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Abstract

Some simpler homological characterizations of quasi-hereditary algebras inside the class of
cellular algebras are presented in terms of cell modules. Moreover, some new criteria for the semi-
simplicity of cellular algebras are given by using the cohomology groups of cell modules and simple
modules.
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1. Introduction

Cellular algebras have been introduced by Graham and Lehrer [4] in order to investigate,
in an axiomatic framework, the modular representations of Hecke algebras and related
algebras with geometric connections like Brauer algebras and Temperley—Lieb algebras.
One of the important features of cellular algebras is that from the theoretical point of view,
the problem of determining a parameter set for all irreducible representations is reduced to
guestions in linear algebra.

There are close connections between cellular algebras and quasi-hereditary algebras.
In fact, the class of cellular algebras has a large intersection with the class of quasi-
hereditary algebras. In [6] it was shown that a cellular algebria quasi-hereditary if
and only if A has Cartan determinant one, and this is equivalent to that the decomposition
matrix of A is square. In this way, one can obtain many quasi-hereditary algebras from
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cellular algebras, for instance, from Brauer algebras [4,6] and Birman—Wenzl algebras [9].
Recently, Xi [10] gave a homological characterization of the quasi-heredity of cellular
algebras in terms of cell modules. Unlike the characterization of Cartan determinant, the
homological characterization does not need any information on simple modules.

A special case of quasi-heredity is the semi-simplicity. It is well-known that all
split semisimple algebras which are naturally included in the class of quasi-hereditary
algebras are cellular. However, cellular algebras are not always semisimple. The problem
of determining semi-simplicity was theoretically reduced to the computation of the
discriminants of bilinear forms defined on cell modules in [4], which is a local solution. It
is shown in [11] that a cellular algebrais semisimple if and only if all eigenvalues of the
Cartan matrix ofA are rational numbers and the Cartan determinant equals one.

The purpose of this paper is to give much simpler homological characterizations of the
guasi-heredity of cellular algebras and some new criteria for their semi-simplicity by using
the cohomology groups of cell modules and simple modules. Our main results can be stated
as follows.

Theorem 1.1. Let K be afield andd a cellular K -algebra with involution and cell chain
O0=Jut+1 C Iy C Jy—1 C--- C J1 = A. Denote byW (1) the cell module associated to
the cell idealJ, /J,+1, 1 < A < m. Then the following statements are equivalent

(a) The algebraa is quasi-hereditary.
(b) Exti (W), W(1)*) = 0for eachl < A < m.
(c) Ext,, (W(x), W()*) =0foreachl <1 <mandi+1<pu<m+1.

In the above we denote By (1)* the moduleHomg (i (W (1)), K).

The above condition (b) improves a result obtained by Xi in [10], where the vanishing
of all Ext'-groups between cell modules and dual cell modules was required. We note that
the approach there does not work in our case.

The following theorem provides some homological characterizations of the semi-
simplicity of cellular algebras.

Theorem 1.2. Let K be afield andA a cellular K -algebra with respect to an involutian
and a posetA, >). Denote byW (1) the cell module associated o€ A. Let Ag be the
subset ofA, which parametrizes the isomorphism classes of simpteodules. Then the
following conditions are equivalent

(a) The algebraA is semisimple.
(b) Ext}‘(W(A), S(u)) =0foranyi, u € Ag satisfyingu > A, where simpleA-module
S(p) = W)/ radW(u)).
() Exti(W(r), W(n)) =0foranya, u € Ao satisfyingu > A.
() Ext} (W), W(w)) =0foranyx, u € A satisfyingu > A.
(") Exti (W), W(w)) =0forall &, € A.
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The contents of this paper are as follows. In Section 2 we recall the definitions of cellular
and quasi-hereditary algebras and then we assemble a few necessary facts which are often
used in the paper. The proof of Theorem 1.1 is given in Section 3 after establishing several
key lemmas. The last section is devoted to the proof of Theorem 1.2. Nevertheless, these
criteria for the semi-simplicity cannot be generalized to the case of the second cohomology
groups.

2. Preliminaries

In this section we shall recall the two equivalent definitions of cellular algebras and the
definition of quasi-hereditary algebras. We also collect several facts which will be used
freely in later sections.

For simplicity we assume th& is a field. Throughout the papet, denotes a finite-
dimensional associativk -algebra with the identity 1, and-mod denotes the category of
all finitely generated lefd-modules. By a module we mean a left module, unless otherwise
specified.

Definition 2.1 (Graham and Lehrer [4]). & -algebraA is called acellular algebrawith
cell datum(A, M, C, i) if the following conditions are satisfied:

(C1) The finite setA is partially ordered and for eache A there is a finite indexing set
M()). The algebraA has aK-basisC’S\)T where(S, T) runs through all elements of
M) x M(A) forall L € A.

(C2) The map is a K -linear anti-automorphism of which sendsCy ;. to C7  for all
A€ AandallS andT in M()).

(C3) Foreach. € A andS,T € M(») and each: € A the productzcgj can be written
as(ZS,GM(M rq (S, S)C",,T) +r’ wherer’ is a linear combination of basis elements
with upper indexu strictly larger than, and where the coefficienis(S’, S) € K
are independent df.

In the following, akK -linear anti-automorphism of A with i? = id will be called an
involution We now recall the equivalent definition of cellular algebras, which is more
handy for our theoretical and structural purposes because it does not depend on a choice of
basis.

Definition 2.2 (Konig and Xi [5]). LetA be aK -algebra with an involution. A two-sided
ideal J of A is called acell idealif and only ifi (J) = J and there exists a leftide@f c J
such that there is an isomorphismAfbimodulesy: J ~ W ®k i (W) (wherei(W) C J
is thei-image of W) making the following diagram commutative:

J— s W®ki(W)
il \LX®)'HI'()')®!'(X)
J—2 s Weki(W)
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The algebraA (with the involutioni) is calledcellular if and only if there is a vector
space decompositia = J,, & J;,_ ® --- & J; (for somem) with i (J}) = J; for eachj
and such that setting; = @;":j J/ gives a chain of two-sided ideals df:0= J,,41 C
Jn C Jp—1 C--- C J1 = A (each of them fixed by) and foreacly (j =m,m —1,...,1)
the quotient/;/J;41 is a cell ideal (with respect to the involution induced bgn the
quotient) ofA/J; 1.

