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Abstract
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1. Introduction

Cellular algebras have been introduced by Graham and Lehrer [4] in order to inves
in an axiomatic framework, the modular representations of Hecke algebras and
algebras with geometric connections like Brauer algebras and Temperley–Lieb alg
One of the important features of cellular algebras is that from the theoretical point of
the problem of determining a parameter set for all irreducible representations is redu
questions in linear algebra.

There are close connections between cellular algebras and quasi-hereditary a
In fact, the class of cellular algebras has a large intersection with the class of
hereditary algebras. In [6] it was shown that a cellular algebraA is quasi-hereditary i
and only ifA has Cartan determinant one, and this is equivalent to that the decompo
matrix of A is square. In this way, one can obtain many quasi-hereditary algebras
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cellular algebras, for instance, from Brauer algebras [4,6] and Birman–Wenzl algebr
Recently, Xi [10] gave a homological characterization of the quasi-heredity of ce
algebras in terms of cell modules. Unlike the characterization of Cartan determina
homological characterization does not need any information on simple modules.

A special case of quasi-heredity is the semi-simplicity. It is well-known tha
split semisimple algebras which are naturally included in the class of quasi-here
algebras are cellular. However, cellular algebras are not always semisimple. The p
of determining semi-simplicity was theoretically reduced to the computation o
discriminants of bilinear forms defined on cell modules in [4], which is a local solutio
is shown in [11] that a cellular algebraA is semisimple if and only if all eigenvalues of th
Cartan matrix ofA are rational numbers and the Cartan determinant equals one.

The purpose of this paper is to give much simpler homological characterizations
quasi-heredity of cellular algebras and some new criteria for their semi-simplicity by
the cohomology groups of cell modules and simple modules. Our main results can be
as follows.

Theorem 1.1. LetK be a field andA a cellularK-algebra with involutioni and cell chain
0= Jm+1 ⊂ Jm ⊂ Jm−1 ⊂ · · · ⊂ J1 = A. Denote byW(λ) the cell module associated
the cell idealJλ/Jλ+1, 1� λ�m. Then the following statements are equivalent:

(a) The algebraA is quasi-hereditary.
(b) Ext1A(W(λ),W(λ)

∗)= 0 for each1 � λ�m.
(c) Ext2A/Jµ(W(λ),W(λ)

∗)= 0 for each1 � λ�m andλ+ 1 �µ�m+ 1.

In the above we denote byW(λ)∗ the moduleHomK(i(W(λ)),K).

The above condition (b) improves a result obtained by Xi in [10], where the vanis
of all Ext1-groups between cell modules and dual cell modules was required. We no
the approach there does not work in our case.

The following theorem provides some homological characterizations of the s
simplicity of cellular algebras.

Theorem 1.2. LetK be a field andA a cellularK-algebra with respect to an involutioni
and a poset(Λ, �). Denote byW(λ) the cell module associated toλ ∈Λ. LetΛ0 be the
subset ofΛ, which parametrizes the isomorphism classes of simpleA-modules. Then th
following conditions are equivalent:

(a) The algebraA is semisimple.
(b) Ext1A(W(λ),S(µ)) = 0 for anyλ,µ ∈Λ0 satisfyingµ� λ, where simpleA-module

S(µ)�W(µ)/ rad(W(µ)).
(c) Ext1A(W(λ),W(µ)) = 0 for anyλ,µ ∈Λ0 satisfyingµ� λ.
(c′) Ext1A(W(λ),W(µ)) = 0 for anyλ,µ ∈Λ satisfyingµ� λ.
(c′′) Ext1A(W(λ),W(µ)) = 0 for all λ,µ ∈Λ.
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The contents of this paper are as follows. In Section 2 we recall the definitions of ce
and quasi-hereditary algebras and then we assemble a few necessary facts which a
used in the paper. The proof of Theorem 1.1 is given in Section 3 after establishing s
key lemmas. The last section is devoted to the proof of Theorem 1.2. Nevertheless
criteria for the semi-simplicity cannot be generalized to the case of the second cohom
groups.

2. Preliminaries

In this section we shall recall the two equivalent definitions of cellular algebras an
definition of quasi-hereditary algebras. We also collect several facts which will be
freely in later sections.

For simplicity we assume thatK is a field. Throughout the paper,A denotes a finite
dimensional associativeK-algebra with the identity 1, andA-mod denotes the category
all finitely generated leftA-modules. By a module we mean a left module, unless other
specified.

Definition 2.1 (Graham and Lehrer [4]). AK-algebraA is called acellular algebrawith
cell datum(Λ,M,C, i) if the following conditions are satisfied:

(C1) The finite setΛ is partially ordered and for eachλ ∈Λ there is a finite indexing se
M(λ). The algebraA has aK-basisCλS,T where(S,T ) runs through all elements o
M(λ)×M(λ) for all λ ∈Λ.

(C2) The mapi is aK-linear anti-automorphism ofA which sendsCλS,T to CλT,S for all
λ ∈Λ and allS andT in M(λ).

(C3) For eachλ ∈Λ andS,T ∈M(λ) and eacha ∈ A the productaCλS,T can be written

as(
∑
S ′∈M(λ) ra(S′, S)CλS ′,T )+ r ′ wherer ′ is a linear combination of basis elemen

with upper indexµ strictly larger thanλ, and where the coefficientsra(S′, S) ∈ K
are independent ofT .

In the following, aK-linear anti-automorphismi of A with i2 = id will be called an
involution. We now recall the equivalent definition of cellular algebras, which is m
handy for our theoretical and structural purposes because it does not depend on a c
basis.

Definition 2.2 (König and Xi [5]). LetA be aK-algebra with an involutioni. A two-sided
idealJ of A is called acell idealif and only if i(J )= J and there exists a left idealW ⊂ J
such that there is an isomorphism ofA-bimodulesα :J �W ⊗K i(W) (wherei(W)⊂ J
is thei-image ofW ) making the following diagram commutative:

J
α

i

W ⊗K i(W)
x⊗y �→i(y)⊗i(x)

J
α

W ⊗K i(W)
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The algebraA (with the involutioni) is calledcellular if and only if there is a vecto
space decompositionA= J ′m ⊕ J ′m−1⊕ · · · ⊕ J ′1 (for somem) with i(J ′j )= J ′j for eachj
and such that settingJj =⊕m

l=j J ′l gives a chain of two-sided ideals ofA : 0= Jm+1 ⊂
Jm ⊂ Jm−1⊂ · · · ⊂ J1=A (each of them fixed byi) and for eachj (j =m,m− 1, . . . ,1)
the quotientJj/Jj+1 is a cell ideal (with respect to the involution induced byi on the
quotient) ofA/Jj+1.

The above chain inA is called acell chain, and the modulesW(j), 1� j �m, which
are obtained from the sectionsJj/Jj+1 of the cell chain, are calledcell modulesof the
cellular algebraA. It is proved in [5] that a cell idealJ is eitherJ 2= 0 or a heredity idea
(see Definition 2.3 below). Moreover, there is a natural bijection between isomorp
classes of simpleA-modules and the setΛ0 := {λ | 1 � λ�m such thatJ 2

λ �⊆ Jλ+1}. The
inverse of this bijection is given by sending such aλ to the top of the cell moduleW(λ)
(see [4,5]).

