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A B S T R A C T

Many foraging animals find food using composite random search strategies, which consist of intensive

and extensive search modes. Models of composite search can generate predictions about how optimal

foragers should behave in each search mode, and how they should determine when to switch between

search modes. Most of these models assume that foragers use resource encounters to decide when to

switch between search modes. Empirical observations indicate that a variety of organisms use non-

directional sensory cues to identify areas that warrant intensive search. These cues are not precise

enough to allow a forager to directly orient itself to a resource, but can be used as a criterion to determine

the appropriate search mode. As a potential example, a forager might use olfactory information as a non-

directional cue. Even if scent is too imprecise for the forager to immediately locate a specific food item, it

might inform the forager that the area is worth searching carefully. We developed a model of composite

search based on non-directional sensory cues. With simulations, we compared the search efficiencies of

composite foragers that use resource encounters as their mode-switching criterion with those that use

non-directional sensory cues. We identified optimal search patterns and mode-switching criteria on a

variety of resource distributions, characterized by different levels of resource aggregation and density.

On all resource distributions, foraging strategies based on the non-directional sensory criterion were

more efficient than those based on the resource encounter criterion. Strategies based on the non-

directional sensory criterion were also more robust to changes in resource distribution. Our results

suggest that current assumptions about the role of resource encounters in models of optimal composite

search should be re-examined. The search strategies predicted by our model can help bridge the gap

between random search theory and traditional patch-use foraging theory.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

For many organisms, the ability to efficiently find food
resources is a key determinant of fitness (Bell, 1991). It is
advantageous for foraging animals to focus search effort on
resource rich areas and minimize energy spent searching resource
poor areas (Viswanathan et al., 2011). This search tactic has been
termed composite search (Plank and James, 2008), area-restricted
search (Weimerskirch et al., 2007), or area-concentrated search
(Benhamou, 1992). A forager using a composite search strategy
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alternates between intensive and extensive search modes. In
intensive mode, a forager thoroughly searches resource rich areas
by making short moves and reorienting frequently; in extensive
mode, it moves directly across resource poor areas by making long,
relatively straight moves with minimal turning.

Composite search behavior is widespread, observed in taxa as
diverse as slime moulds (Latty and Beekman, 2009), beetles (Ferran
et al., 1994), honeybees (Tyson et al., 2011), fish (Hill et al., 2003),
birds (Nolet and Mooij, 2002), ungulates (Tyson et al., 2011), turtles
(Tyson et al., 2011), weasels (Haskell, 1997), and humans (Hills
et al., 2013). Given the ubiquity of composite search, an important
question arises: how should a forager determine when to switch
from intensive to extensive mode, and vice versa? Questions about
optimal foraging have traditionally been addressed with patch
models that envision intensive search taking place within patches
and extensive search as movement between patches (Charnov,
1976; Oaten, 1977). These models are not directly applicable to
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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cases where resources do not occur in well-defined patches, and
instead take on more general spatial distributions (Arditi and
Dacorogna, 1988). Optimal foraging on such landscapes is more
properly addressed using random search theory (Viswanathan
et al., 2011; James et al., 2010; Reynolds and Rhodes, 2009). In
random search models, resources are represented as points, and
animal movement is modeled with stochastic processes. Unlike
patch models, random search models are spatially explicit;
resource locations in these models can be specified according to
any spatial point pattern and are not limited to the case of clearly
defined patches.

Recently, many studies have compared the efficiencies of
different random search movement patterns (James et al., 2008,
2011; Reynolds and Bartumeus, 2009), and composite searches
have been a particular focus (Reynolds, 2010a, 2009; Plank and
James, 2008; Benhamou, 2007). The criteria that foragers use to
switch between modes have received far less attention. Most
analyses of optimal composite search presume that foragers use a
‘‘giving-up time’’ (GUT) as their mode-switching criterion (Rey-
nolds, 2010a, 2009; Plank and James, 2008; Scharf et al., 2007). A
forager using this criterion switches from extensive to intensive
mode upon encountering a resource. It then stays in intensive
mode until a fixed amount of time (the GUT) has elapsed without a
subsequent resource encounter. GUT models accurately describe
some foraging situations, such as ladybird beetle larvae (Coccinella

septempunctata) feeding on aphids (Carter and Dixon, 1982) and
houseflies (Musca domestica) feeding on sucrose drops (Bell, 1990).