The above chain irt is called acell chain and the module® (j), 1< j < m, which
are obtained from the sections/J; 1 of the cell chain, are calledell modulesof the
cellular algebrad. It is proved in [5] that a cell ideal is eitherJ? = 0 or a heredity ideal
(see Definition 2.3 below). Moreover, there is a natural bijection between isomorphism
classes of simplel.-modules and the setg:= {A | 1 < A < m such thatl)\2 Z J+1}. The
inverse of this bijection is given by sending such & the top of the cell modul& (1)
(see [4,5]).

Assume that the cardinality olg is n, which equals the number of non-isomorphic
simple A-modules. For the convenience in the proofs later on, we relabel the original cell
chain as follows:

0 = Ju+1,0 = Jous)+1) C Jsmy) C - C Ji+1,00 = Jis)+1) C Jiis) C -+

C Jiv CJi0=Ji-1s56i-1+1) C---CJr0=A4,

where the ideald|; 0, 1 <i < n, are just those ideals;, in the original cell chain with
A € Ag, ands(i) denotes the number of ideall, in the original cell chain satisfying
Ji+1,00 € Ju € Ji0)- Thuss(i) > 0. Moreover, ifs(i) > 0, thenJ(%’k) C Ji k+1) for each

1<k <s0).

The cell module associated to cell ideigl ;) / Ji, j+1), in which, 1<i <n and 0< j <
s(i), will be denoted bW (i, j). For simplicity we shall always writ& (i) for W (i, 0) in
the rest of this paper, except where otherwise stated. Such a notation precisely indicates that
the cell module corresponds to an idempotent cell ideal. Note that for each idempotent cell
ideal J(;,0)/ J(i,1), there is a primitive idempoterat of A such that/; o) = Ae; A + Jii 1
and, moreoverV (i) =~ Ae; / Jii.1ye; . The latter has a simple top, which is denotedsigs).

Thus, S(1), ..., S(n) form a complete set of non-isomorphic simplemodules. LetA
be the index set(i, j) | 1 <i <n, 0< j <s(i)} endowed with lexicographic ordering,
and Ag be the subset(i, 0) | 1 < i < n} inheriting the ordering ofA. Clearly, we may
identify Ag with the index se{1, 2, ..., n} with its natural ordering. We shall always fix
the ordering for labelling the simplé-modules.

For eachi, let P(i) be the projective cover of (i), and denote by (i) the maximal
factor module ofP (i) with composition factors of the forrfi(j), j < i, called astandard
module Dually, let/ (i) be the injective envelope ¢f(i) and denote by (i) the maximal
submodule off (i) with composition factors of the forrfi(j), j < i, called acostandard
module It should be pointed out that only in some special cases, standard modules coincide
with cell modules.

Let us also recall the definition of quasi-hereditary algebras arising in the representation
theory of complex Lie algebras and algebraic groups.
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Definition 2.3 (Cline, Parshall, and Scott [1]). Let be aK-algebra. An ideal/ of A
is called aheredity idealif J is idempotent,J(radA)J = 0 andJ is a projective left
(or right) A-module. The algebra is calledquasi-hereditaryprovided there is a finite
chain 0= J,41 C J, C--- C Ju = A of ideals inA such that/; /J;41 is a heredity ideal
of A/J;1q1 for all j. Such a chain is then calledreredity chainof the quasi-hereditary
algebraA.

It is known [5,6] that a cell chain of the cellular algebtais a heredity chain if and
only if there is no nilpotent cell ideal arising from the cell chain, and this is equivalent to
A= Ag.

We also need that the notatigiX : S(k)] denotes the Jordan—Hdlder multiplicity of
S(k) in any A-moduleX. Obviously,[X : S(k)] = dimg Homs (P (k), X) if K is a splitting
field for A. For a cellular algebra, defined; . =[W(, j):Sk)] for all (i, j) € A
andk € Ap, thus give rise to a matri® = (d(; jy), which is the so-calledecomposition
matrix of A.

The following lemma collects some known facts from [4] on cellular algebras which we
shall need in the sequel.

Lemma 2.4. Let A be a cellulark -algebra with involution and cell chair0 = Ji,4+1,0) =
Jon,smy+1) C Jm,s(my) C -+ C J1,00 = A. Then we have the following

(a) The decomposition matri® is lower unitriangular, namelyd; jx = 0 unlessi > k,
and d;; :=dg 0 = 1, where (i, j) € A and k € Ag. In particular, Homg (W (i),
W(k)) =0unlessk > i, andEnds (W (i)) >~ K. Moreover,K is a splitting field forA.

(b) Let P = Aex, 1 <k < n. ThenP has an A-module filtration0 = J,11.0ex C
Jismyex C -+ C Ja,o0ex = P such that the factor moduleg; jyex/Ji j+1ex are
isomorphic to the modul@d(im W(i, j), in which we put/i; si)+1) = Ji+1,0)-

We remark that the factor modulg jyex/J, j+1 ex appearing in the above lemma may
be zero, and this occurs if and onlydf; ;) is also zero.

Let A be a cellular algebra with respect to an involutiborand X an A-module.
Following [5,10], we define thdual X* of X to be theA-module Honx (i (X), K), where
i(X) is equal toX as a vector space, but with the rightmodule structure given by
x-a=1i(a)x forall x € X anda € A.

Observe that the functaris a self-dual functor, and furthermore, it has the following
easily verified properties.

Lemma 2.5. Let A be a cellularK -algebra with involution. Then we have the following

(a) For any simpleA-moduleS(k) and anyM € A-mod, we have thafk)* >~ S(k),
P(k)* ~ I (k), top(M) ~ soqM*) and[M : S(k)] = [M*: S(k)].

(b) dimg Ext/, (X, Y) = dimg Ext, (Y*, X*) for any j > 0 and anyX, Y € A-mod.

(c) Let A, u € Ag. ThenHomy (W), W(n)*) # 0 if and only if A = u. Moreover,
dimg Homy (W(A), W(L)*) = 1.
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Proof. The assertion (a) is an easy consequence of dual functor and the known fact
Aer >~ Ai(e) (see [4]). The assertion (c) follows readily from (a), (b), and Lemma 2.4.
So it only needs to give a proof of (b). Use induction grthe casej = 0 being trivial
since the functox is self-dual.

