On a nonlinear nonlocal ODE arising in magnetic recording

J. Ignacio Tello*

De partamento de Matemática Aplicada, Facultad de CC Matemáticas, Universidad Complutense de Madrid,
28040 Madrid, Spain

Mathematics and Computer Science Division, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam,
The Netherlands

Received 1 February 2004; received in revised form 1 May 2004; accepted 1 May 2004

Abstract

In this paper we study the uniqueness of the solution for a nonlinear ODE with nonlocal terms. We consider a limit case of a one-dimensional equation arising in magnetic recording. The equation models the tape deflection where the magnetic head profile, with trenches to control the tape position, is a known function.

MSC: primary 34B99; 34B60; 74F15

Keywords: Nonlocal terms; Lubrication theory; Reynolds equation; Nonlinear elliptic equations

1. Introduction

Different kinds of nonlocal terms appear in a great number of partial differential equations of elliptic type. In this work we will consider a particular case where the unknown u appears evaluated at a distinguished point x_0 of the domain. The simplest example of an elliptic problem with this type of term is the following:

* Corresponding address: Departamento de Matemática Aplicada, Facultad de CC Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
E-mail address: jtello@mat.ucm.es.

0893-9659/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2004.05.008
The solution of the problem depends on the value of lambda: for \(\lambda \neq 8 \) the only solution is \(u = 0 \), whereas for \(\lambda = 8 \) infinitely many solutions appear. These are given by \(u = cx(x - 1) \) for any \(c \neq 0 \). Notice that this is not an eigenvalue problem and therefore the question of uniqueness is significant.

In the next section we present a problem arising in magnetic recording that we will study in Section 3.

2. The magnetic tape

A magnetic tape is driven with constant velocity over the magnetic head and its position \(u \) is given as the solution of the ODE

\[
\begin{align*}
-\frac{d^2 u}{dx^2} &= k \left(\frac{u(L_1) - \delta(L_1)}{u(x) - \delta(x)} - 1 \right) \chi_{[L_1, L_2]} \quad 0 < x < L, \\
&\quad u(0) = u(L) = 0
\end{align*}
\]

(2.1)

where \(0 < L_1 < L_2 < L \), \(\chi_{[L_1, L_2]} \) is the characteristic function of the interval \([L_1, L_2] \), \(\delta \) is the head profile, \(k \) is a positive constant and \(u \) satisfies

\[
u(x) > \delta(x) \quad \text{if} \quad L_1 \leq x \leq L_2.
\]

(2.2)

(2.1) is the limit case of a system where the pressure \(p \) of the air is modelled by the compressible Reynolds equation and the position of the tape \(u \) is modelled by the beam equation (see [1–3]). Problem (2.1) has been analyzed in [4] and [5].

In [4] existence and uniqueness is proved using a shooting method under the assumption

\[
\delta \in C^2 \quad \text{and} \quad \delta''(x) < 0, \quad L_1 \leq x \leq L_2.
\]

(2.3)

This assumption is very restrictive, mathematically and physically, because magnetic heads do not usually satisfy the concavity condition (2.3) and are generally discontinuous (see [2,3,5]).

In [5] the existence of solutions is proved using a sub- and super-solution method under more general assumptions:

\[
\delta \quad \text{is piecewise continuous with jump discontinuous at} \quad \xi_1, \ldots, \xi_s \quad \text{where}
\]

\[
\xi_0 = L_1 < \xi_1 \ldots \xi_s < L_2 = \xi_{s+1}, \quad \text{and} \quad \delta \in C^1[\xi_i, \xi_{i+1}] \quad \text{for} \quad 0 \leq i \leq s,
\]

(2.4)

and

\[
\delta(L_1) < \delta'(L_1)L_1, \quad \delta(L_2) < (L_2 - L)\delta'(L_2).
\]

(2.5)

Uniqueness was proved in case (2.3), but not for the general case (2.4), (2.5). The question of uniqueness is not just a mere mathematical issue. Its analysis is also necessary for simulating the solution with a numerical approach.