Assume that the cardinality ofΛ0 is n, which equals the number of non-isomorp
simpleA-modules. For the convenience in the proofs later on, we relabel the origina
chain as follows:

0 = J(n+1,0) = J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(i+1,0) = J(i,s(i)+1) ⊂ J(i,s(i)) ⊂ · · ·
⊂ J(i,1) ⊂ J(i,0) = J(i−1,s(i−1)+1)⊂ · · · ⊂ J(1,0) =A,

where the idealsJ(i,0),1 � i � n, are just those idealsJλ in the original cell chain with
λ ∈ Λ0, and s(i) denotes the number of idealsJµ in the original cell chain satisfying
J(i+1,0) � Jµ � J(i,0). Thuss(i)� 0. Moreover, ifs(i) > 0, thenJ 2

(i,k) ⊂ J(i,k+1) for each
1 � k � s(i).

The cell module associated to cell idealJ(i,j)/J(i,j+1), in which, 1� i � n and 0� j �
s(i), will be denoted byW(i, j). For simplicity we shall always writeW(i) forW(i,0) in
the rest of this paper, except where otherwise stated. Such a notation precisely indica
the cell module corresponds to an idempotent cell ideal. Note that for each idempote
idealJ(i,0)/J(i,1), there is a primitive idempotentei of A such thatJ(i,0) = AeiA+ J(i,1)
and, moreover,W(i)�Aei/J(i,1)ei . The latter has a simple top, which is denoted byS(i).
Thus,S(1), . . . , S(n) form a complete set of non-isomorphic simpleA-modules. LetΛ
be the index set{(i, j) | 1 � i � n, 0 � j � s(i)} endowed with lexicographic orderin
andΛ0 be the subset{(i,0) | 1 � i � n} inheriting the ordering ofΛ. Clearly, we may
identifyΛ0 with the index set{1,2, . . . , n} with its natural ordering. We shall always fi
the ordering for labelling the simpleA-modules.

For eachi, let P(i) be the projective cover ofS(i), and denote by (i) the maximal
factor module ofP(i) with composition factors of the formS(j), j � i, called astandard
module. Dually, letI (i) be the injective envelope ofS(i) and denote by∇(i) the maximal
submodule ofI (i) with composition factors of the formS(j), j � i, called acostandard
module. It should be pointed out that only in some special cases, standard modules co
with cell modules.

Let us also recall the definition of quasi-hereditary algebras arising in the represen
theory of complex Lie algebras and algebraic groups.
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Definition 2.3 (Cline, Parshall, and Scott [1]). LetA be aK-algebra. An idealJ of A
is called aheredity idealif J is idempotent,J (radA)J = 0 andJ is a projective left
(or right) A-module. The algebraA is calledquasi-hereditaryprovided there is a finite
chain 0= Jn+1 ⊂ Jn ⊂ · · · ⊂ J1 = A of ideals inA such thatJj /Jj+1 is a heredity idea
of A/Jj+1 for all j . Such a chain is then called aheredity chainof the quasi-hereditar
algebraA.

It is known [5,6] that a cell chain of the cellular algebraA is a heredity chain if and
only if there is no nilpotent cell ideal arising from the cell chain, and this is equivale
Λ=Λ0.

We also need that the notation[X :S(k)] denotes the Jordan–Hölder multiplicity
S(k) in anyA-moduleX. Obviously,[X :S(k)] = dimK HomA(P (k),X) if K is a splitting
field for A. For a cellular algebraA, defined(i,j)k = [W(i, j) :S(k)] for all (i, j) ∈ Λ
andk ∈Λ0, thus give rise to a matrixD = (d(i,j)k), which is the so-calleddecomposition
matrix of A.

The following lemma collects some known facts from [4] on cellular algebras whic
shall need in the sequel.

Lemma 2.4. LetA be a cellularK-algebra with involutioni and cell chain0= J(n+1,0) =
J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) =A. Then we have the following:

(a) The decomposition matrixD is lower unitriangular, namely,d(i,j)k = 0 unlessi � k,
and dii := d(i,0)i = 1, where (i, j) ∈ Λ and k ∈ Λ0. In particular, HomA(W(i),
W(k))= 0 unlessk � i, andEndA(W(i))�K. Moreover,K is a splitting field forA.

(b) Let P = Aek, 1 � k � n. ThenP has anA-module filtration 0 = J(n+1,0)ek ⊂
J(n,s(n))ek ⊂ · · · ⊂ J(1,0)ek = P such that the factor modulesJ(i,j)ek/J(i,j+1)ek are
isomorphic to the modules

⊕
d(i,j)k

W(i, j), in which we putJ(i,s(i)+1) = J(i+1,0).

We remark that the factor moduleJ(i,j)ek/J(i,j+1)ek appearing in the above lemma m
be zero, and this occurs if and only ifd(i,j)k is also zero.

Let A be a cellular algebra with respect to an involutioni and X an A-module.
Following [5,10], we define thedualX∗ of X to be theA-module HomK(i(X),K), where
i(X) is equal toX as a vector space, but with the rightA-module structure given b
x · a = i(a)x for all x ∈X anda ∈A.

Observe that the functor∗ is a self-dual functor, and furthermore, it has the follow
easily verified properties.

Lemma 2.5. LetA be a cellularK-algebra with involutioni. Then we have the following:

(a) For any simpleA-moduleS(k) and anyM ∈ A-mod, we have thatS(k)∗ � S(k),
P(k)∗ � I (k), top(M)� soc(M∗) and[M :S(k)] = [M∗ :S(k)].

(b) dimK ExtjA(X,Y )= dimK ExtjA(Y
∗,X∗) for anyj � 0 and anyX,Y ∈A-mod.

(c) Let λ,µ ∈ Λ0. Then HomA(W(λ),W(µ)∗) �= 0 if and only if λ = µ. Moreover,
dimK HomA(W(λ),W(λ)∗)= 1.
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Proof. The assertion (a) is an easy consequence of dual functor and the know
Aek � Ai(ek) (see [4]). The assertion (c) follows readily from (a), (b), and Lemma
So it only needs to give a proof of (b). Use induction onj , the casej = 0 being trivial
since the functor∗ is self-dual.

Let j � 1, and suppose that (b) is true forj −1. Let 0→ Z→ P →X→ 0 be an exac
sequence inA-mod with P a projective cover ofX. Then 0→ X∗ → P ∗ → Z∗ → 0
is an exact sequence withP ∗ an injectiveA-module. It follows from ExtjA(X,Y ) �
Extj−1

A (Z,Y ) and Extj−1
A (Y ∗,Z∗) � ExtjA(Y

∗,X∗) that dimK ExtjA(X,Y ) =
dimK Extj−1

A (Z,Y ) = dimK Extj−1
A (Y ∗,Z∗) = dimK ExtjA(Y

∗,X∗), which is our desired
result. ✷
3. Quasi-heredity of cellular algebras

In this section we present some homological characterizations of quasi-here
algebras inside the class of cellular algebras by means of cell modules. We shall pr
stronger statements Theorem 3.3 and Theorem 3.4 which have Theorem 1.1 as a c

From now on we fix a cellular algebraA with involution i and cell chain 0=
J(n+1,0) = J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) = A. However, this does not prevent
from discussing the quasi-heredity of the cellular algebraA since it has been shown in [6
thatA is quasi-hereditary with respect to an involutioni and a cell chain if and only if an
cell chain ofA with respect to any involution is a heredity chain.