Letj > 1, and suppose that (b) is true fpr- 1. Let0—~ Z — P — X — 0 be an exact
sequence iM-mod with P a projective cover oX. Then 0— X* — P* - Z* - 0
is an exact sequence witR* an injective A-module. It follows from E)Q(X, Y) ~
Ext, %(z,v) and Ex{ '(y*,z%) ~ Ext,(y*,x*) that dinkExt,(X,Y) =
dimg Ext, (Z, ¥) = dimg Ext, ' (Y*, Z*) = dimg Ext} (Y*, X*), which is our desired
result. O

3. Quasi-heredity of cellular algebras

In this section we present some homological characterizations of quasi-hereditary
algebras inside the class of cellular algebras by means of cell modules. We shall prove the
stronger statements Theorem 3.3 and Theorem 3.4 which have Theorem 1.1 as a corollary.

From now on we fix a cellular algebrda with involution i and cell chain 0=
Jn+1,00 = Jnsim+1) C Josmy C -+ C J1.00 = A. However, this does not prevent us
from discussing the quasi-heredity of the cellular algebiince it has been shown in [6]
that A is quasi-hereditary with respect to an involutioand a cell chain if and only if any
cell chain of A with respect to any involution is a heredity chain.

Before beginning with the following lemma, we need one more notation.ALée
a cellular algebra with cell chain® J, 1,00 = Ju,st+1) C Jisiy) C -+ C Ja,0) = A.
Forany 1<k <nand 0<i <n—k, defineQ ;) := Aex/J+i. 1 ex, Which is a projective
A/ J+i,-module. The module® « ;) play a prominent role in our study.

The following lemma can help us determine the composition factors of some cell
modules.

Lemma 3.1. Let A be a cellular algebra with involution and cell chain0 = J,11,0 =
Jonsm+1) C Jmsmny) C -+ C J0) = A. If EXI}X(Q(k,,'), Q>(kk,i)) =0forsomel<k<n
and0<i <n —k, then

(@) Qi) = Aer/Jk+i+1,00€k-
(b) f stk +i)>1,then[W(k+1i,j):Sk)]=0forall 1< j <sk+1i).

Proof. Observe that (a) evidently holds whetk + i) = 0. Fors(k + i) > 1, the two
assertions will be proved by using induction pnin the case off = 1, we have the exact
sequence ofti-modules

0— Jtivnex/Ju+izex = Aex/Jk+i ek = Quw.iy = 0,

namely, the sequence

0— @ Wk+i,1) — Aex/Jyrier — Qu,iy —~> 0

A+ 1)k
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is exact, which induces an exact sequence

0 — Homa(Q.iy» O.iy) = Homa(Aex/Juviex, Qi)

— Homy( € Wk +i.1), Q;‘k,,.)) — Ext; (Quir. Qi)

A+ 1)k

The last term is zero by the hypothesis of the lemma. Meanwhile, we have

dimg Homa (Q ki), Q(kz)) = dimg Homa s, 1) Qi) Q(kz)) [Q(kz) S(k)]
= dimg Homy j,,. 5 (Aex/Jarier, Qf i)

= dimg Homu (Aex/Jiri 2 exs Qi)

sinceQ «.;) is a projectived / J+,1-module andex / J+i,2)ex IS a projectived / J+i.2)-
module. As a result, Hom@d(k+ e Wk +i,1), Q’(k )) = 0. Suppose thaf; 1)x # 0.
Then Hony(W(k + i,1), O* i) ) = 0. Note thatW(k + i,1) C J+i1)/Jk+i,2) and
the latter is a nilpotent ceII ideal ofA/Jk+i2), thus Wk + i,1) can be V|ewed
as an A/J+i,1-module since it is annihilated by 1)/ Jk+i,2). But Q,“)
an injective A/Jk+i,1y-module, so we obtain thad4; 1x = [W(k + i,1):S(k)] =
dimg Homy ;o (W(k + i, 1), Q ) = dimg Homy (W(k + i, 1), Q ,)) = 0, which
is absurd. HencelW(k +i,1): S(k)] = du+i,pk = 0, which implies thatl(k+, nek =
Jiri,2per and Q iy = Aex [ J ki 2)€k-

Assume now thatW (k+i,1): S(k)] =0forall 1</ < j — (< s(k+i)). We show that
[W(k+1, j):S(k)] =0. The induction hypothesis means thigt,; 1yex = - - - = Juyi, j)ex
andQ iy =~ Aer/Ju+i, jyex- Thus, there is an exact sequencetemodules

0= Joeti, jyex/J+i, j+v ek = Aex/ I+ j+nex = Qi) = 0,
which yields the exact sequence
0 — Homa(Qk.iy» Qf.iy) = Homa(Aex/Jirijrner Qiy)
— Homy (Jati jye/ Jk+ij+n ek Qi) = O.
Comparing thek -dimensions of the first two terms, we get
Homy @ Wk +1i, j), Q’fk,,»)> = Homy (i, jyex/ Ji+i, j+1) ek, ka,,»)) =0.
dk+i, jk

Note also thatW(k + i, j) is contained in the nilpotent cell ideaki; j)/Jk+i,j+1)
of A/Jui j+1- SO W(k + i, j) can be viewed as am/Jyy;, j-module, and then
HomA/J(H, P (@d(Hl " Wk +1i,j), Qz‘k l)) =0. This forces thatW (k + i, j): S(k)] =
sinceQ(k H= (Aer/J+i, jyer)™, which is an injectived / J 4, j)-module. We also obtaln
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thatJ(k_;_,',j)ek = Jk+i, j+1)€k andQ.i) =~ Aek/-’({c-i—i,j-i—l)ek- In particular_, we gel i) =~
Aei/Jk+isk+i)+1 ek = Aer/ Ja+i+1,0ex by settingj = s(k + i), as desired. O

In order to apply Lemma 3.1 to the proof of our theorem, we also need the following
lemma.