Rather than keeping track of time, many animals use sensory
cues to modulate their search behavior. Parasitoids like Nermeritis

canecens (Waage, 1979), Venturia canescens (Bell, 1990), and
Cardiochiles nigriceps (Strand and Vinson, 1982) use chemical cues
to determine when to search intensively for hosts. When deciding
when to leave a foraging site, wolf spiders rely more heavily on
visual and vibratory cues than elapsed time since their last prey
encounter (Persons and Uetz, 1997). Procellariiform seabirds use
chemicals like dimethyl sulfide to identify when to switch to
intensive search behavior (in this case, intensive search consists of
upwind zig-zag movement) (Nevitt et al., 2008). These seabirds
‘‘use changes in the olfactory landscape to recognize potentially
productive foraging opportunities as they fly over them’’ (Nevitt,
2008). Further examples of animals that use sensory cues to
determine search mode include ciliates like Paramecium and
Tetrahymena (Levandowsky and Klafter, 1988; Leick and Hellung
Larsen, 1992), bacteria, like Escherichia coli and Salmonella

typhimurium (Adler, 1975; Moore and Crimaldi, 2004; Dusenbery,
1998), cod larvae (Døving et al., 1994), and fruit flies (Dalby-Ball
and Meats, 2000). It is important to note that identifying discrete
behavioral states (e.g., search modes) from empirical movement
data is a difficult problem; fortunately, significant progress has
been made in this area (Nams, 2014; Postlethwaite et al., 2013;
Knell and Codling, 2011; Barraquand and Benhamou, 2008).

There are two primary ways that organisms use sensory cues to
find resources: taxis and kinesis (Codling et al., 2008; Dusenbery,
1989). In taxis, an organism uses sensory cues (e.g., the gradient of
a stimulus field) to orient itself and move toward the resource. In
kinesis, an organism uses sensory cues to determine its speed
(orthokinesis) or turning frequency (klinokinesis). Unlike taxis,
kinesis does not use directional information. Taxis is an efficient
strategy used by many organisms (Seymour et al., 2010), but in
some situations limitations on sensory information make it
impractical; Hein and McKinley (2012) note that such limitations
occur when sensory signals are infrequent, noisy, or contain
limited directional information. When organisms are unable to
extract directional information from sensory cues, they may still be
able to use kinesis. In this paper, we refer to the cues used in kinesis
as non-directional sensory cues. We use this term to contrast with
directional sensory cues, which allow foragers to orient their motion
toward resources. Most foragers likely use a combination of non-
directional and directional sensory cues. For example, a forager
might use odor as a non-directional cue to determine where to
search intensively; when it comes close to a resource, it might
switch to using visual information as a directional cue and move
directly to the resource. A forager that uses odor as a non-
directional cue when the signal is dilute and the odor gradient is
imperceptible might switch to taxis (using odor as a directional
cue) when it is close to a resource and the odor gradient is more
pronounced. Two specific examples illustrate how foragers use
non-directional sensory cues. Williams (1994) proposes that tsetse
flies search for targets using kinesis, with carbon dioxide
concentration serving as a non-directional sensory cue. Williams
hypothesizes that winds in typical tsetse fly habitats are too light
and variable to allow for taxis based on wind direction. Juvenile
flatfish use kinesis to find bivalves (Hill et al., 2000, 2002);
respiratory currents generated by the bivalves are likely the non-
directional sensory cue in this system.