Before beginning with the following lemma, we need one more notation. LetA be
a cellular algebra with cell chain 0= J(n+1,0) = J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) = A.
For any 1� k � n and 0� i � n−k, defineQ(k,i) :=Aek/J(k+i,1)ek, which is a projective
A/J(k+i,1)-module. The modulesQ(k,i) play a prominent role in our study.

The following lemma can help us determine the composition factors of some
modules.

Lemma 3.1. LetA be a cellular algebra with involutioni and cell chain0= J(n+1,0) =
J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) = A. If Ext1A(Q(k,i),Q

∗
(k,i)) = 0 for some1 � k � n

and0 � i � n− k, then:

(a) Q(k,i) �Aek/J(k+i+1,0)ek .
(b) If s(k + i)� 1, then[W(k + i, j) :S(k)] = 0 for all 1 � j � s(k + i).

Proof. Observe that (a) evidently holds whens(k + i) = 0. For s(k + i) � 1, the two
assertions will be proved by using induction onj . In the case ofj = 1, we have the exac
sequence ofA-modules

0→ J(k+i,1)ek/J(k+i,2)ek→Aek/J(k+i,2)ek→Q(k,i)→ 0,

namely, the sequence

0→
⊕
d

W(k + i,1)→Aek/J(k+i,2)ek→Q(k,i)→ 0

(k+i,1)k
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is exact, which induces an exact sequence

0 → HomA
(
Q(k,i),Q

∗
(k,i)

)→HomA
(
Aek/J(k+i,2)ek,Q∗(k,i)

)

→ HomA

( ⊕
d(k+i,1)k

W(k + i,1),Q∗(k,i)
)
→ Ext1A

(
Q(k,i),Q

∗
(k,i)

)
.

The last term is zero by the hypothesis of the lemma. Meanwhile, we have

dimK HomA
(
Q(k,i),Q

∗
(k,i)

) = dimK HomA/J(k+i,1)
(
Q(k,i),Q

∗
(k,i)

)= [
Q∗(k,i) :S(k)

]
= dimK HomA/J(k+i,2)

(
Aek/J(k+i,2)ek,Q∗(k,i)

)
= dimK HomA

(
Aek/J(k+i,2)ek,Q∗(k,i)

)

sinceQ(k,i) is a projectiveA/J(k+i,1)-module andAek/J(k+i,2)ek is a projectiveA/J(k+i,2)-
module. As a result, HomA(

⊕
d(k+i,1)k W(k + i,1),Q∗(k,i))= 0. Suppose thatd(k+i,1)k �= 0.

Then HomA(W(k + i,1),Q∗(k,i)) = 0. Note thatW(k + i,1) ⊂ J(k+i,1)/J(k+i,2) and
the latter is a nilpotent cell ideal ofA/J(k+i,2), thus W(k + i,1) can be viewed
as an A/J(k+i,1)-module since it is annihilated byJ(k+i,1)/J(k+i,2). But Q∗(k,i) is
an injectiveA/J(k+i,1)-module, so we obtain thatd(k+i,1)k = [W(k + i,1) :S(k)] =
dimK HomA/J(k+i,1) (W(k + i,1),Q∗(k,i)) = dimK HomA(W(k + i,1),Q∗(k,i)) = 0, which
is absurd. Hence,[W(k + i,1) :S(k)] = d(k+i,1)k = 0, which implies thatJ(k+i,1)ek =
J(k+i,2)ek andQ(k,i) �Aek/J(k+i,2)ek .

Assume now that[W(k+ i, l) :S(k)] = 0 for all 1� l � j−1(< s(k+ i)). We show that
[W(k+ i, j) :S(k)] = 0. The induction hypothesis means thatJ(k+i,1)ek = · · · = J(k+i,j)ek
andQ(k,i) �Aek/J(k+i,j)ek. Thus, there is an exact sequence ofA-modules

0→ J(k+i,j)ek/J(k+i,j+1)ek→Aek/J(k+i,j+1)ek→Q(k,i)→ 0,

which yields the exact sequence

0 → HomA
(
Q(k,i),Q

∗
(k,i)

)→HomA
(
Aek/J(k+i,j+1)ek,Q

∗
(k,i)

)
→ HomA

(
J(k+i,j)ek/J(k+i,j+1)ek,Q

∗
(k,i)

)→ 0.

Comparing theK-dimensions of the first two terms, we get

HomA

( ⊕
d(k+i,j)k

W(k + i, j),Q∗(k,i)
)
=HomA

(
J(k+i,j)ek/J(k+i,j+1)ek,Q

∗
(k,i)

)= 0.

Note also thatW(k + i, j) is contained in the nilpotent cell idealJ(k+i,j)/J(k+i,j+1)
of A/J(k+i,j+1). So W(k + i, j) can be viewed as anA/J(k+i,j)-module, and then
HomA/J(k+i,j) (

⊕
d(k+i,j)k W(k + i, j),Q∗(k,i))= 0. This forces that[W(k + i, j) :S(k)] = 0

sinceQ∗ � (Aek/J(k+i,j)ek)∗, which is an injectiveA/J(k+i,j)-module. We also obtai

(k,i)
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thatJ(k+i,j)ek = J(k+i,j+1)ek andQ(k,i) �Aek/J(k+i,j+1)ek . In particular, we getQ(k,i) �
Aek/J(k+i,s(k+i)+1)ek =Aek/J(k+i+1,0)ek by settingj = s(k + i), as desired. ✷

In order to apply Lemma 3.1 to the proof of our theorem, we also need the follo
lemma.

Lemma 3.2. LetA be a cellular algebra with involutioni and cell chain0= J(n+1,0) =
J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) = A and let1 � k � n. If Ext1A(W(s),W(s)

∗)= 0 for
anyk � s � n, then for allk � t � n and0 � i � n− t , we have the following:

(a) Ext1A(Q(t,i),Q
∗
(t,i))= 0.

(b) Ext1A(Q(t,i),W(µ)
∗)= 0 for anyµ� t .

(c) Ext1A(W(t),W(j)
∗)= 0 for any1 � j � n.

Proof. We first prove the case ofk = n. In this situation, t = n and i = 0. By
the definition ofQ(n,0), we know thatQ(n,0) � W(n). Thus Ext1A(Q(n,0),Q

∗
(n,0)) = 0.

Applying Lemma 3.1, we obtain thatQ(n,0) �Aen/J(n+1,0)en =Aen, which is a projective
A-module. The results follow at once.

For the casek < n, we prove the lemma by (downward) induction ont . The initial step
t = n has already been shown as above.

