a
few MeV above the ground state region. There are at-
tempts to estimate this energy analytically for partic-
ular forms of the Hamiltonian, as well as numerically
([14] and references therein). One can also study the
problemin a differentway, i.e., by studying the proper-
ties of the HamiltoniarH;, = (1) + AV (2) as a func-
tion of the parametek. One finds a crossover value
Ac Of A, such that forA > A, there is onset of chaos
where one observes GOE level fluctuations in many-
particle ¢z > 1) spaces. Clearly the ordered particle
motion in the mean field (1) will be destroyed by a
sufficiently strong two-body residual interaction. One
can find that forz(1) having average spacing, A,
turns out to be of the order of the ratio of the spacing
betweenmn-particle mean-field basis states, that are di-
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rectly coupled to the two-body interaction, and For B e g "
such studies we refer to [18,19]. 0.7 ]

On the other hand, through explicit construction .
of the measures of complexity numerically, one can 0.6

111

slowly increase. from zero, to see where the localiza- .
tion length and other similar quantities start matching =
with the EGOE predictions. One can also investigate & 4

0.5

1

E :
how thej. evaluated this way compare with theob- 2 ]
tained from the study of the spacing distribution, i.e., _S 0.3 ]
the nearest neighbor spacing and thestatistic. The ﬁ 4% ]
next section describes such studies. E ' 1

S o1 -
3. Shell-model results 0.0 .

Shell-model calculations for a number of nuclei O T 0 0 0 20 30 40

with different (J, T) values in the 211 shell (here-
after called pf shell) were carried out using the
modern shell-model code NATHAN [17]. The single- Fig. 1. Localization lengtliy as a function of energy in MeV for
particle energies considered (defined by the one-body46Ti(J =2, T = 1). The brown curve is the exact shell-model result,
parth(1) of the HamiltonianH) are 0.0, 2.0, 4.0 and ‘t’)"hil'; the7 )fesvi’:‘:g (92 ‘;e” guafr‘]’zsyge) theOEggEegisg:C“%z E‘ISU Sive”
6.5 M_eV for thef7/2’ P3/2, p1/2 an.d fs_,/z orbits, re- cirveqis(th’e EGOE with polynomial Zéorr;actiozs termys, as given by
_spectlvely, and the tWO'bOdy effecuye interactio2) Eq. (8), and the black curve is the polynomial expansion given by
is the well established KB3 interaction [17]. From now Egq. (9).
onthisH = k(1) + V(2) is simply called the KB3 in-
teraction. Table 1

In Fig. 1 we present the results for the localization Shell-model valence spa(:(_e di‘mensionala'ty and values of the
length as a funciion of energy for the=2, 7 =1 bSett,l sudy ueedis Fge 1 2 e et o
states of the nucleu®’Ti, which has a large dimen-  girectly from the shell-model matrix elements
sion of 6338. The figure gives the exact shell-model Nuclous 7 Z U v inn
result along with three different forms of predictions. oq) —0 7 —2 692 0932 0118 5008 0'9(’;5
The shell-model values exhibit small oscillations close 46321;1’ 7;2; 2042 0924 :0'105 0043 0910
to a smooth, nearly Gaussian shape. This exact cal-aer;; _o 7_1) 1514 0002 0100 0032 0891
culation is compared to EGOE predictions as fol- 461j;_1 7-1) 4105 0899 -0099  0.045 0.892
lows. (i) The EGOE Gaussian form of expression (7) 46Ti(Jj =2, 7=1) 6338 0.898 —0.094 0.037 0.893
with Y(E) = 0, that shows a good agreement with “8sqs=0, 7=3) 2958 0.914 —0.063  0.032 0.900
shell model. One finds that the inclusion of non-zero *®Sa/=1, 7=3 8590 0.911 —0.057 0.030  0.900
Y(E) = 0 in Eq. (7) makes very litle change in the >°SA/=0 7=4) 5986 0906 -0025 0028 0.900
previous results. (ii) The EGOE Gaussian form with
polynomial correction terms multiplying the Gaussian, and it shows excellent agreement in the central region,
as given by Eq. (8). It is seen that one achieves further but strong deviations near the two ends.
improvement, particularly near the spectrum ends. We  Fig. 2 gives results similar to those of Fig. 1,
note here that the coefficients U andV in this ex- but for all the T = T, eight cases considered, i.e.,
pansion are actually calculated by best fit to the shell- 46Sq(J = 0), 46Sq(J = 1), 8Sa(J = 0), 48Sq(J = 1),
model values. So this result really checks the applica- °°So(J = 0), 6Ti(/ = 0), %6Ti(J = 1) and
bility of the method and is not a prediction without di-  #5Ti(J = 2). The dimensions of the shell-model spa-
agonalization. (iii) The EGOE polynomial expansion ces, the correlation coefficientand thelU andV co-
form given by (9). It is taken up to the fourth order, efficients for all the cases are given in Table 1. The

