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Abstract

For the study of complexity and chaos in many-particle nuclear wavefunctions in large shell-model basis spa
localization length related to the number of principal components is calculated for several Ca, Sc and Ti isotopes, and
to the predictions of the embedded Gaussian orthogonal ensemble. The large dimensionalities involved, up to many t
ensure good statistics, and the agreement is very good in the chaotic region of the spectra. The localization length
model wavefunctions in Ca isotopes is much smaller than in Sc, showing a strong isospin dependence of nuclear chao
agreement with previous results based on energy level fluctuation properties.
 2003 Published by Elsevier B.V.
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1. Introduction

The study of the eigenvector amplitudes of ma
fermion systems and the construction of informat
entropy, number of principal components and sim
measures for the study of complexity and chaos in
system is of great current interest. Firstly the inv
tigation of Izrailev [1] and then results from detaile
nuclear shell-model studies by Zelevinsky and coll
orators [2,3] established the importance of these m
sures. It also became clear that the Gaussian ort
onal ensemble (GOE) of random matrices is tota
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inadequate to explain the strong energy dependen
these quantities.

On the other hand the study of statistical sp
troscopy in nuclei long ago [4–9] developed the e
bedded Gaussian orthogonal ensemble (EGOE),
in the last few years it has been realized that this
semble is well suited for the study of chaos in quant
mechanical many-particle systems. Kota ans Sahu
derived expressions for the information entropy a
the number of principal components for EGOE a
made numerical tests for their goodness [11].

The predictions of EGOE for strength sums of n
clear excitation operators and their agreement with
results from shell-model calculations in large 2p1f
and 2s1d–2p1f spaces has been looked into recen
nse.
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in detail [12–14]. It was found that the agreemen
very good in the chaotic regime of the nuclear m
tion. In this Letter we look into complementary a
pects of such shell-model studies, i.e., agreement
EGOE predictions of the measures of complexity a
chaos. In the process we develop possible cor
tion terms to the EGOE expressions for applicat
to large but finite dimensional systems. We also fi
realistic estimates of how much of the two-body
teraction is needed to generate chaos for a(1 + 2)-
body Hamiltonian, and hence find the applicability
EGOE through this study of wavefunction amplitud
Section 2 introduces the measures of complexity
give their EGOE expressions and methods for furt
improving them. Section 3 gives the results in a nu
ber of 2p1f shell-model examples with very large d
mensional Hamiltonian matrices and justifies the
plicability of EGOE in these systems. Section 4 en
with a discussion and some conclusions.

2. EGOE results

2.1. Localization length in wavefunctions

In the nuclear shell model one hasm fermions
distributed overN single-particle states with a(1+2)-
body interaction Hamiltonian. This Hamiltonian
written as

(1)H = h(1)+ V (2),

whereh(1) is the one-body mean-field part andV (2)
is the residual interaction. For the GOE (Gaussian
thogonal ensemble) one has a random real sym
ric matrix (with invariance under orthogonal transfo
mations) for the Hamiltonian in them-particle space
whereas the two-body random ensemble (TBRE
generated by defining the Hamiltonian as a rand
matrix in the two-particle space and then propaga
it to the NCm dimensionalm-particle space by usin
its direct product structure. The TBRE is a GOE
the two-particle state and is called EGOE(2); we
fer to [15] for details. When one adds a one-body p
to this Hamiltonian, as in Eq. (1), it is often calle
EGOE(1+ 2).

For large shell-model spaces one can define
normalized eigenfunctionψE = |E〉 in terms of the
normalized mean field basisφk = |k〉, i.e.,

(2)|E〉 =
∑
k

CE
k |k〉,

whereCE
k are the amplitudes in the expansion. Th

as a measure for the degree of the complexity of in
vidual wavefunctions, one can define the informat
entropyS info as

(3)S info
E = −

∑
k

∣∣CE
k

∣∣2 ln
∣∣CE

k

∣∣2,
and the localization lengthlH (E) as

(4)lH (E) = exp
[
S info
E

]
/0.48d.

For GOE, the value ofS info = ln(0.48d) is indepen-
dent of energy. ThuslH (E) = 1 for GOE. The fac-
tor 0.48 arises from the assumption (well verified
many numerical calculations) that the local stren
fluctuations for EGOE(2) are well described by t
Porter–Thomas distribution [10]. One can also defi
the participation ratio or number of principal comp
nents, NPC, as

(5)(NPC)E =
[∑

k

∣∣CE
k

∣∣4]−1

.

Its value for GOE,(NPC)E = d/3, is again indepen
dent of energy.