Now assume that the results are true fort � l + 1(> k), that is,

(a′) Ext1A(Q(t,i),Q
∗
(t,i))= 0 for l + 1 � t � n and 0� i � n− t ;

(b′) Ext1A(Q(t,i),W(µ)
∗)= 0 for l + 1� t � n, 0 � i � n− t andµ� t ;

(c′) Ext1A(W(t),W(j)
∗)= 0 for l + 1 � t � n and 1� j � n.

For the induction stept = l, we have that 0� i � n − l. We first prove the assertion
(a) and (b) by a second induction oni. In the subcase ofi = 0, we have tha
Q(l,0) � Ael/J(l,1)el , which is isomorphic toW(l). Thus Ext1A(Q(l,0),Q

∗
(l,0)) = 0 by the

condition. Using the induction assumption (c′), we see that dimK Ext1A(W(l),W(µ)
∗) =

dimK Ext1A(W(µ),W(l)
∗) = 0 for anyµ � l + 1, that is, Ext1A(W(l),W(µ)

∗) = 0 for
any µ � l + 1. Combining this with the condition that Ext1

A(W(l),W(l)
∗) = 0, we

have Ext1A(Q(l,0),W(µ)
∗) = 0 for any µ � l. Now, assume that the subcase ofi =

λ − 1 (< n − l) has already been shown, namely, Ext1
A(Q(l,λ−1),Q

∗
(l,λ−1)) = 0 and

Ext1A(Q(l,λ−1),W(µ)
∗) = 0 for anyµ � l. Let us prove the subcasei = λ. Using the

induction hypothesis Ext1
A(Q(l,λ−1),Q

∗
(l,λ−1))= 0 and Lemma 3.1, we see thatQ(l,λ−1) �

Ael/J(l+λ,0)el . Thereby, we have the following short exact sequence ofA-modules

0→ J(l+λ,0)el/J(l+λ,1)el→Q(l,λ)→Q(l,λ−1)→ 0,

that is,

0→
⊕
d

W(l + λ)→Q(l,λ)→Q(l,λ−1)→ 0, (1)

l+λ,l
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which induces an exact sequence

Ext1A
(
Q(l,λ−1),Q

∗
(l,λ−1)

)→ Ext1A
(
Q(l,λ),Q

∗
(l,λ−1)

)→ Ext1A

( ⊕
dl+λ,l

W(l + λ),Q∗(l,λ−1)

)
.

Thanks to the induction hypotheses on the subcasei = λ− 1, both end terms vanish, thu
the middle term Ext1A(Q(l,λ),Q

∗
(l,λ−1)) = 0, too. Applying HomA(−,W(l + λ)∗) to (1)

gives rise to the following exact sequence

Ext1A
(
Q(l,λ−1),W(l + λ)∗

) → Ext1A
(
Q(l,λ),W(l + λ)∗

)

→ Ext1A

( ⊕
dl+λ,l

W(l + λ),W(l + λ)∗
)
.

Again by the induction hypothesis oni = λ−1, the first term vanishes. The third term a
vanishes by the conditions of the lemma. Whence, we get Ext1

A(Q(l,λ),W(l + λ)∗) = 0.
Further, we may obtain an exact sequence from (1) as follows:

Ext1A
(
Q(l,λ−1),Q

∗
(l,λ)

)→ Ext1A
(
Q(l,λ),Q

∗
(l,λ)

)→ Ext1A

( ⊕
dl+λ,l

W(l + λ),Q∗(l,λ)
)
.

From the previous arguments, both end terms of the above sequence vanish, thus
that Ext1A(Q(l,λ),Q

∗
(l,λ))= 0. It follows that the assertion (a) holds.

Next, for anyµ� l, applying HomA(−,W(µ)∗) to (1) yields the exact sequence

Ext1A
(
Q(l,λ−1),W(µ)

∗)→ Ext1A
(
Q(l,λ),W(µ)

∗)→ Ext1A

( ⊕
dl+λ,l

W(l + λ),W(µ)∗
)
.

By the induction hypothesis on the subcasei = λ− 1, the first term is zero. Besides, t
last term is zero by the induction assumption (c′). Hence, Ext1A(Q(l,λ),W(µ)

∗)= 0 for all
µ� l, which is the assertion (b).

It remains only to prove that Ext1
A(W(l),W(j)

∗) = 0 for all 1 � j � n. According
to the preceding arguments, we have that Ext1

A(Q(l,i),Q
∗
(l,i)) = 0 for all 0� i � n − l.

By Lemma 3.1, this just means thatQ(l,i) = Ael/J(l+i,1)el � Ael/J(l+i+1,0)el for all
0 � i � n− l. Therefore, for any 1� i � n− l, we get an exact sequence

0→
⊕
dl+i,l

W(l + i)→Q(l,i)→Q(l,i−1)→ 0,

which yields an exact sequence

HomA

( ⊕
d

W(l + i),W(j)∗
)
→ Ext1A

(
Q(l,i−1),W(j)

∗)→ Ext1A
(
Q(l,i),W(j)

∗)

l+i,l
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→ Ext1A

( ⊕
dl+i,l

W(l + i),W(j)∗
)

for anyj � l. From Lemma 2.5(c), we see that the first term is zero. The last term is
zero, thanks to the induction assumption (c′). This forces that the middle two terms are is
morphic, and then Ext1

A(Q(l,0),W(j)
∗)� Ext1A(Q(l,n−l),W(j)∗). Note thatQ(l,0) �W(l)

andQ(l,n−l) �Ael/J(n+1,0)el = Ael . So the latter is a projectiveA-module. Consequently
Ext1A(W(l),W(j)

∗) = 0 for anyj � l. Observe that Ext1
A(W(l),W(j)

∗)= 0 has already
been verified for anyj � l + 1 in the proof of the subcasei = 0. Thus, the proof o
Lemma 3.2 is finished. ✷

Recall that modules with a division ring as endomorphism ring are calledSchurian.
Now we can prove the first main result.

Theorem 3.3. Let A be a cellular algebra with cell modulesW(i, j), (i, j) ∈ Λ, and
standard modules{ (i) | i ∈Λ0}. Then the following statements are equivalent:

(a) The algebraA is quasi-hereditary.
(b) All standard modules (i) are Schurian, equivalently,[ (i) :S(i)] = 1 for each

i ∈Λ0.
(c) Ext1A(W(i),W(i)

∗)= 0 for eachi ∈Λ0.

Proof. Obviously the condition (a) implies (b) (see [3] or [8]).
(b)⇒ (c). For anyi ∈Λ0, by the definition of standard modules, we always have

exact sequence ofA-modules

0→ Z→ P(i)→ (i)→ 0,

which induces an exact sequence

HomA
(
Z, (i)∗

)→ Ext1A
(
 (i), (i)∗

)→ 0.

If Z = 0, then the first term of the above sequence is zero, and so is the s
one. Otherwise, all the composition factors of top(Z) have index greater thani, thus
HomA(Z, (i)∗) = 0 since all composition factors of (i)∗ are of the formS(k) with
k � i. This also forces that Ext1

A( (i), (i)
∗) = 0. Observe that there is also an ex

sequence ofA-modules

0→L→ (i)→W(i)→ 0, (2)

which yields the following exact sequence

HomA
(
L, (i)∗

)→ Ext1A
(
W(i), (i)∗

)→ Ext1A
(
 (i), (i)∗

)
.