Lemma 3.2. Let A be a cellular algebra with involution and cell chain0 = J,11,0 =
Jonsm+1) C Jn,smy) C -+ C J,00= A and letl < k < n. If Ext} (W (s), W(s)*) =0 for
anyk < s < n, thenforallk <7 <nand0<i <n—t, we have the following

(@) Ext;(Qq.i» 0f ;) =0.
(b) ExE (Qq.iy, W(w)*) =0foranyu >1.
(c) Exty(W(r), W(j)*) =0foranyl< j <n.

Proof. We first prove the case ot = n. In this situation,s = n andi = 0. By
the definition of Q(,.0), We know thatQ, o) ~ W(n). Thus Ext (Q.0), 0%, 0) = 0.
Applying Lemma 3.1, we obtain th@, o) >~ Ae,/J(n+1,00en = Ae,, Which is a projective
A-module. The results follow at once.

For the casé < n, we prove the lemma by (downward) inductiono he initial step
t =n has already been shown as above.

Now assume that the results are trueffor! + 1(> k), that is,

@) Exti(Qq., Qf;)=0forl+1<r<nand0<i<n—1;
() ExtL(Q.iy, W()*)=0forl+1<t<n, 0<i<n—tandu>t,
(¢) Exti(W(n), W(j)*)=0forl +1<r<nand 1< j <n.

For the induction step = I/, we have that & i < n — [. We first prove the assertions
(@) and (b) by a second induction an In the subcase of = 0, we have that
Q.0 = Aer/Jy 1yer, which is isomorphic taV (). Thus Ex} (Q,0). Qf o) = 0 by the
condition. Using the induction assumptior)(ave see that dim Exti(W(l), W(uw)*) =
dimg Ext} (W), W()*) = 0 for any u > 1 + 1, that is, Ex (W (), W()*) = O for
any 4 > [ + 1. Combining this with the condition that ExtW (), W()*) = 0, we
have Ex/t(Q(,,o), W(uw)*) = 0 for any u > [. Now, assume that the subcaseioE
A —1 (< n —1) has already been shown, namely, A*E()Q(,,A,l), szl,kfl)) =0 and
Ext}x(Q(M_l), W(uw)*) =0 for any u > I. Let us prove the subcase= A. Using the
induction hypothesis E%I(Q(M,l), szm_l)) =0and Lemma 3.1, we see tha{; ) _1) =~
Aer/ Ju+1,00e1. Thereby, we have the following short exact sequencé-aiodules

0— Jasr,0e/Jarr,ner — Qay — Qua-1— 0,
that is,

0> P Wi +1— Qua — Qui-1— 0. 1)

drta
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which induces an exact sequence

Exti (Qu.i-1), Q1 1-1)) = EXti(Qun i1y = EXt}a( @ W+, QTZ,,\—l))'

drta

Thanks to the induction hypotheses on the sub¢asé — 1, both end terms vanish, thus
the middle term EX¥(Qq ), Qf;;_1)) = 0, too. Applying Hom (—, W( + 1)*) to (1)
gives rise to the following exact sequence

Exth (Qu -1, W +1)%) — Ext;(Qun), W + 1))

— Exti( P wa+xn. W(l—i—k)*).

diti.1

Again by the induction hypothesis @r= A — 1, the first term vanishes. The third term also
vanishes by the conditions of the lemma. Whence, we ge}_;(@@,k), wd + 1)*) =0.
Further, we may obtain an exact sequence from (1) as follows:

Exti (Qui-1), Q011) = EXG(Quny, Q4 ) = EXt}a( P wa+n, QZ’},M).

dia

From the previous arguments, both end terms of the above sequence vanish, thus we see
that Exi/k(Q(M), Q?l,x)) = 0. It follows that the assertion (a) holds.
Next, for anyu > 1, applying Homy (—, W(w)*) to (1) yields the exact sequence

Exti (Qup-1. W(*) = Exty (Qu.. W()*) — EXt}x( @ W +2), W(M)*)~

dia

By the induction hypothesis on the subcase A — 1, the first term is zero. Besides, the
last term is zero by the induction assumptiof).(Elence, Exi(Q(M), W(u)*) =0 forall
wu =1, which is the assertion (b).

It remains only to prove that EktW(l), W(j)*) =0 for all 1< j < n. According
to the preceding arguments, we have thatjE@(l,i), Q>(kl,i)) =0forall0<i<n—1.
By Lemma 3.1, this just means thadl; ;) = Ae;/Jo+iner = Aer/Ju+i+1.00er for all
0<i <n—1I. Therefore, forany Xi <n — [, we get an exact sequence

0> P wi+i)—> Quiy— Qui-1— 0.

diti

which yields an exact sequence

HomA(EB Wl +i), W(j)*) — Ext; (Qq.i-1), W()*) = Exti (Qa.iy, W()¥)

diti
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— Ext} < P wa+i. W(j)*)

drti

for any j < 1. From Lemma 2.5(c), we see that the first term is zero. The last term is also
zero, thanks to the induction assumptiof).(Chis forces that the middle two terms are iso-
morphic, and then EX(Q.0), W (j)*) =~ EXt} (Q.n—1), W(j)*). Note thatQ o) ~ W (I)
andQq -1 =~ Aei/ Jnt1,000 = Ae;. SO the latter is a projectivé-module. Consequently,
Ext} (WD), W(j)*) =0 for any j < I. Observe that EX(W (), W(j)*) = 0 has already
been verified for anyj > [ + 1 in the proof of the subcase= 0. Thus, the proof of
Lemma 3.2 is finished. O

Recall that modules with a division ring as endomorphism ring are c&8tddirian
Now we can prove the first main result.

Theorem 3.3. Let A be a cellular algebra with cell module® (i, j), (i, j) € A, and
standard module§A (i) | i € Ag}. Then the following statements are equivalent

(a) The algebraa is quasi-hereditary.

(b) All standard modulesA(i) are Schurian, equivalenth,A(i): S(i)] = 1 for each
i € Ag.

(c) Exty (W (i), W(i)*) = 0for eachi € Ao.

Proof. Obviously the condition (a) implies (b) (see [3] or [8]).
(b) = (c). For anyi € Ap, by the definition of standard modules, we always have an
exact sequence of-modules
0—Z— P(i)— A(@l)— 0,
which induces an exact sequence

Homyu (Z, AG)*) — Ext; (AG), AG@)*) — 0.