We now discuss the predictions of EGOE f
these quantities. First of all we note that withm
particles inN states there is an underlyingU(N)

group structure, and with respect to this group o
can write the partV [0] of V (2) that generates th
mean-field basis state energiesEk as the sum of a
unitary scalarV [0],0 and irreducible parts with ranks
and 2,V [0],1 andV [0],2. Calculations for typicalsd
and fp shell interactions show that the norm
V [0],2 is less than 5% of the fullV (2) [16]. Thus,
asV [0],2 is usually very small in size,V [0],0 + V [0],1
added toh(1) gives an effective one-body mean-fie
part h. The location of the configuration centroids
generated by this effective one-body operator, w
their spreading is due to the two-body operatorV [0],2.
The effective one-body part is denoted asHk in the
following expressions. The HamiltonianHk generates
the centroidsEk of the strength functionsFk(E) =
〈δ(H − E)〉k = ∑

E′ |CE
k |2δ(E − E′), and σ 2

H is
the variance of the energiesEk . Similarly εH =
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(d)−1 ∑
k〈k|H |k〉 is the centroid of bothE andEk

energies, whileσk is the variance ofFk(E) and has
the form given below. Using these quantities one
define the bivariate correlation coefficientζH,Hk as

ζH,Hk = 〈HHk〉m√
〈H 2〉m〈H 2

k 〉m
=

√√√√(
1− σ 2

k

σ 2
H

)
,

σ 2
H = 1

d

∑
k,k′

∣∣〈k|H |k′〉∣∣2 −
[

1

d

∑
k

〈k|H |k〉
]2

,

σ 2
k = 1

d

∑
k 
=k′

∣∣〈k|H |k′〉∣∣2,
σ 2
H − σ 2

k = σ 2
Ek

= 1

d

∑
k

(Ek − εHk )
2,

(6)Ek = 〈k|H |k〉, εHk = 1

d

∑
k

Ek.

The EGOE formula forlH , with Ê = (E − εH )/σH ,
is [11]

lH (E) =
√

1− ζ 2
H,Hk

exp

(
ζ 2
H,Hk

2

)

× exp

(
−

(
ζ 2
H,Hk

Ê 2

2

))

×
(

1− 1

8

[
(δσ 2)

σ 2
H

]2

Y (E)

)
,

Y (E) = 1

(1− ζ 2
H,Hk

)2

× {(
1− ζ 2

H,Hk

)2(
Ê 2 − 1

)2

+ 4ζ 2
H,Hk

(
1− ζ 2

H,Hk

)
Ê 2 + 2ζ 4

H,Hk

}
,

(δσ 2)

σ 2
H

= {
σ 2
k

}−1(1− ζ 2
H,Hk

)
(7)×

[
(d)−1

{∑
k

(
σ 2
k − σ 2

k

)2
}]1/2

.

For details we refer to [15] and [10].
In Eq. (7) the last factor involvingY (E) becomes

1 when Y (E)= 0, and the expression for the loca
ization length becomes Gaussian in energy. So n
zero Y (E) gives improvement over the Gaussia
Alternately one can introduce correction terms
the Gaussian in two different ways. Firstly one c
make an Edgeworth-type expansion multiplying
Gaussian by a polynomial with a few low order term
given by

lH (E) =
√

1− z2 exp

(
z2

2

)
exp

(
−z2Ê 2

2

)
(8)× (

1+UÊ + V Ê 2),
wherez is the correlation coefficient that we prev
ously calledζH,Hk , andU andV are the coefficients
of the linear and quadratic terms. Secondly, in ano
formalism, the expectation value of an operatorK in
a state with energyE is given by a polynomial expan
sion inE as

(9)〈E|K|E〉 =
∑
ν

〈
KPν(H)

〉
Pν(E),

where 〈· · ·〉 denotes average in them-particle space
and Pν(x) are the orthogonal polynomials with th
densityρm(E) as the weight function. Under EGOE
as the density of states for the HamiltonianH as
well as the one for the perturbed HamiltonianHα =
H + αK tend to Gaussians, only the first two terms
the expansion (9) are unhindered [7]. The higher te
give decreasingly small correction terms. So one
use this expansion with the operator for the locali
tion length asK and get an expression forlH (E).

2.2. Wavefunction structure for a regular to chaotic
transition of the Hamiltonian

For a specific(1+2)-body Hamiltonian, the EGOE
results mentioned above are good only in the dom
of chaos. The chaotic regime sets in at an energy
few MeV above the ground state region. There are
tempts to estimate this energy analytically for par
ular forms of the Hamiltonian, as well as numerica
([14] and references therein). One can also study
problem in a different way, i.e., by studying the prop
ties of the HamiltonianHλ = h(1)+ λV (2) as a func-
tion of the parameterλ. One finds a crossover valu
λc of λ, such that forλ > λc there is onset of chao
where one observes GOE level fluctuations in ma
particle (m  1) spaces. Clearly the ordered partic
motion in the mean fieldh(1) will be destroyed by a
sufficiently strong two-body residual interaction. O
can find that forh(1) having average spacing∆, λc
turns out to be of the order of the ratio of the spac
betweenm-particle mean-field basis states, that are
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rectly coupled to the two-body interaction, and∆. For
such studies we refer to [18,19].