The main result of this paper is enclosed in the following theorem.

Theorem 2.1. Assume that (2.4) and (2.5) are satisfied. Then there exists a unique solution \(u \) to (2.1) satisfying (2.2).
Note that the inequality \(\delta(L_1) < \delta'(L_1)L_1 \) means that the tangent to the head at \(x = L_1 \) intersects the \(x \)-axis in the interval \((0, L_1)\). Similarly, the second inequality in (2.5) means that the tangent to the head at \(x = L_2 \) intersects the \(x \)-axis in the interval \((L_2, L)\).

3. Proof of the Theorem 2.1

By [5, Theorem 2.1] we know that any solution \(u \) to (2.1) satisfies

\[
u \in W^{2,\infty}(0, L).
\]

We assume without loss of generality that

\[
\delta(L_1) = 0, \quad \delta(x) \geq 0, \quad \delta \geq \frac{k}{2}(x - L_1)^2 \text{ if } x \in [L_1, L_2].
\]

Remark 3.1. Notice that if \(\delta \) does not satisfy (3.2) we can introduce the change

\[
\tilde{u} = u - \delta(L_1) + \gamma(x - L_1), \quad \tilde{\delta} = \delta - \delta(L_1) + \gamma(x - L_1)
\]

where \(\gamma \), defined by

\[
\gamma = \max \left\{ 0, -\min_{x \in (L_1, L_2)} \left\{ \frac{\delta(x) - \delta(L_1)}{x - L_1} \right\} \right\} + k(L_2 - L_1)
\]

is bounded by (2.4). Then \(\tilde{\delta} \) satisfies (3.2) and \(\tilde{u} \) satisfies

\[
\left\{ \begin{array}{l}
-\frac{\partial^2 \tilde{u}}{\partial x^2} = k \left(\frac{\tilde{u}(L_1)}{\tilde{u}(x) - \tilde{\delta}(x)} - 1 \right) \chi_{[L_1, L_2]}, \\
\tilde{u}(0) = -\delta(L_1) - \gamma L_1, \\
\tilde{u}(L) = -\delta(L_1) + \gamma(L - L_1), \\
\tilde{u}(x) - \tilde{\delta}(x) > 0,
\end{array} \right. \quad 0 < x < L,
\]

\[
\left\{ \begin{array}{l}
-\frac{\partial^2 u}{\partial x^2} = k \left(\frac{\lambda}{u(\lambda) - \delta(x)} - 1 \right) \chi_{[L_1, L_2]}, \\
u(\lambda, 0) = \gamma_1, \\
u(\lambda, L) = \gamma_2, \\
u(x) - \delta(x) > 0
\end{array} \right. \quad 0 < x < L,
\]

(3.3)

As in [5], we consider the unique solution \(u(\lambda) \) of the problem

\[
\left\{ \begin{array}{l}
-\frac{\partial^2 u}{\partial x^2} = k \left(\frac{\lambda}{u(\lambda) - \delta(x)} - 1 \right) \chi_{[L_1, L_2]}, \\
u(\lambda, 0) = \gamma_1, \\
u(\lambda, L) = \gamma_2, \\
u(x) - \delta(x) > 0
\end{array} \right. \quad 0 < x < L,
\]

(3.4)

for \(\gamma_1 > -L_1\delta'(L_1) \) and \(\gamma_2 > (L - L_2)\delta'(L_2) + \delta(L_2) \). By [5, Lemma 2.1] we know that for any \(\lambda > \delta(L_1) = 0 \) there exists a unique solution \(u(\lambda) > \delta \) to (3.4).

Lemma 3.1. If \(\lambda_1 > \lambda_2 \) then \(u(\lambda_1) \geq u(\lambda_2) \) in \([0, L]\).