The last term vanishes by the above argument. From the condition[ (i) :S(i)] = 1 and the
fact[W(i) :S(i)] = 1, we know that[L :S(i)] = 0, which implies that HomA(L, (i)∗)= 0
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since soc( (i)∗)� top( (i))= S(i). So we get Ext1A(W(i), (i)
∗)= 0, that is, Ext1A( (i),

W(i)∗)= 0. Applying HomA(−,W(i)∗) to (2), we again get an exact sequence

HomA
(
L,W(i)∗

)→ Ext1A
(
W(i),W(i)∗

)→ Ext1A
(
 (i),W(i)∗

)= 0.

The first term equals zero since soc(W(i)∗)� S(i) and[L :S(i)] = 0. Hence, Ext1A(W(i),
W(i)∗)= 0, which is the condition (c).

(c)⇒ (a). Let 0= J(n+1,0) = J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) = A be a cell chain
which produces the cell modulesW(i, j), where 1� i � n and 0� j � s(i). In order
to prove that the cell chain is a heredity chain, it suffices to show that those cell mo
W(i, j) with j �= 0 are zero, equivalently, to show that there does not existi ∈Λ0 such that
s(i) �= 0. Suppose thats(i) > 0 for somei ∈Λ0. Then by Lemma 2.4(a), the compositi
factors ofW(i,1) are of the formS(k) with k � i. By the condition (c) and Lemma 3.
we have that Ext1

A(Q(k,i−k),Q∗(k,i−k)) = 0 for all 1 � k � i. Furthermore, we get tha
[W(i,1) :S(k)] = 0 for all 1� k � i by Lemma 3.1. Thus,W(i,1)= 0, which contradicts
s(i) > 0. This completes the proof of the theorem.✷

The remainder of this section is devoted to giving another criterion for a cellular al
to be quasi-hereditary via the second cohomology groups of certain cell modules. W
establish the following theorem.

Theorem 3.4. LetA be a cellular algebra with involutioni and cell chain0= J(n+1,0) =
J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) = A. Denote byW(i, j) the cell module associated
(i, j) ∈Λ. ThenA is quasi-hereditary if and only ifExt2A/J(p,q) (W(i),W(i)

∗)= 0 for each
i ∈Λ0, i � p � n and1 � q � s(p)+ 1.

For the proof, we need two key lemmas below. Let us continue to use the notati
the previous parts.

The following fact is similar to Lemma 3.1.

Lemma 3.5. LetA be a cellular algebra with involutioni and cell chain0= J(n+1,0) =
J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) = A. Let 1 � k � n and 0 � i � n − k. If
Ext2A/J(k+i,q) (Q(k,i),Q

∗
(k,i))= 0 for each1� q � s(k + i)+ 1, then:

(a) Q(k,i) �Aek/J(k+i+1,0)ek asA-modules.
(b) If s(k + i) � 1, then [W(k + i, j) :S(k)] = 0 and J(k+i,j)ek = J(k+i+1,0)ek for all

1 � j � s(k + i).

Proof. Observe that the conclusion (a) holds obviously ifs(k + i)= 0. Now we conside
the case ofs(k + i) > 0. Note that there is an exact sequence ofA/J(k+i,2)-modules

0→ J(k+i,1)ek/J(k+i,2)ek→Aek/J(k+i,2)ek→Q(k,i)→ 0,
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0→
⊕
d(k+i,1)k

W(k + i,1)→Aek/J(k+i,2)ek→Q(k,i)→ 0, (3)

which provides the following exact sequence

Ext1A/J(k+i,2)
(
Aek/J(k+i,2)ek,Q∗(k,i)

) → Ext1A/J(k+i,2)

( ⊕
d(k+i,1)k

W(k + i,1),Q∗(k,i)
)

→ Ext2A/J(k+i,2)
(
Q(k,i),Q

∗
(k,i)

)

in A/J(k+i,2)-mod. The first term vanishes just sinceAek/J(k+i,2)ek is a projective
A/J(k+i,2)-module. By the condition of the lemma, the last term vanishes as
Assume thatd(k+i,1)k �= 0. We thus get Ext1

A/J(k+i,2)(W(k + i,1),Q∗(k,i))= 0. By applying
HomA/J(k+i,2) (−,W(k + i,1)∗) to (3), we get the long exact sequence

0 → HomA/J(k+i,2)
(
Q(k,i),W(k + i,1)∗

)
→ HomA/J(k+i,2)

(
Aek/J(k+i,2)ek,W(k + i,1)∗

)

→ HomA/J(k+i,2)

( ⊕
d(k+i,1)k

W(k + i,1),W(k + i,1)∗
)

→ Ext1A/J(k+i,2)
(
Q(k,i),W(k + i,1)∗

)
.

According to the above argument, the last term is equal to zero. Note also that th
moduleW(k + i,1) arises from the nilpotent cell idealJ(k+i,1)/J(k+i,2) of A/J(k+i,2).
Hence,W(k + i,1), and alsoW(k + i,1)∗ can be seen asA/J(k+i,1)-modules, and thus

dimK HomA/J(k+i,2)
(
Q(k,i),W(k + i,1)∗

) = dimK HomA/J(k+i,1)
(
Q(k,i),W(k + i,1)∗

)
= [
W(k + i,1)∗ :S(k)

]
.

The last equality follows from thatQ(k,i) is a projectiveA/J(k+i,1)-module. However
dimK HomA/J(k+i,2) (Aek/J(k+i,2)ek,W(k + i,1)∗) is also equal to[W(k + i,1)∗ :S(k)]
just sinceAek/J(k+i,2)ek is a projectiveA/J(k+i,2)-module. This means that we ha
HomA/J(k+i,2) (W(k+ i,1),W(k+ i,1)∗)= 0, which is absurd because it contains the n
zero homomorphismW(k+ i,1)� top(W(k+ i,1))� soc(W(k+ i,1)∗) ↪→W(k+ i,1)∗.
Thus we getd(k+i,1)k = 0, that is,[W(k+i,1) :S(k)] = 0. ThereforeJ(k+i,1)ek = J(k+i,2)ek
and soQ(k,i) � Aek/J(k+i,2)ek asA-modules. Continuing by induction, we obtain th
d(k+i,j)k = 0 for all 1 � j � s(k + i), namely [W(k + i, j) :S(k)] = 0 for all 1 �
j � s(k + i). Thus,J(k+i,j)ek = J(k+i,j+1)ek, and soQ(k,i) � Aek/J(k+i,s(k+i)+1)ek =
Aek/J(k+i+1,0)ek . Hence, both (a) and (b) hold whens(k+ i)� 1, finishing the proof. ✷

The following lemma points out the relationship between the Ext2-groups of cell
modules, and the Ext2-groups of the modulesQ(k,i) in our context.
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Lemma 3.6. LetA be a cellular algebra with involutioni and cell chain0= J(n+1,0) =
J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) = A and let 1 � k � n. If Ext2A/J(p,q) (W(s),

W(s)∗)= 0 for anyk � s � n, s � p � n, and1 � q � s(p)+ 1, thenExt2A/J(t+i,q) (Q(t,i),

Q∗(t,i))= 0 for all k � t � n, 0� i � n− t , and1 � q � s(t + i)+ 1.