On the other hand, through explicit constructi
of the measures of complexity numerically, one c
slowly increaseλ from zero, to see where the localiz
tion length and other similar quantities start match
with the EGOE predictions. One can also investig
how theλc evaluated this way compare with theλc ob-
tained from the study of the spacing distribution, i.
the nearest neighbor spacing and the∆3 statistic. The
next section describes such studies.

3. Shell-model results

Shell-model calculations for a number of nuc
with different (J,T ) values in the 2p1f shell (here-
after calledpf shell) were carried out using th
modern shell-model code NATHAN [17]. The singl
particle energies considered (defined by the one-b
parth(1) of the HamiltonianH ) are 0.0, 2.0, 4.0 an
6.5 MeV for thef7/2, p3/2, p1/2 andf5/2 orbits, re-
spectively, and the two-body effective interactionV (2)
is the well established KB3 interaction [17]. From no
on thisH = h(1)+ V (2) is simply called the KB3 in-
teraction.

In Fig. 1 we present the results for the localizati
length as a function of energy for theJ = 2, T = 1
states of the nucleus46Ti, which has a large dimen
sion of 6338. The figure gives the exact shell-mo
result along with three different forms of prediction
The shell-model values exhibit small oscillations clo
to a smooth, nearly Gaussian shape. This exact
culation is compared to EGOE predictions as f
lows. (i) The EGOE Gaussian form of expression
with Y (E) = 0, that shows a good agreement w
shell model. One finds that the inclusion of non-z
Y (E) = 0 in Eq. (7) makes very little change in th
previous results. (ii) The EGOE Gaussian form w
polynomial correction terms multiplying the Gaussia
as given by Eq. (8). It is seen that one achieves fur
improvement, particularly near the spectrum ends.
note here that the coefficientsz, U andV in this ex-
pansion are actually calculated by best fit to the sh
model values. So this result really checks the appl
bility of the method and is not a prediction without d
agonalization. (iii) The EGOE polynomial expansi
form given by (9). It is taken up to the fourth orde
Fig. 1. Localization lengthlH as a function of energy in MeV fo
46Ti(J = 2,T = 1). The brown curve is the exact shell-model res
while the red and green curves are the EGOE predictions, as g
by Eq. (7), withY(E) = 0 andY(E) 
= 0, respectively. The blue
curve is the EGOE with polynomial corrections terms, as given
Eq. (8), and the black curve is the polynomial expansion given
Eq. (9).

Table 1
Shell-model valence space dimensionalityd , and values of the
parametersz, U andV used in Figs. 1 and 2. In the last column w
also give the value of the correlation coefficientζH,Hk

calculated
directly from the shell-model matrix elements

Nucleus d z U V ζH,Hk

46Sc(J = 0, T = 2) 692 0.932 −0.118 0.064 0.905
46Sc(J = 1, T = 2) 2042 0.924 −0.105 0.043 0.910
46Ti(J = 0, T = 1) 1514 0.902 −0.100 0.032 0.891
46Ti(J = 1, T = 1) 4105 0.899 −0.099 0.045 0.892
46Ti(J = 2, T = 1) 6338 0.898 −0.094 0.037 0.893
48Sc(J = 0, T = 3) 2958 0.914 −0.063 0.032 0.900
48Sc(J = 1, T = 3) 8590 0.911 −0.057 0.030 0.900
50Sc(J = 0, T = 4) 5986 0.906 −0.025 0.028 0.900

and it shows excellent agreement in the central reg
but strong deviations near the two ends.

Fig. 2 gives results similar to those of Fig.
but for all the T = Tz eight cases considered, i.e
46Sc(J = 0), 46Sc(J = 1), 48Sc(J = 0), 48Sc(J = 1),
50Sc(J = 0), 46Ti(J = 0), 46Ti(J = 1) and
46Ti(J = 2). The dimensions of the shell-model sp
ces, the correlation coefficientz, and theU andV co-
efficients for all the cases are given in Table 1. T
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the black
Fig. 2. Same as Fig. 1 for differentJ states in several Sc and Ti isotopes. Here the green curve represents the exact shell-model result,
long dashed line is the EGOE prediction withY(E) = 0, and the solid line is the EGOE prediction with polynomial correction terms.
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general features for all those cases are similar to th
of 46Ti(J = 2). One observes that as the dimens
increases, the agreement of the EGOE with the s
model shows gradual improvement.