If Z =0, then the first term of the above sequence is zero, and so is the second
one. Otherwise, all the composition factors of @p have index greater thah thus

Homy (Z, A(i)*) = 0 since all composition factors af(i)* are of the formS(k) with

k <i. This also forces that Ek(A(i), A@)*) = 0. Observe that there is also an exact
sequence ofi-modules

O—>L—>A@l)—>W3GE —0, (2)
which yields the following exact sequence
Homyu (L, AG)*) — Exty (W(i), A()*) — Ext} (A®G), AG)Y).

The last term vanishes by the above argument. From the congitiGn: S(i)] = 1 and the
fact[W (i) :S(i)] =1, we knowthaiL: S(i)] = 0, which implies that Hom(L, A(i)*) =0
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since so€A (i)*) >~ top(A(i)) = S(i). So we get E>§;{(W(i), A()*) =0, thatis, Exj‘(A(i),
W (i)*) = 0. Applying Homy (—, W (i)*) to (2), we again get an exact sequence

Homyu (L, W(i)*) — Exth (W (i), W(i)*) — Ext} (AG), W(i)*) =0.

The first term equals zero since $86()*) >~ S(i) and[L: S(i)] = 0. Hence, Ex}((W(i),
W (i)*) = 0, which is the condition (c).

(c) = (a). Let O= J(u4+1,00 = Jin,s(m)+1) C Jinsiny) C -+ C J1,00 = A be a cell chain
which produces the cell modulég (i, j), where 1< i < n and 0< j < s(i). In order
to prove that the cell chain is a heredity chain, it suffices to show that those cell modules
W (i, j) with j # 0 are zero, equivalently, to show that there does not éxist g such that
s(i) #0. Suppose that(i) > 0 for somei € Ag. Then by Lemma 2.4(a), the composition
factors of W(i, 1) are of the formS(k) with k < i. By the condition (c) and Lemma 3.2,
we have that E%t(Q(k,,»_k), ka)ifk)) =0 for all 1< k < i. Furthermore, we get that
[W@,1):Stk)]=0forall L< k <i by Lemma 3.1. ThusW (i, 1) = 0, which contradicts
s(i) > 0. This completes the proof of the theorenm

The remainder of this section is devoted to giving another criterion for a cellular algebra
to be quasi-hereditary via the second cohomology groups of certain cell modules. We shall
establish the following theorem.

Theorem 3.4. Let A be a cellular algebra with involution and cell chain0 = J,41,0 =
Josim+1) C Jisiy) C -+ C J1,00 = A. Denote byW (i, j) the cell module associated to
(i, j) € A. ThenA is quasi-hereditary if and only Ext%/J(p q)(W(i), W(@)*) = 0 for each
ie€Agi<p<nandl<g<s(p)+1. ’

For the proof, we need two key lemmas below. Let us continue to use the notations of
the previous parts.
The following fact is similar to Lemma 3.1.

Lemma 3.5. Let A be a cellular algebra with involution and cell chain0 = J,11,0) =
Josim+) C Jansmy) C - CJao =A. Let1<k<nand0<i <n—k If
EX&/J(H,-,,,) (Quk.iy» Qfy.;y) =0foreachl < g <s(k+i)+1, then

(@) O.iy = Aex/Jk+i+1.00€x @S A-modules.
(b) If stk +1i) > 1, then[W(k + i, j):S(k)] = 0 and Ju4;, jyex = Ju+i+1,0ex for all
1<j<stk+10).

Proof. Observe that the conclusion (a) holds obviously(if + i) = 0. Now we consider
the case of (k 4+ i) > 0. Note that there is an exact sequenced p¥; 2)-modules

0— Juyinex/Ji+vizex = Aex/Jk+izex = Qk.,iy = 0,
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namely,

0— P Wk+i,1)— Aex/Jurier — Qur.iy = O, 3)

A+ 1)k

which provides the following exact sequence

1 .
EXU ), (Aek/ Jsi2ie Qi) = Extiyy, | €D Wk +iD), Q?k.n)

d(k+i, 1)k
— EXB 0.0 Qi Qi)

in A/J+i2-mod. The first term vanishes just sincee/Jk+i2ex iS a projective
A/Ji+i2-module. By the condition of the lemma, the last term vanishes as well.
Assume that/;; 1) # 0. We thus get E&tﬂw , Wk +i.1), 0 ;) = 0. By applying
Homy, 40 (= Wk +1i, 1)*) to (3), we get the long exact sequence

0 — HOMa sy, (Qeriys Wik +1i, 1))
— Homy g (Aek/ Jari2 e, Wk +i, 1)*)

— HoMy g ( €D Wik +i, 1), Wik +i, 1)*>

d(k+i, 1)k

— EXU) g0 (Qekiys Wk +i, ).

According to the above argument, the last term is equal to zero. Note also that the cell
module W(k + i, 1) arises from the nilpotent cell idealx+; 1)/ Jx+i,2) Of A/Jk+i,2).
Hence W (k +1i,1), and alsoW (k + i, 1)* can be seen a4/ J; 1)-modules, and thus

dimg Homy g (Quiiys Wk +i, D*) = dimg Homa . 1, (Qk.iy. Wk +i, D¥)
= [Wk+i, D*:Sk)].

The last equality follows from thaD« ;) is a projectiveA/J 4 1-module. However,
dimg HOoMy g, 5 (Aex/J+i e, Wk + i, 1)*) is also equal tdW(k + i, 1)*: S(k)]
just since Aey/Jk+i2)ex IS a projectiveA/Jyi,2-module. This means that we have
Homy, i 0 (W(k +1i, 1), W(k +i, 1)*) = 0, which is absurd because it contains the non-
zero homomorphisW (k +i, 1) — top(W (k+i, 1)) >~ sodW (k+i, 1)*) — W(k+i, 1)*.
Thus we getl+i 1)x =0, thatis[W (k+i, 1) : S(k)] = 0. Therefore/(x+i 1yex = Jk+i.2)€k

and soQ ;) >~ Aex/Jk+i,2ex as A-modules. Continuing by induction, we obtain that
diyipr = 0 for all 1< j < sk + i), namely [W(k + i, j):S(k)] =0 for all 1<