In this study, we model two classes of composite search
strategies: those with mode transitions triggered by resource
encounters and elapsed time (the GUT criterion), and those with
mode transitions triggered by non-directional sensory cues. Our
modeling framework allows for a full spectrum of random
movement patterns for both intensive and extensive mode. We
used simulations to compare the efficiencies of different search
strategies. Searching efficiency depends in part on the spatial
distribution of resources (Cianelli et al., 2009), so we compared
search strategies on a variety of landscape types, characterized by
different levels of resource aggregation and density. Further, we
examined the performance of the search strategies in response to
changes in resource aggregation to test the robustness of the
search strategies to environmental change. We found that the
search strategy based on non-directional sensory cues out-
performed the search strategy based on resource encounters
across all landscape types, and was more robust to changes in
resource aggregation.

2. Methods

2.1. Overview

In our modeling framework, resources are represented as points
distributed across a two-dimensional landscape, and a forager is
represented as a moving point with a small fixed detection radius.
The forager moves at a constant speed, and when a resource falls
within its detection radius, the forager moves in a straight line to
the resource and consumes it; otherwise, the forager implements a
random search strategy. Random search strategies consist of a set
of probabilistic movement rules. Although the resulting movement
patterns are stochastic, the probability distributions that generate
the movement provide a structure for the search.

In accordance with many theoretical studies on optimal
random search behavior (e.g., Viswanathan et al., 1999; Reynolds,
2010a; James et al., 2008), our model is very general, and
parameters are not fit to any particular species. The distance
and time units in our simulation set the characteristic distance and
time scales of the system. These units could be quantified in terms
of meters and seconds to represent a specific system. Our
simulations use a square landscape 101 units in length and width,
and foragers have a detection radius of 0.5 units. Coordinates are
floating point numbers, and are not restricted to discrete values.
Like many random search simulations (e.g., Reynolds, 2009), we
focus on a case where the detection radius is less than 0.01 of the
landscape scale.
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2.2. Lévy walks

Lévy walks are stochastic processes that provide a versatile tool
for modeling animal movement (Bartumeus et al., 2013; Reynolds
and Rhodes, 2009; Viswanathan et al., 2011). A Lévy walk with
parameter m is a random walk with step lengths l drawn from a
Pareto distribution, p(l) � l�

m
, 1 < m � 3. Different values of m

produce different types of random walks. As m ! 1, the resulting
random walk approaches ballistic (i.e., straight-line) motion.
Random walks with step lengths drawn from a Pareto distribution
with m � 3 behave like Brownian motion. Thus, Lévy walks can be
seen as spanning a spectrum of movement behavior, ranging from
ballistic motion (m ! 1) on one extreme to Brownian-like motion
(m = 3) on the other (for details see Section A.1). This family of
random walks is a widely used modeling tool (e.g.,Viswanathan
et al., 1999).

Lévy walks are not to be confused with Lévy flights. In the
former, a forager moves continuously along each step length; in
the latter, a forager hops instantly from the start to the end of each
step length. Lévy walks model cruise foragers, while Lévy flights
model saltatory foragers (for more on this distinction, see James
et al., 2010).

Most Lévy walk models, including those considered in this
study, are technically truncated Lévy walks: step lengths are
terminated when a resource or boundary is reached, or when the
maximum time of the simulation elapses (Reynolds and Rhodes,
2009). Fortunately, many of the important features of Lévy walks,
including general properties of the mean-square displacement, are
retained by truncated Lévy walks (Viswanathan et al., 2008;
Mantegna and Stanley, 1994). For more details, see Section A.1.

Our model deals with both non-composite and composite
foragers. Non-composite foragers move by Lévy walks with
parameter m. Composite foragers switch between extensive and
intensive search modes. In extensive search mode, foragers move
according to a Lévy walk with parameter mext. In intensive search
mode, foragers move according to a Lévy walk with parameter
mint. Previously, composite searches have been modeled with
Brownian motion in the intensive mode and ballistic motion in the
extensive mode (Plank and James, 2008; Benhamou, 2007). This
was later generalized to consider a full range of Lévy walks in
extensive mode (Reynolds, 2009). Our model represents a further
generalization that allows a full range of Lévy walks for both
intensive and extensive search modes.