Proof. The casek = n. In this case,t = n and i = 0. Note thatQ(n,0) is isomorphic to
W(n). Thus, for each 1� q � s(n)+1, we have that Ext2

A/J(n,q)
(Q(n,0),Q

∗
(n,0))= 0 by the

condition of the lemma.
In the case ofk < n, we prove the lemma by (downward) induction ont . The above

argument implies that the caset = n is true.
We now assume that the assertion holds fort � l+ 1(> k), namely, Ext2A/J(t+i,q) (Q(t,i),

Q∗(t,i)) = 0 for all l + 1 � t � n, 0 � i � n − t , and 1� q � s(t + i)+ 1. Considering
the induction stept = l, we see that 0� i � n− l. Let us show the assertion by a seco
induction oni. In the subcase ofi = 0, we have thatQ(l,0) �W(l). Thus, by the condition
of the lemma we have that Ext2

A/J(l,q)
(Q(l,0),Q

∗
(l,0)) = 0 for each 1� q � s(l) + 1.

Suppose next that the subcases ofi � λ − 1(< n − l) have already been shown, that
Ext2A/J(l+j,q) (Q(l,j),Q

∗
(l,j))= 0 for all 0� j � λ−1 and 1� q � s(l+ j)+1. We are now

in the position to prove the subcasei = λ. To this end, it will take several steps. In the res
our proof, one further bit of notation will be handy: ifΘ is a class ofA-modules, we denot
by F(Θ) the full subcategory ofA-mod whose objects are the modulesM which have a
Θ-filtration, namely there is a finite chain 0=Mm+1 ⊂Mm ⊂Mm−1 ⊂ · · · ⊂M1=M of
submodules ofM such that all factorsMj/Mj+1, 1� j �m, belong toΘ.

Step 1. Let 0 � r � λ− 1. ThenQ(l,r) ∈F(W(l),W(l + 1), . . . ,W(l + r)).
Using the induction assumption that Ext2

A/J(l+j,q) (Q(l,j),Q
∗
(l,j)) = 0 for all 0� j � r

and 1� q � s(l + j) + 1, we see thatJ(l+j,q)el = J(l+j+1,0)el by Lemma 3.5(b). In
particular,J(l+j,1)el = J(l+j+1,0)el holds for each 0� j � r. Considering the following
filtration ofQ(l,r)

0=Mr+1⊂Mr ⊂ · · · ⊂Mj ⊂ · · · ⊂M0= J(l,0)el/J(l+r,1)el =Ael/J(l+r,1)el =Q(l,r),
whereMj = J(l+j,0)el/J(l+r,1)el , we have thatMj/Mj+1 � J(l+j,0)el/J(l+j+1,0)el =
J(l+j,0)el/J(l+j,1)el � ⊕

dl+j,l W(l + j), where 0� j � r. It, therefore, follows tha
Q(l,r) ∈F(W(l),W(l + 1), . . . ,W(l + r)).

Step 2. Let 0 � r � λ− 1 andr + 1 � v � λ. ThenExt1A/J(l+λ,q)(W(l + ν),Q∗(l,r))= 0 for
each1 � q � s(l + λ)+ 1.

Whenν = λ. According to the induction hypothesis on the case ofl+λ and Lemma 3.5
we have thatQ(l+λ,0) � Ael+λ/J(l+λ,q)el+λ. Hence,W(l + λ), which is isomorphic to
Q(l+λ,0), is a projectiveA/J(l+λ,q)-module. Thus, Ext1

A/J(l+λ,q)(W(l + λ),Q∗(l,r)) = 0
being trivial.

For the caseν < λ, we have the following exact sequence ofA/J(l+λ,q)-modules

0→K1→Ael+ν/J(l+λ,q)el+ν→W(l + ν)→ 0, (4)
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in which, K1 = J(l+ν,1)el+ν/J(l+λ,q)el+ν . If K1 = 0, thenW(l + ν) is a projective
A/J(l+λ,q)-module. So the assertion holds obviously. ForK1 �= 0, the induction assump
tion on the casel + ν(� l + 1) and Lemma 3.5 insure thatJ(l+λ,q)el+ν = J(l+λ,1)el+ν and
J(l+ν+j+1,0)el+ν = J(l+ν+j,1)el+ν , where 0� j � λ− ν. Thus there is a chain of submo
ules ofK1

0 = Mλ−ν+1⊂Mλ−ν ⊂ · · · ⊂Mj = J(l+ν+j,0)el+ν/J(l+λ,1)el+ν ⊂ · · · ⊂M1

= J(l+ν+1,0)el+ν/J(l+λ,1)el+ν = J(l+ν,1)el+ν/J(l+λ,1)el+ν =K1,

which provides thatMj/Mj+1 � J(l+ν+j,0)el+ν/J(l+ν+j+1,0)el+ν = J(l+ν+j,0)el+ν/
J(l+ν+j,1)el+ν �⊕

dl+ν+j,l+ν W(l + ν + j). As a result,K1 ∈ F(W(l + ν + 1),W(l +
ν + 2), . . . ,W(l + λ)). Now applying HomA/J(l+λ,q) (−,Q∗(l,r)) to (4) gives rise to an exac
sequence

HomA/J(l+λ,q)
(
K1,Q

∗
(l,r)

) → Ext1A/J(l+λ,q)
(
W(l + ν),Q∗(l,r)

)
→ Ext1A/J(l+λ,q)

(
Ael+ν/J(l+λ,q)el+ν,Q∗(l,r)

)
.

It is clear that the last term equals zero. Noting thatQ(l,r) ∈ F(W(l),W(l + 1), . . . ,
W(l + r)), as shown in Step 1, we getQ∗(l,r) ∈ F(W(l)∗,W(l + 1)∗, . . . ,W(l + r)∗).
This, together withK1 ∈ F(W(l + ν + 1),W(l + ν + 2), . . . ,W(l + λ)), means tha
the first term in the above exact sequence is also zero by Lemma 2.5(c). Conseq
Ext1A/J(l+λ,q) (W(l + ν),Q∗(l,r))= 0, as desired.

Step 3. Let 0 � r � λ − 1 and 1 � q � s(l + λ) + 1. ThenExt2A/J(l+λ,q) (W(l + r + 1),

Q∗(l,r))= 0.
The caser = λ − 1 is obvious sinceW(l + λ) is a projectiveA/J(l+λ,q)-module, as

mentioned in Step 2.
For anyr < λ− 1, there is an exact sequence ofA/J(l+λ,q)-modules

0→K2→Ael+r+1/J(l+λ,q)el+r+1→W(l + r + 1)→ 0, (5)

whereK2= J(l+r+1,1)el+r+1/J(l+λ,q)el+r+1. Using the induction hypothesis onl + r + 1
and Lemma 3.5, we have thatJ(l+λ,q)el+r+1 = J(l+λ,1)el+r+1 andJ(l+r+j+2,0)el+r+1 =
J(l+r+j+1,1)el+r+1, where 0� j � λ− r − 1. This yields a filtration ofK2 as follows:

0 = Mλ−r ⊂Mλ−r−1⊂ · · · ⊂Mj = J(l+r+j+1,0)el+r+1/J(l+λ,1)el+r+1⊂ · · · ⊂M1

= J(l+r+2,0)el+r+1/J(l+λ,1)el+r+1= J(l+r+1,1)el+r+1/J(l+λ,1)el+r+1=K2.