Proof. Consider \(u(\lambda_1) - u(\lambda_2) \) which satisfies

\[
-\frac{\partial^2}{\partial x^2} (u(\lambda_1) - u(\lambda_2)) - \left(\frac{\lambda_1}{u(\lambda_1) - \delta(x)} - \frac{\lambda_1}{u(\lambda_2) - \delta(x)} \right) \chi_{[L_1, L_2]} = (\lambda_1 - \lambda_2) \frac{1}{u(\lambda_2) - \delta(x)} \chi_{[L_1, L_2]} \geq 0.
\]

(3.5)
Let us consider the continuous and Lipschitz function ϕ defined by $\phi(s) = s$ if $s < 0$ and 0 otherwise. Let us take $\phi(u(\lambda_1) - u(\lambda_2))$ as a test function in (3.5); we obtain
\[
\int_0^L \left[(u_x(\lambda_1) - u_x(\lambda_2))^2\right] \phi'(u(\lambda_1) - u(\lambda_2)) \, dx + \int_{L_1}^{L_2} \left(\frac{\lambda_1}{u(\lambda_1) - \delta} - \frac{\lambda_1}{u(\lambda_2) - \delta}\right) \phi(u(\lambda_1) - u(\lambda_2)) \, dx = \lambda_1 - \lambda_2 \int_{L_1}^{L_2} \frac{1}{u(\lambda_2) - \delta} \phi(u(\lambda_1) - u(\lambda_2)) \, dx \leq 0.
\]

Since $\frac{1}{u - \delta}$ is decreasing (as a function of u) for $u > \delta$, we obtain
\[
\left(\frac{\lambda_1}{u(\lambda_1) - \delta} - \frac{\lambda_1}{u(\lambda_2) - \delta}\right) \phi(u(\lambda_1) - u(\lambda_2)) \leq 0
\]
and then
\[
\int_0^L \left[(u_x(\lambda_1, x) - u_x(\lambda_2, x))^2\right] \phi'(u(\lambda_1) - u(\lambda_2)) \, dx \leq 0.
\]

By definition of ϕ we deduce the desired result. □

Let us argue by contradiction and consider that there exist two different solutions, u_1 and u_2, to (3.3) such that $u_1(L_1) = \lambda_1$, $u_2(L_1) = \lambda_2$ and
\[
\lambda_1 > \lambda_2.
\]
Then, u_i (for $i = 1, 2$) satisfies
\[
-\frac{\partial^2 u_i}{\partial x^2} = k \left(\frac{\lambda_i}{u_i(x) - \delta(x)} - 1\right) \chi(L_1, L_2) \quad 0 < x < L,
\]
\[
u_i(0) = -\delta(L_1) - \gamma L_1, \quad u_i(L) = -\delta(L_1) + \gamma(L - L_1).
\]

Consider the new unknown v and w defined by
\[
v = u_1 - u_2, \quad w = \lambda_2 u_1 - \lambda_1 u_2 \quad \text{in} \ [L_1, L_2].
\]
Then v satisfies
\[
-\frac{\partial^2 v}{\partial x^2} = k \left(\frac{\lambda_1}{u_1(x) - \delta(x)} - \frac{\lambda_2}{u_2(x) - \delta(x)}\right) \quad L_1 < x < L_2,
\]
\[
v(L_1) = \lambda_1 - \lambda_2, \quad v_x(L_1) = \frac{\lambda_1 - \lambda_2}{L_1}
\]
and w satisfies
\[
-\frac{\partial^2 w}{\partial x^2} = k \left(\frac{\lambda_2 u_1}{u_1(x) - \delta(x)} - \frac{\lambda_1 u_2}{u_2(x) - \delta(x)} - (\lambda_2 - \lambda_1)\right) \quad 0 < x < L,
\]
\[
w(L_1) = w_x(L_1) = 0.
\]