Jj < stk +1). Thus, Juqi jyek = Jgri, j+1nek, and s0Q« iy = Ae/Jti stk+i)+D) ek =
Aei/Jk+i+1,0ex. Hence, both (a) and (b) hold whe(k + i) > 1, finishing the proof. O

The following lemma points out the relationship between the?fgxoups of cell
modules, and the Exigroups of the module@ « ;) in our context.
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Lemma 3.6. Let A be a cellular algebra with involution and cell chain0 = J,11,0) =
Josim+1) C Jusmy) C - C Jao =A and let 1 <k < n. If EXtiN(p’q)(W(s),
W(s)*)=0foranyk <s<n,s<p<n,andl<q <s(p)+1, thenEXt%/J(m_ q)(Q(,),'),
;"t’i))=0forall k<t<n,0<i<n—t,andl<qg<s(t+1i)+ 1 '

Proof. The casek = n. In this cases =n andi = 0. Note thatQ, o) is isomorphic to
W (n). Thus, for each X ¢ <s(n) +1, we have that EZY;  (Q(n.0). ©f, ) =0 by the
condition of the lemma. '

In the case ok < n, we prove the lemma by (downward) induction oriThe above
argument implies that the case- n is true.

We now assume that the assertion holds farl + 1(> k), namely, EX%/JW o (Qau.iy
Tu.)) =0foralll+1<tr<n, 0<i<n—t,and 1< g <s(t +1i)+ 1. Cdnsidering
the induction step =/, we see that & i < n — [. Let us show the assertion by a second

induction oni. In the subcase af= 0, we have thaQ; o) = W(l). Thus, by the condition
of the lemma we have that E’gqj(l q)(Q(z,O), Q?l!o)) =0 for each 1< ¢ < s(l) + 1.
Suppose next that the subcases af A — 1(<n — ) have already been shown, that is,
Ext s, (Qui Qf ;) =0forall 0< j <a—1and 1< g <s(l+) + 1. We are now

in the position to prove the subcase 1. To this end, it will take several steps. In the rest of
our proof, one further bit of notation will be handy¢f is a class ofA-modules, we denote
by F(®) the full subcategory ofi-mod whose objects are the modulgswhich have a
O-filtration, namely there is a finite chaink® M,,, 11 C M,, C M;,—1 C --- C M1 = M of
submodules oM such that all factord/; /M1, 1< j <m, belong to®.

Step 1. LetO<r <A—1.ThenQg, e FIWD), Wl +1),..., Wl +r)).

Using the induction assumption that 3?%,- q)(Q(l,j), QTI,;)) =0forall0<j<r
and 1< g < s + j) + 1, we see thatl(,+.,~,q)eyl = Ju+j+1,0er by Lemma 3.5(b). In
particular,J 4 1yer = Jo+j+1,00¢; holds for each G j < r. Considering the following
filtration of Q)

O=M,jaCM,C---CM;C---CMo=Jyoer/Jusrel = Aer/Jusr,ne1 = Q1)

where M; = Jyyjoe/Jg+r1er, WE have thaWj/Mj_H_ >~ Javjoer/Jurjr1,0e =
Ju+joer/Javjner = @dz+,-1 W + j), where 0< j < r. It, therefore, follows that
QuneFWWDH,WlI+1),....,Wl+r)).

Step 2. LetO<r <A —1landr + 1< v < A ThenExt,
eachl<g <s(+A)+1.

Whenv = A. According to the induction hypothesis on the casé-ph and Lemma 3.5,
we have thatQ 1, 0) >~ Aeja/Jusr,g)ei+2- Hence,W(l + 1), which is isomorphic to
Q@+1,0), is a projectiveA/Jix 4)-module. Thus, E&?t/JUH,q)(W(l + A), Q>(kl,r)) =0
being trivial.

For the case < A, we have the following exact sequencedf/;, 4-modules

/J(l+k,q)(W(l +v), QTl,r)) =0 for

0— K1— A€l+u/J(l+A,q)€l+u - W(l+v)—0, 4)
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in which, K1 = Juqv,peitv/Jasr.gei+v- If K1 =0, thenW({ + v) is a projective
A/Jq+:.,9-module. So the assertion holds obviously. Kar## 0, the induction assump-
tion on the casé+ v(> 1+ 1) and Lemma 3.5 insure thdl; . ¢ye/4v = Jy+a,1)€1+0 @nd
Jiv+j+1.0€+v = Jiqv+j,1€14v, Where 0< j < A —v. Thus there is a chain of submod-
ules of K1

0= M_v11CMy_, C---CM;=Jitvtj0€+v/Jr, €140 C--- C M1

= Jurvsr.0€+v/Jar,nei+v = Jusv,neirv/Jasa, nery = Ka,

which provides thatM;/Mji1 =~ Jutvtj0ei+v/Jatv+j+1,0€4v = Ji4v+j,0€4v/
Jv+jne+v = @dl+v+j,l+v Wl +v+j). Asaresult,K1e FIWI +v+ 1), W{d +
v+2),..., W({ +1)). Now applying Hom s, ) (= Q>(kl,r)) to (4) gives rise to an exact
sequence

HOMA 4., (K1 Q0 ) = EXU ., (WA +1), 05 )
- EXY}VJ(HM) (Aerv/ gy, O p)-

It is clear that the last term equals zero. Noting tiggt ) € F(W(), W( + 1),...,

W( + r)), as shown in Step 1, we g@fm e FWD*, WU+ D*, ..., WU + r)*).

This, together withK; € F(IW(I +v + 1), Wl +v + 2),..., Wl + 1)), means that

the first term in the above exact sequence is also zero by Lemma 2.5(c). Consequently,
Ext}W(M‘q) (W(l +v), 0f ,,) =0, as desired.

Step 3. LetO<r<i-landl<g <s(+2) +1 ThenExt , (W +r+1),

* )=0

(l,r)) - . . . . . .

The caser = A — 1 is obvious sincéV (I + 1) is a projectived/J;4, 4-module, as
mentioned in Step 2.