Correlated random walks provide another approach to model-
ing movement on the ballistic to Brownian spectrum. This
approach has been used with great success (Benhamou, 2007,
2013). The Lévy walk and correlated random walk approaches are
compatible, and are mathematically connected (Reynolds, 2010b).
We used Lévy walks to build our models, because they offered a
straightforward way of implementing non-directional sensory
mode-switching criteria (as described in Section 2.4). Future
studies should examine how our models can be translated into a
correlated random walk framework.

A recent review by Pyke (2015) suggests that the enthusiasm
with which many ecologists have embraced Lévy walks is
misplaced. In the discussion, we address how his criticisms of
the Lévy walk concept apply to our model.

2.3. Forager movement

In our model, a forager moves by selecting a heading and a step
length. The heading is randomly selected from a uniform
distribution on 0; 2 p½ Þ. The step length is selected from a Pareto
distribution with parameter m (for a non-composite forager), mint

(for a composite forager in intensive mode), or mext (for a
composite forager in extensive mode). The procedure for
simulating ballistic motion was an exception that will be described
at the end of this subsection.

For non-ballistic motion, the selected heading and step length
together determine a random walk step. The forager moves along a
random walk step at a uniform speed of 0.25 units per time step.
The forager’s speed determines how finely its movement is
discretized, and 0.25 was the smallest speed that allowed for
practical simulation. It takes a forager many time steps to complete
a typical random walk step.

If the forager encounters a resource while it is moving along a
random walk step, it truncates the random walk step, moves to the
resource, and consumes the resource. Consumed resources are not
replaced; hence our simulations represent destructive foraging
(resource depletion). If a forager reaches a landscape boundary
before completing a random walk step, it truncates the random
walk step (details on boundary conditions are provided in
Section 2.5). When a forager ends a random walk step, whether
that step is truncated or not, it randomly selects another heading
and step length, and the procedure repeats.

Simulations of ballistic motion (m ! 1) do not use Pareto
distributions to generate step lengths. A forager using ballistic
motion selects a heading and moves in that direction until it
encounters a resource or landscape boundary.

2.4. Mode-switching criteria

Our model considers two type of composite foragers: GUT
foragers, which use resource encounters as their search mode
criterion, and sensory foragers, which use non-directional sensory
cues as their search mode criterion. A GUT forager switches from
extensive to intensive search when it encounters a resource. After
encountering a resource, the forager reverts to extensive search as
soon as a specified time (the GUT) elapses without a subsequent
resource encounter.

For sensory foraging, we created a generalized non-directional
sensory field. We denote the intensity of non-directional sensory
cues generated by a resource located at yi detected at a location x

by f yi
xð Þ. The shape of the function f yi

xð Þ will depend on the
particular sensory mechanisms involved; here, in order to make
the model as general as possible, we assume that the strength of
non-directional sensory cues generated by a resource at yi follow
the probability density function of a Gaussian distribution with
variance s2 centered at yi. This is particularly appropriate if, for
example, the sensory cues are chemical signals that travel via
diffusion. For more specific cases, other distributions could be used
to generate the non-directional sensory field (for example, the
sensory field could be designed to account for how advection
transports chemical cues or how vibratory signals are propagated
through various media). The total non-directional sensory field is
obtained by superimposing the fields produced by each resource,
f xð Þ ¼

P
i f yi

xð Þ. When a resource is consumed, its contribution to
the non-directional sensory field is removed.

A non-directional sensory forager assesses the sensory field at
the end of every random walk step (note that it does not assess the
sensory field after every time step). If the value of the field is below
a specified threshold, the forager engages in extensive search; if it
is above the threshold, it engages in intensive search (Fig. 1). We
call this threshold the sensory field threshold and abbreviate it as
SFT. A forager has more opportunities to assess the sensory field in
intensive mode (which is composed of many short random walk
steps) than in extensive mode (which is composed of a few long
random walk steps). This assumption reflects a trade-off between
the attention devoted to movement versus monitoring the sensory
field.