Since
\[
\frac{\lambda_1}{u_1(x) - \delta(x)} - \frac{\lambda_2}{u_2(x) - \delta(x)} = \frac{\lambda_1 u_2(x) - \lambda_2 u_1(x) - (\lambda_1 - \lambda_2)\delta(x)}{(u_1(x) - \delta(x))(u_2(x) - \delta(x))} = \frac{-w - (\lambda_1 - \lambda_2)\delta(x)}{(u_1(x) - \delta(x))(u_2(x) - \delta(x))}
\]
we obtain by (3.6) and (3.2) \(- (\lambda_1 - \lambda_2)\delta(x) \leq 0\). Then, writing
\[
f(x) = \frac{1}{(u_1(x) - \delta(x))(u_2(x) - \delta(x))} > 0
\]
we obtain
\[
v_{xx} = kf(x)(w + (\lambda_1 - \lambda_2)\delta), \quad x \in (L_1, L_2).
\]
In the same way,
\[
\frac{1}{u_1(x) - \delta(x)} - \frac{1}{u_2(x) - \delta(x)} = \frac{u_2(x) - u_1(x)}{(u_1(x) - \delta(x))(u_2(x) - \delta(x))} = - f(x)v
\]
and then
\[
w_{xx} = k\lambda_1\lambda_2 f v - k(\lambda_1 - \lambda_2), \quad x \in (L_1, L_2).
\]

Lemma 3.2. \(w \geq -\frac{k}{2}(\lambda_1 - \lambda_2)(x - L_1)^2 \) in \([L_1, L_2]\).

By Lemma 3.1 we deduce that \(v \geq 0 \) and by (3.14) we get
\[
w_{xx} \geq -k(\lambda_1 - \lambda_2) \quad \text{if } (L_1, L_2).
\]
Integrating (3.15) twice over \((L_1, x)\), as a result of (3.12) we obtain the desired result. \(\square\)

End of the Proof of the Theorem. By the previous lemma and from (3.13) we deduce
\[
w + (\lambda_1 - \lambda_2)\delta \geq (\lambda_1 - \lambda_2) \left(-\frac{k}{2}(x - L_1)^2 + \delta \right).
\]
By (3.2) it results that \((\lambda_1 - \lambda_2)(-\frac{k}{2}(x - L_1)^2 + \delta) \geq 0\) and substituting this in (3.13) we get
\[
v_{xx} \geq 0 \quad \text{in } (L_1, L_2).
\]
Since \(v(L_1) > 0, v_x(L_1) > 0 \) (see (3.10)) and from (3.16), \(v(L_2) \) satisfies
\[
0 < v(L_2) = u_1(L_2) - u_2(L_2)
\]
and \(v_x(L_2) \)
\[
0 < v_x(L_2) = u_{1x}(L_2) - u_{2x}(L_2).
\]
Integrating (3.7) in the interval \((L_2, L)\) we obtain
\[
u_1(L) = u_1(L_2) + (L - L_2)u_{1x}(L_2),
\]
and
\[
u_2(L) = u_2(L_2) + (L - L_2)u_{2x}(L_2).
\]
Subtracting the above expressions we get
\[
u_1(L) - u_2(L) = u_1(L_2) - u_2(L_2) + (L - L_2)(u_{1x}(L_2) - u_{2x}(L_2))
\]
and by (3.17) and (3.18) it results that \(u_1(L) - u_2(L) > 0 \) which contradicts (3.8). \(\square\)

Remark 3.2. The typical head profile satisfies
\[
\delta(x) - \delta(L_1) \leq \delta'(L_1)(x - L_1) \quad \text{in } [L_1, L_2].
\]
Then (2.5) is a necessary assumption.
If \(\delta'(L_1) \leq \frac{\delta(L_1)}{L_1} \) and \(\delta \) satisfies (3.19), then \(u'(L_1) \geq \frac{\delta(L_1)}{L_1} > 0 \) and \(\frac{u(L_1) - \delta(L_1)}{u(x) - \delta(x)} \) is decreasing (as a function of \(x \)). We obtain \(u(L_2) > u(L_1) > 0 \) and \(u_x(L_2) > u_x(L_1) > 0 \) and then \(u(L) > 0 \), which contradicts (2.1).

Acknowledgments

The author thanks Avner Friedman for his helpful suggestions. This work was supported by projects DGES (Spain) REN 2000/0766 and HPRN-CT-2002-00274 of the European Union.

References