Fig. 3 gives the behavior of the localization leng
for the nucleus46Sc(J = 1, T = 2) when the Hamil-
tonian is slowly changed from the one-body form
the full (1 + 2)-body Hamiltonian through the para
meterλ. Results are shown forλ = 0, 0.1, 0.3, 0.5,
0.7 and 1.0. Along with the shell-model fluctuati
curves, one sees here the dashed curve which is
Gaussian form in energy, i.e., Eq. (7) withY (E) = 0,
and the continuous curve which is the Gaussian w
the polynomial corrections of Eq. (8). Actually, the
curves are those with the best fit values ofz, U andV ,
i.e., 0.905,−0.118 and 0.064, respectively. We o
serve that forλ = 0.5 or more the polynomial correc
tion curve gives good agreement with the shell mo
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The
Fig. 3. Localization lengthlH for 46Sc(J = 1, T = 1), as a function ofλ, the strength parameter multiplying the two-body interaction.
valueλ = 0 corresponds to the mean-field Hamiltonian andλ = 1 gives the full(1+ 2)-body Hamiltonian.
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This feature is in agreement with the observed beh
ior of the spectral rigidity parameter∆3 for energy
spectra [12].

In Fig. 4 the localization length averaged over
energy states with fixedJ is plotted as a function
of the J values. This is done for four nuclei46Sc,
48Ca, 50Ca and52Ca. One finds that46Sc shows a
marked different behavior than the other three. T
fact that lH is larger for46Sc than for the three C
isotopes is consistent with previous results [20,2
which showed that the usual level fluctuation statist
like the nearest neighbor spacing distributionP(s) and
∆3, are closer to the Poisson limit in Ca isotopes th
in other nuclei with active protons and neutrons.
this sense we may say that Ca isotopes are less ch
than other neighboring nuclei. This is especially tr
for the low energy spectrum. As discussed bel
there are two reasons for this behavior: (i) the resid
n–n interaction is weaker than then–p interaction,
c

Fig. 4. Average localization length as a function of the angu
momentumJ , showing the marked difference of46Sc from Ca
isotopes.
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and (ii) seniority is to a large extent a good quant
number in Ca isotopes.

4. Discussion and conclusions

In this Letter we have studied the localizati
length lH for nuclear shell-model wavefunctions
large 2p1f spaces, looking for a better understand
of the onset of chaos in nuclei. The large dimension
ities involved, up tod = 8590, guarantee good stati
tics and therefore reliable results. The values oflH as
a function of energy were compared with predictio
of the EGOE theory, obtaining very good agreemen
the chaotic, central region of the energy spectra, w
some deviations are observed in the ground state
gion.

The important question of how much of the tw
body interaction is needed to generate chaos was
studied using an order-to-chaos transition Hamilton
depending on a strength parameterλ. One finds that
the localization length gives results similar to tho
obtained from previous studies of∆3 for energy
spectra, i.e., that nuclear motion becomes chaotic
λ � 0.5, meaning that a half of the realistic residu
interaction is sufficient for the onset of chaos.

Finally, looking at the average localization leng
〈lH 〉, it is seen that there is a strong isospin dep
dence of chaos in nuclei. Single close-shell nuclei l
Ca isotopes have much smaller localization leng
than other nuclei. When only one of the neutro
is replaced by a proton, there is a sudden incre
of chaoticity, which is observed by a strong increa
of localization lengths, and by a∆3 behavior much
closer to GOE. The reasons for this sudden chang
chaoticity from Ca to Sc isotopes have been discus
in previous papers [21]. One of the reasons is that
T = 0 two-body residual interaction is much strong
than theT = 1 interaction. The strongT = 0 inter-
action in Sc isotopes destroys the ordered mean
motion of the nucleons much more than the wea
T = 1 part. Since Ca isotopes only haveT = 1 in-
teraction, because they only have active neutrons
side the closed shell core, the nuclear motion beco
more regular. This effect applies to the whole ene
spectrum and to all the wave functions, and there
to the localization lengths. The second reason app
especially to the ground state region. In Ca isoto
there is an approximate symmetry associated to
pairing force among valence neutrons, and this s
metry is not taken into account in the statistical ana
sis. This mixing of states belonging to different sy
metries gives rise to Poisson like statistics. On
other hand, the presence of a proton in Sc isoto
destroys this symmetry, and therefore we do not m
different symmetry states in the statistical analysis
energy level and wave function fluctuations.

We note that the construction of localization leng
for transition strength distributions and their study
electromagnetic, Gamow–Teller and other transiti
is also important and will provide valuable addition
information on chaotic features. With this regard,
also note that very recently it has been conjectured
1/f noise is a fundamental property characterizing
spectral fluctuations of chaotic quantum systems [
We plan to address these issues in future work and
how they compare with predictions based on more
ditional statistics.
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