Foranyr < A — 1, there is an exact sequenceof/ ., 4)-modules

0— K2 — Aeryri1/Juvigyei+r+1—> Wl +r+1) — 0, (5)

whereK, = Juyr+1,1€14r+1/ Ja1, g €14+-+1. Using the induction hypothesis ér-r + 1
and Lemma 3.5, we have tha(t]+k,q)€[+r+1 = J(l+A,1)el+r+l and J(l+r+j+2,0)el+r+l =
Ja4r+j+1,0€14+r+1, Where 0< j <A —r — 1. This yields a filtration oK as follows:

0= M, CM)——1C---CMj=Jgrrtj+1,0€1+r+1/J@+r,n€l+r+1 C - C M1

= Jutr+2.00€4r+1/ Jar, D el+r+1 = J@rr+1,0€4+r+1/ J@+r, D1+ +1 = K2.

We observe thatl; /M1 >~ Joyrtjr1,00€14r+1/ Jitr+j+2.0€4r+1 = J4r+j+1,0) X
el+r+l/J(l+r+j+l,1)el+r+l ~ @dl+r+j+l,l+r+l Wl +r +_] + 1), and thUSKZ e F(W({ +

r+2), Wl+r+3),..., W(l+1)). By Step 2 we obtain that E}g,(/+A » (K>, QZ"M)) =0,
which implies that E)ﬁ/mw) Wl+r+2, Q>(kl,r)) = 0 by dimension shifting in (5).
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Step 4. Exti/JUH‘q)(Q(,,r), Q) =0forall 0<r <.

Use induction orr, the caser = 0 being trivial, again by the condition of the lemma.
Suppose that the assertion holdsfer 1, namely Exj/m%q) (Qu.r-1, Q1) =0.We
now show the case of Note that we have already proved g?(}uﬂ-,q)(Q(lJ)’ 04.;)=0

forO<j<ir—1and 1< g <s( + j)+ 1. Thus we know by Lemma 3.5 that
Qa,r-1 = Aer/Jarr—1,1€1 = Aer/ Ja4r,0e1. Whence, there exists an exact sequence of
A/ J(45.,9-modules

0— @ W(l +r) — Q(l,r) — Q(l,rfl) — 0, (6)

ditr,

which induces the exact sequence

EXC /sy (Qur—1: Q0 —1) = EXG s, (s Qh o)

- Exﬁ/fw,q)(@ W +r), Q?z,rn)-

ditr,

The first term is zero following from the induction hypothesis o 1. Thanks

to Step 3, we see that the last term of the above sequence is also zero, and thus
Ext s, (@) Q1 ,—1)) = 0. Now applying Hom, s, ,, (= W(I +1)*) to (6), we

have the following exact sequence

Exﬁ/,w)(g(l,,_l), Wl +r)*) - Exﬁ/,w)(g(l,), W +r)*)

= ExC ., < Pwa+r,wa+ r)*).

ditr

Again by Step 3, the first term vanishes. The last term also vanishes by the condition
of the lemma. This forces that Z?%M q)(Q(,,r), W({ + r)*) = 0. Finally, applying
HomA/J(,W) (—, Q?l,r)) to (6) provides an exact sequence

EXG /g0 (Qtr—1: Q1) = EXG ., (Qans QFrpy)

— Ext

*
YV < D wa+n, Q(z,r>>-

ditr,

Both end terms of the above sequence vanish according to the preceding arguments.

This shows that E%t/J(M‘q)(Q(l,,), QZ’}J)) = 0. In particular, we have thus proved that

Exti/m%q) (Qa.»» Qf,)) =0, thereby finishing the proof of the lemmac

Now we are in the position to prove Theorems 3.4 and 1.1.
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Proof of Theorem 3.4. For the ‘if’ part, the assumptions of Theorem 3.4 guarantee that
Lemma 3.6 can be applied, which means that Lemma 3.5 can also be applied. By imitating
the proof of (¢)= (a) in Theorem 3.3, it is not difficult for us to verify that the algelra

is quasi-hereditary. Conversely, we know that there is no nilpotent cell ideal appearing
in the cell chain ofA, and also thaW (i) coincides withA(i) for eachi € Ag. Hence,
Exti(W(i), W (i)*) = 0 follows directly from the property of standard modules of quasi-
hereditary algebras (see [3]). Using the known fact thaf, ExtM, N) ~ Ext), (M, N) for

any heredity ideall of A and anyA/J-modulesM andN (see [2] or [7]), we can easily
deduce the ‘only if ' part. O

Proof of Theorem 1.1. Note that if A is quasi-hereditary, themt = Ag. It follows

that the condition (a) implies (b) by Theorem 3.3. Conversely, the condition (b) means
that Exﬁ(W(A), W)*) = 0 for all A € Ag, thus A is quasi-hereditary according to
Theorem 3.3. Similarly, we have that (a) and (c) are equivalent, using Theoremc3.4.

As a corollary of Theorem 1.1, we have the following result given in [10].
Corollary 3.7. For a cellular algebraA the following are equivalent

(a) The algebrad is quasi-hereditary.
(b) Ext, (W), W()*) =0forall &, u € A.

Remark 3.8. In his paper [10], Xi also proved that a cellular algelrés quasi-hereditary
if and only if Exti(W()L), W(u)*) =0 for all A, u € A. When this is compared with
the condition (b) of Theorem 1.1, a question arises naturally: for a cellular alggbra
if Ext%(W(k), W()*) = 0 for eachi € A, is A quasi-hereditary? The question will
have a positive answer if one can deduce thaﬁ%&i q)(Q(k,i), Q?‘k’i)) = 0 for all

1< g <s(k+i)+1, under the condition that Bi¢Q ., Qf ;) =0.

4. Semi-simplicity of cellular algebras

In this section, we are going to deal with the semi-simplicity of cellular algebras by
considering the first cohomology groups of some cell modules and simple modules. The
issue of semi-simplicity reduces in [4] to the computation of the discriminants of bilinear
forms associated to cell modules. We are interested in a homological characterization here.

Let us prove the following theorem which has Theorem 1.2 as an immediate
consequence.

Theorem 4.1. For a cellular algebraA the following conditions are equivalent
(a) The algebraa is semisimple.

(b) Exti (W), S(r)) =0foranya, u € Ag satisfyingu > A.
(c) Exty (W), W(n)) =0foranyx, u € Ao satisfyingu > 1.
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Proof. Obviously, the condition (a) implies both (b) and (c) sing&x) >~ S(x) for all
A € Ag in this situation.