It is important to note that the sensory forager and the GUT
forager each have distinct advantages. The sensory forager has the



Fig. 1. A schematic representation of the behavior of a non-directional sensory

forager. Resources are black dots on the two-dimensional landscape (bottom). The

radius of a dot is the forager’s detection radius. A non-directional sensory field (red

surface) is generated by the resources. A non-directional sensory forager has a fixed

threshold (green plane) that it uses as a mode-switching criterion. When a forager

reaches the end of a step-length, it assess the sensory field; if the field is above the

threshold value (circled areas on landscape), the forager engages in intensive

search. The forager’s movement is represented by the blue line. In this case, it

eventually consumes a resource (red disk).
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benefit of using non-directional cues, but the GUT forager has the
benefit of using elapsed time since its last resource encounter. It is
not a priori obvious which of these abilities leads to higher foraging
efficiency. In reality, many foragers probably use a combination of
sensory and GUT strategies. In this study, we focus on comparing
these strategies in isolation; future work could examine how these
strategies can be used together.

2.5. Landscape characteristics

Resources were distributed across landscapes according to
Neyman-Scott processes (Illian et al., 2008). We selected this
family of point processes because it allowed us to adjust both the
intensity and aggregation of the distributions. The resource
distributions were specified by two parameters: the radius of
the clusters of resources and the total initial number of resources.
We used 100, 400, 700, and 1000 as our initial resource levels, and
cluster radii of 4, 8, 16, 32, and 64.

The algorithm for generating realizations began with randomly
drawing the number of resource aggregations, or clusters, from a
Poisson distribution with an expected value of 15 (Table 2). The
center of each cluster was randomly assigned to a point in the
landscape (i.e., parent point). Then resources were sequentially
assigned to a random parent and randomly placed within a
specified radius (i.e., cluster radius) of the parent point until all
resources were distributed among the parents. Thus, for each run
of the simulation, the algorithm randomly determined the number
of clusters and the number of resources per cluster, but the initial
total resource density and the cluster radius were fixed. By
changing a single parameter (i.e., cluster radius), we were able to
vary the degree of aggregation of resources, which ranged from
tightly clumped (cluster radius = 4) to dispersed (cluster radi-
us = 64).

A common misconception is that the negative binomial
distribution is the best tool for modeling clusters. A negative
binomial distribution describes the probability of finding a
specific number of points within a sample area; it does not
directly generate the positions of points. In fact, there is no
stationary spatial point process that generates a negative
binomial distribution of points in all possible sample areas
(Diggle, 2003). In contrast, the Neyman-Scott process is a
stationary spatial point process.

The boundary conditions for the landscape were selected to
minimize the impact of boundary artifacts. A buffer zone five units
wide was added to each side of the landscape. This buffer zone
contained no resources. Its purpose was to make sure that no
resources were extremely close to the landscape boundary (which
would protect them from approach from one or more sides). When
a forager reached a boundary, it was relocated to a random position
in the landscape, and it resumed its search (starting by drawing a
new step length). The rationale for this type of boundary condition
is described in Section A.5.

2.6. Optimization

We used Netlogo (Wilensky, 1999) to simulate three classes of
foraging strategies: non-composite, GUT, and non-directional
sensory. Within each of these strategy classes, we sought to
identify the movement parameters and mode-switching threshold
that maximized search efficiency. We defined efficiency as the
number of resources consumed divided by the length of the
forager’s trajectory. For the non-composite foragers, this amounted
to optimizing the movement parameter m. For GUT foragers, we
optimized mint, mext, and the GUT. For non-directional sensory
foragers, we optimized mint, mext, and the SFT. Using an
optimization algorithm (see Section A.2), we found the optimal
parameter combination for each class of forager on each type of
landscape, and compared the efficiencies of these optimal foragers.
Then, we examined the sensitivity of search efficiency to each of
the optimized parameters (see Section A.3). We also explored how
a forager optimized to one type of landscape would fare in another;
we quantified this ability with a measure called robustness (see
Section A.4). The sensitivity and robustness analyses were
conducted with R (Development Core Team, 2011).