We observe thatMj/Mj+1 � J(l+r+j+1,0)el+r+1/J(l+r+j+2,0)el+r+1 = J(l+r+j+1,0)×
el+r+1/J(l+r+j+1,1)el+r+1 �⊕

dl+r+j+1,l+r+1
W(l + r + j + 1), and thusK2 ∈ F(W(l +

r+2),W(l+ r+3), . . . ,W(l+λ)). By Step 2 we obtain that Ext1
A/J(l+λ,q) (K2,Q

∗
(l,r))= 0,

which implies that Ext2 (W(l + r + 1),Q∗ )= 0 by dimension shifting in (5).
A/J(l+λ,q) (l,r)
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Step 4. Ext2A/J(l+λ,q)(Q(l,r),Q
∗
(l,r))= 0 for all 0 � r � λ.

Use induction onr, the caser = 0 being trivial, again by the condition of the lemm
Suppose that the assertion holds forr−1, namely Ext2A/J(l+λ,q) (Q(l,r−1),Q

∗
(l,r−1))= 0. We

now show the case ofr. Note that we have already proved Ext2
A/J(l+j,q)(Q(l,j),Q

∗
(l,j))= 0

for 0 � j � λ − 1 and 1� q � s(l + j) + 1. Thus we know by Lemma 3.5 th
Q(l,r−1) = Ael/J(l+r−1,1)el � Ael/J(l+r,0)el . Whence, there exists an exact sequenc
A/J(l+λ,q)-modules

0→
⊕
dl+r,l

W(l + r)→Q(l,r)→Q(l,r−1)→ 0, (6)

which induces the exact sequence

Ext2A/J(l+λ,q)
(
Q(l,r−1),Q

∗
(l,r−1)

) → Ext2A/J(l+λ,q)
(
Q(l,r),Q

∗
(l,r−1)

)

→ Ext2A/J(l+λ,q)

( ⊕
dl+r,l

W(l + r),Q∗(l,r−1)

)
.

The first term is zero following from the induction hypothesis onr − 1. Thanks
to Step 3, we see that the last term of the above sequence is also zero, an
Ext2A/J(l+λ,q) (Q(l,r),Q

∗
(l,r−1)) = 0. Now applying HomA/J(l+λ,q) (−,W(l + r)∗) to (6), we

have the following exact sequence

Ext2A/J(l+λ,q)
(
Q(l,r−1),W(l + r)∗

) → Ext2A/J(l+λ,q)
(
Q(l,r),W(l + r)∗

)

→ Ext2A/J(l+λ,q)

( ⊕
dl+r,l

W(l + r),W(l + r)∗
)
.

Again by Step 3, the first term vanishes. The last term also vanishes by the con
of the lemma. This forces that Ext2

A/J(l+λ,q) (Q(l,r),W(l + r)∗) = 0. Finally, applying

HomA/J(l+λ,q) (−,Q∗(l,r)) to (6) provides an exact sequence

Ext2A/J(l+λ,q)
(
Q(l,r−1),Q

∗
(l,r)

) → Ext2A/J(l+λ,q)
(
Q(l,r),Q

∗
(l,r)

)

→ Ext2A/J(l+λ,q)

( ⊕
dl+r,l

W(l + r),Q∗(l,r)
)
.

Both end terms of the above sequence vanish according to the preceding argu
This shows that Ext2

A/J(l+λ,q) (Q(l,r),Q
∗
(l,r)) = 0. In particular, we have thus proved th

Ext2A/J(l+λ,q) (Q(l,λ),Q
∗
(l,λ))= 0, thereby finishing the proof of the lemma.✷

Now we are in the position to prove Theorems 3.4 and 1.1.
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Proof of Theorem 3.4. For the ‘ if ’ part, the assumptions of Theorem 3.4 guarantee
Lemma 3.6 can be applied, which means that Lemma 3.5 can also be applied. By im
the proof of (c)⇒ (a) in Theorem 3.3, it is not difficult for us to verify that the algebraA
is quasi-hereditary. Conversely, we know that there is no nilpotent cell ideal appe
in the cell chain ofA, and also thatW(i) coincides with (i) for eachi ∈ Λ0. Hence,
Ext2A(W(i),W(i)

∗)= 0 follows directly from the property of standard modules of qu

hereditary algebras (see [3]). Using the known fact that Extj
A/J (M,N)� ExtjA(M,N) for

any heredity idealJ of A and anyA/J -modulesM andN (see [2] or [7]), we can easil
deduce the ‘only if ’ part. ✷
Proof of Theorem 1.1. Note that if A is quasi-hereditary, thenΛ = Λ0. It follows
that the condition (a) implies (b) by Theorem 3.3. Conversely, the condition (b) m
that Ext1A(W(λ),W(λ)

∗) = 0 for all λ ∈ Λ0, thusA is quasi-hereditary according
Theorem 3.3. Similarly, we have that (a) and (c) are equivalent, using Theorem 3.4.✷

As a corollary of Theorem 1.1, we have the following result given in [10].

Corollary 3.7. For a cellular algebraA the following are equivalent:

(a) The algebraA is quasi-hereditary.
(b) Ext1A(W(λ),W(µ)

∗)= 0 for all λ, µ ∈Λ.

Remark 3.8. In his paper [10], Xi also proved that a cellular algebraA is quasi-hereditary
if and only if Ext2A(W(λ),W(µ)

∗) = 0 for all λ, µ ∈ Λ. When this is compared wit
the condition (b) of Theorem 1.1, a question arises naturally: for a cellular algebA,
if Ext2A(W(λ),W(λ)

∗) = 0 for eachλ ∈ Λ, is A quasi-hereditary? The question w
have a positive answer if one can deduce that Ext2

A/J(k+i,q) (Q(k,i),Q
∗
(k,i)) = 0 for all

1 � q � s(k + i)+ 1, under the condition that Ext2
A(Q(k,i),Q

∗
(k,i))= 0.

4. Semi-simplicity of cellular algebras

In this section, we are going to deal with the semi-simplicity of cellular algebra
considering the first cohomology groups of some cell modules and simple module
issue of semi-simplicity reduces in [4] to the computation of the discriminants of bili
forms associated to cell modules. We are interested in a homological characterizatio

Let us prove the following theorem which has Theorem 1.2 as an imme
consequence.