(b) = (a). Observe that for any € Ag, there always exists an exact sequence of
A-modules

0—radW®)) > W) — S() — 0,
which provides the following exact sequence
Homy (rad(W (1)), S(w)) — Ext; (S(V), S(w)) — Exty (W(1), S(1))

for any u > A. Since [radW(4)):S(u)] = 0 for any u > A, the first term of the
above sequence is zero. The last term is also zero by the condition. Thus we have
that Exi/ﬁ(S(A), S(n)) = 0 for any u > A. Thanks to Lemma 2.5, we also have
ExtL (S(), S(u)) = 0 for anyx > . Hence, Ext (S(R), S(1)) = 0 for any , u € Ao,

which implies thatA is semisimple.

(c) = (a). Let O= J(u4+1,00 = Jn,s(m)+1) C Jinsiny) C -+ C J1,00 = A be a cell chain
of the cellular algebral. It is enough to prove that both (/) ~ S(/) ands(/) = 0 hold for
any 1</ < n.

Use induction or, the casé = 1 just means thal/ (1) ~ S(1). We need to verify that
s(1) = 0. Suppose that(1) > 0. ThenW(1, 1) is not zero. Note thatv(1, 1) has only
S(1) as a composition factor. Therefore, the condition}gW(l), W (1)) = 0 means that
Exti(W(l), W(1, 1)) =0. Thus, the following exact sequence

0— Japer/Ja,zer— Aer/Ja2e1— W(1) =0

splits since J1,1e1/J1.2€1 = EBd(l,m W(1,1). Hence, we have thale;/J(12e1 =~
W) & @d(LmW(l, 1). Obviously, d(1,1)1 # 0, which forces thatAey/J(1.2e1 is
decomposable. This is absurd.

We now assume that bothi (/) >~ S(/) ands(/) =0 are true forany X1 < j — 1(< n).
Sinces(l) =0 forall 1< < j — 1, it follows that the cell chain oft has the following
form:

0 = Jn+1,00 = Jon,sm+1) C Jinsmy) C -+ C J(i+1,00 = J(js(y+1) C - C I
C Ji,0 CJ-1,0C---CJa0 =A.

For any 1< i < j — 2, the induction hypothesis implies theW (i + 1): S(i)] = --- =
[W(j —1):5@)] =0. ThereforeJ;11.0€i/Ji+2,006i = = Jij-10€i/Jj 08, that is,
Jitroe = Joei, and thenW(i) ~ Ae;/Jir1,06i = Aei/Joe for any 1<i <
j — 2. Combining this with the facW (j — 1) >~ Ae;j_1/J(; 0)¢;—1, We have thaW (i) ~
Ae;/J(j0e; forany 1<i < j — 1. Assume thaW (j) has a composition factdi(i) with
1<i <j—1,namelyd;; # 0. Then there exists an exact sequencg-ehodules

0— J(j,o)ei/f(j,l)e,' — Ae,'/J(j’l)e,' — W(@i)— 0,
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that is,

0— @ W(j)— Ae,'/J(j)l)ei — W(@i)— 0,

which splits by the condition that E%(W(i), W(j)) =0 for anyi < j, a contradiction.
This proves thatW(;j) has no composition factor$(i) with i < j — 1. According to
Lemma 2.4(a), we gaV (j) >~ S(j).

It remains only to prove that(j) equals zero. FrofiW (j):S(@)]=0forall 1<i <
j—1, we see thalf(.,',o)e,-/J(.,',l)e,- =0, namely,J(j,o)e,» = Jj e forall1<i<j—1.
Consequently, we gV (i) ~ Ae; /Jj 1)e; for any 1<i < j — 1. Combining this with the
fact W(j) >~ Ae;/J(j1e;, we have thaWW (i) ~ Ae; /Jj 1e; for any 1< i < j. Suppose
thats(j) £ 0. ThenW(J, 1) is not zero. Thus, there exists so¥) with 1 <i < j, such
that[W(j,1):S()] # 0, namelyd; 1; # 0. Observe that there is an exact sequence

0— Jvei/J2ei — Aei/Jj2ei —> W(i) — 0
in A-mod, that is,

0> P W(i. 1) — Aei/Jjzei —> W(i) — 0
d(j.vi

is exact. Since E)}‘t(W(i),W(k)) =0 for anyi < k and W(k) >~ S(k) for any

k < j, as proved, we obtain that EgﬁW(i),S(k)) =0 for anyi < k < j. For the
casek < i — 1, we have that dimEXxt (W (i), S(k)) = dimg Ext} (S(k), W(i)*) =
dimg Ext} (W(k), W(i)) = 0, namely, Ext (W (i), S(k)) = 0. As a result, EX{(W (i),
S(k)) = 0 for any 1< k < j, which implies that the last exact sequence splits. This is
a contradiction, and thus the proof is completed

Remark 4.2. Of course, one would expect that Theorem 4.1 could be generalized to the
case of the second cohomology groups. But such an attempt is usually futile. For example,
let A be the quotient of the path algebra (over the figldof the quiver

o
1=2

B
modulo the ideal generated tB¢. An involution on A can be given by fixing the ver-
tices, but interchanging the pathsand 8. Let Ji2,0) be the ideal generated by, g,
a, andaf, and letJ(1,0) = A. One can check easily that the algebrds cellular with
the defined involution and the cell chainc0J2,0) C J(1,0) = A. Moreover, we see that
W(2) ~ P(2) and W(1) >~ S(1). There is no difficulty to get that E%(W(l), S() =
Ext2(W(1), S(2)) = ExB(W(2),5(2) = 0 and Exf (W(1), W(1)) = Ex&(W(D),
W) = Exti(W(Z), W (2)) = 0. However, the algebra is not semisimple.
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We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. That the conditions (a), (b), and (c) are equivalent follows from
Theorem 4.1. When the algebra is semisimple, we seetthatig, and thus the conditions
(c) and (¢) just say the same thing. Note that the condition (a) meang¥iiat ~ S(A) for
eachi € Ag = A and thus (a) implies (§. The implications(c”) = (¢’) and(c’) = (c¢)

are trivial. O
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