Energy (MeV)




Localization length |,

long dashed line is the EGOE prediction wiliE) = 0, and the solid line is the EGOE prediction with polynomial correction terms.
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Fig. 2. Same as Fig. 1 for differentstates in several Sc and Ti isotopes. Here the green curve represents the exact shell-model result, the black
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general features for all those cases are similar to those0.7 and 1.0. Along with the shell-model fluctuating
of 46Ti(J = 2). One observes that as the dimension curves, one sees here the dashed curve which is the
increases, the agreement of the EGOE with the shell Gaussian form in energy, i.e., Eq. (7) WitE) = 0,

and the continuous curve which is the Gaussian with

model shows gradual improvement.

Fig. 3 gives the behavior of the localization length
for the nucleu$®SoJ = 1, T = 2) when the Hamil-
tonian is slowly changed from the one-body form to
the full (1 4+ 2)-body Hamiltonian through the para-
meter A. Results are shown for =0, 0.1, 0.3, 0.5,

the polynomial corrections of Eqg. (8). Actually, these

curves are those with the best fit valueg ot/ andV,

i.e., 0.905,-0.118 and 0.064, respectively. We ob-

serve that foi. = 0.5 or more the polynomial correc-
tion curve gives good agreement with the shell model.
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Fig. 3. Localization lengtliy for 46Sc(J =1, T =1), as a function of, the strength parameter multiplying the two-body interaction. The

value » = 0 corresponds to the mean-field Hamiltonian and 1 gives the full(1 + 2)-body Hamiltonian.

This feature is in agreement with the observed behav-
ior of the spectral rigidity parametets for energy
spectra [12].

In Fig. 4 the localization length averaged over all
energy states with fixed is plotted as a function
of the J values. This is done for four nucléfSc,
48Ca, %0Ca and®?Ca. One finds thaf®Sc shows a
marked different behavior than the other three. The
fact thatly is larger for#6Sc than for the three Ca
isotopes is consistent with previous results [20,21],
which showed that the usual level fluctuation statistics,

Average localization length <I,>

0.5

like the nearest neighbor spacing distributi®@) and 0.1 - .
As, are closer to the Poisson limit in Ca isotopes than L |
in other nuclei with active protons and neutrons. In

this sense we may say that Ca isotopes are less chaotic 0.0 > ) 6 10 12

than other neighboring nuclei. This is especially true

for the low energy spectrum. As discussed below, _ . .
. L . Fig. 4. Average localization length as a function of the angular
there are two reasons for this behavior: (i) the residual ,omentum J, showing the marked difference dfSc from Ca

n-n interaction is weaker than the-p interaction, isotopes.
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and (ii) seniority is to a large extent a good quantum there is an approximate symmetry associated to the

number in Ca isotopes. pairing force among valence neutrons, and this sym-
metry is not taken into account in the statistical analy-
sis. This mixing of states belonging to different sym-

4. Discussion and conclusions metries gives rise to Poisson like statistics. On the
other hand, the presence of a proton in Sc isotopes

In this Letter we have studied the localization destroys this symmetry, and therefore we do not mix
length /5 for nuclear shell-model wavefunctions in  different symmetry states in the statistical analysis of
large 2p1f spaces, looking for a better understanding energy level and wave function fluctuations.
of the onset of chaos in nuclei. The large dimensional- ~ We note that the construction of localization lengths
ities involved, up tal = 8590, guarantee good statis- for transition strength distributions and their study for
tics and therefore reliable results. The valueggphs electromagnetic, Gamow—Teller and other transitions
a function of energy were compared with predictions is also important and will provide valuable additional
of the EGOE theory, obtaining very good agreementin information on chaotic features. With this regard, we
the chaotic, central region of the energy spectra, while also note that very recently it has been conjectured that
some deviations are observed in the ground state re-1/f noise is a fundamental property characterizing the
gion. spectral fluctuations of chaotic quantum systems [22].

The important question of how much of the two- We plan to address these issues in future work and see
body interaction is needed to generate chaos was alsohow they compare with predictions based on more tra-
studied using an order-to-chaos transition Hamiltonian ditional statistics.
depending on a strength parameterOne finds that
the localization length gives results similar to those
obtained from previous studies ol3 for energy Acknowledgements
spectra, i.e., that nuclear motion becomes chaotic for
A > 0.5, meaning that a half of the realistic residual
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