Theorem 4.1. For a cellular algebraA the following conditions are equivalent:

(a) The algebraA is semisimple.
(b) Ext1A(W(λ),S(µ))= 0 for anyλ,µ ∈Λ0 satisfyingµ� λ.
(c) Ext1A(W(λ),W(µ)) = 0 for anyλ,µ ∈Λ0 satisfyingµ� λ.
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Proof. Obviously, the condition (a) implies both (b) and (c) sinceW(λ) � S(λ) for all
λ ∈Λ0 in this situation.

(b) ⇒ (a). Observe that for anyλ ∈ Λ0, there always exists an exact sequence
A-modules

0→ rad
(
W(λ)

)→W(λ)→ S(λ)→ 0,

which provides the following exact sequence

HomA
(
rad

(
W(λ)

)
, S(µ)

)→ Ext1A
(
S(λ), S(µ)

)→ Ext1A
(
W(λ),S(µ)

)

for any µ � λ. Since [rad(W(λ)) :S(µ)] = 0 for any µ � λ, the first term of the
above sequence is zero. The last term is also zero by the condition. Thus we
that Ext1A(S(λ), S(µ)) = 0 for any µ � λ. Thanks to Lemma 2.5, we also ha
Ext1A(S(λ), S(µ)) = 0 for anyλ � µ. Hence, Ext1A(S(λ), S(µ)) = 0 for anyλ,µ ∈ Λ0,
which implies thatA is semisimple.

(c)⇒ (a). Let 0= J(n+1,0) = J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(1,0) = A be a cell chain
of the cellular algebraA. It is enough to prove that bothW(l)� S(l) ands(l)= 0 hold for
any 1� l � n.

Use induction onl, the casel = 1 just means thatW(1)� S(1). We need to verify tha
s(1) = 0. Suppose thats(1) > 0. ThenW(1,1) is not zero. Note thatW(1,1) has only
S(1) as a composition factor. Therefore, the condition Ext1

A(W(1),W(1))= 0 means tha
Ext1A(W(1),W(1,1))= 0. Thus, the following exact sequence

0→ J(1,1)e1/J(1,2)e1→Ae1/J(1,2)e1→W(1)→ 0

splits sinceJ(1,1)e1/J(1,2)e1 � ⊕
d(1,1)1

W(1,1). Hence, we have thatAe1/J(1,2)e1 �
W(1) ⊕ ⊕

d(1,1)1
W(1,1). Obviously, d(1,1)1 �= 0, which forces thatAe1/J(1,2)e1 is

decomposable. This is absurd.
We now assume that bothW(l)� S(l) ands(l)= 0 are true for any 1� l � j −1(< n).

Sinces(l) = 0 for all 1� l � j − 1, it follows that the cell chain ofA has the following
form:

0 = J(n+1,0) = J(n,s(n)+1) ⊂ J(n,s(n)) ⊂ · · · ⊂ J(j+1,0) = J(j,s(j)+1) ⊂ · · · ⊂ J(j,1)
⊂ J(j,0) ⊂ J(j−1,0) ⊂ · · · ⊂ J(1,0) =A.

For any 1� i � j − 2, the induction hypothesis implies that[W(i + 1) :S(i)] = · · · =
[W(j − 1) :S(i)] = 0. ThereforeJ(i+1,0)ei/J(i+2,0)ei = · · · = J(j−1,0)ei/J(j,0)ei , that is,
J(i+1,0)ei = J(j,0)ei , and thenW(i) � Aei/J(i+1,0)ei = Aei/J(j,0)ei for any 1� i �
j − 2. Combining this with the factW(j − 1)� Aej−1/J(j,0)ej−1, we have thatW(i)�
Aei/J(j,0)ei for any 1� i � j − 1. Assume thatW(j) has a composition factorS(i) with
1 � i � j − 1, namely,dji �= 0. Then there exists an exact sequence ofA-modules

0→ J(j,0)ei/J(j,1)ei→Aei/J(j,1)ei→W(i)→ 0,
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that is,

0→
⊕
dji

W(j)→Aei/J(j,1)ei→W(i)→ 0,

which splits by the condition that Ext1
A(W(i),W(j)) = 0 for any i � j , a contradiction

This proves thatW(j) has no composition factorsS(i) with i � j − 1. According to
Lemma 2.4(a), we getW(j)� S(j).

It remains only to prove thats(j) equals zero. From[W(j) :S(i)] = 0 for all 1� i �
j − 1, we see thatJ(j,0)ei/J(j,1)ei = 0, namely,J(j,0)ei = J(j,1)ei for all 1 � i � j − 1.
Consequently, we getW(i)�Aei/J(j,1)ei for any 1� i � j − 1. Combining this with the
factW(j) � Aej/J(j,1)ej , we have thatW(i) � Aei/J(j,1)ei for any 1� i � j . Suppose
thats(j) �= 0. ThenW(j,1) is not zero. Thus, there exists someS(i) with 1 � i � j , such
that[W(j,1) :S(i)] �= 0, namely,d(j,1)i �= 0. Observe that there is an exact sequence

0→ J(j,1)ei/J(j,2)ei→Aei/J(j,2)ei→W(i)→ 0

in A-mod, that is,

0→
⊕
d(j,1)i

W(j,1)→Aei/J(j,2)ei→W(i)→ 0

is exact. Since Ext1
A(W(i),W(k)) = 0 for any i � k and W(k) � S(k) for any

k � j , as proved, we obtain that Ext1
A(W(i), S(k)) = 0 for any i � k � j . For the

case k � i − 1, we have that dimK Ext1A(W(i), S(k)) = dimK Ext1A(S(k),W(i)
∗) =

dimK Ext1A(W(k),W(i)) = 0, namely, Ext1A(W(i), S(k)) = 0. As a result, Ext1A(W(i),
S(k)) = 0 for any 1� k � j , which implies that the last exact sequence splits. Th
a contradiction, and thus the proof is completed.✷
Remark 4.2. Of course, one would expect that Theorem 4.1 could be generalized
case of the second cohomology groups. But such an attempt is usually futile. For ex
letA be the quotient of the path algebra (over the fieldK) of the quiver

1
α−→←−
β

2

modulo the ideal generated byβα. An involution onA can be given by fixing the ver
tices, but interchanging the pathsα and β . Let J(2,0) be the ideal generated bye2, β ,
α, andαβ , and letJ(1,0) = A. One can check easily that the algebraA is cellular with
the defined involution and the cell chain 0⊂ J(2,0) ⊂ J(1,0) =A. Moreover, we see tha
W(2) � P(2) andW(1) � S(1). There is no difficulty to get that Ext2

A(W(1), S(1)) =
Ext2A(W(1), S(2)) = Ext2A(W(2), S(2)) = 0 and Ext2A(W(1),W(1)) = Ext2A(W(1),
W(2))= Ext2 (W(2),W(2))= 0. However, the algebraA is not semisimple.
A
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We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. That the conditions (a), (b), and (c) are equivalent follows fr
Theorem 4.1. When the algebra is semisimple, we see thatΛ=Λ0, and thus the condition
(c) and (c′) just say the same thing. Note that the condition (a) means thatW(λ)� S(λ) for
eachλ ∈ Λ0 = Λ and thus (a) implies (c′′). The implications(c′′)⇒ (c′) and(c′)⇒ (c)
are trivial. ✷
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