3. Results

3.1. Optimal parameters

The optimal parameter for non-composite search generally
ranged from m = 1.0 (ballistic motion) on landscapes with low
resource aggregation to m = 1.8 on landscapes with high resource
aggregation (Table 1). Although optimizing the parameter for non-
composite Lévy walks is a well-studied problem, the case of
destructive foraging on patchily distributed resources is not; such
situations were once assumed to be equivalent to non-destructive
foraging on uniform landscapes, but this is not true (Reynolds,
2010a). Our non-composite results are largely in agreement with
previous results about destructive searches on landscapes
generated by cellular automata (Reynolds, 2010a).

The optimal search parameters for composite foragers showed
several interesting patterns. For all degrees of resource aggrega-
tion, the best GUT foraging strategies involved ballistic motion in
extensive mode (mext = 1) (Table 1). The optimal intensive mode
for GUT foragers depended on the degree of resource aggregation.
On landscapes with a high degree of resource aggregation, optimal
GUT foragers used Brownian motion in intensive mode (mint = 3).
The optimal GUT foragers for other landscapes used a ballistic
extensive strategy and a superdiffusive intensive strategy
(mint < 3). For all degrees of resource aggregation, the best non-
directional sensory foraging strategies involved Brownian motion
in intensive mode (mint = 3). The optimal non-directional sensory
foragers used an extensive mode that depended on the landscape,
although these extensive modes were always ballistic or close to
ballistic.



Table 1
Parameter combinations for three different search strategies producing the highest mean searching efficiency for different resource densities and cluster radii. Resource

aggregation decreases with increasing cluster radius.

Resource density Cluster radius NCSa GUT strategy NDS strategyb

m mext mint GUT mext mint SFTc

100 4 1.6 1.0 3.0 250 1.2 3.0 0.0005

100 8 1.4 1.0 3.0 400 1.4 3.0 0.0005

100 16 1.2 1.0 2.6 250 1.6 3.0 0.0005

100 32 1.4 1.0 1.8 150 1.4 3.0 0.0005

100 64 1.2 1.0 1.4 100 1.6 3.0 0.0005

400 4 1.6 1.0 3.0 150 1.2 3.0 0.0005

400 8 1.6 1.0 3.0 150 1.2 3.0 0.0020

400 16 1.4 1.0 2.6 150 1.0 3.0 0.0010

400 32 1.2 1.0 2.0 100 1.0 3.0 0.0010

400 64 1.2 1.0 1.6 50 1.2 3.0 0.0040

700 4 1.6 1.0 3.0 100 1.2 3.0 0.0020

700 8 1.4 1.0 3.0 100 1.0 3.0 0.0010

700 16 1.4 1.0 2.6 50 1.2 3.0 0.0160

700 32 1.2 1.0 2.0 50 1.0 3.0 0.0320

700 64 1.0 1.0 1.0 – 1.0 3.0 0.0320

1000 4 1.8 1.0 3.0 100 1.0 3.0 0.0005

1000 8 1.6 1.0 3.0 100 1.0 3.0 0.0005

1000 16 1.4 1.0 2.4 50 1.0 3.0 0.0320

1000 32 1.4 1.0 2.0 50 1.0 3.0 0.0640

1000 64 1.0 1.0 1.0 – 1.0 2.8 0.0640

a Non-composite search strategy.
b Non-directional sensory search strategy.
c Sensory field threshold.
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The optimal parameters identified in our simulations can be
compared with conventional composite search strategies, which
use ballistic motion in extensive search and Brownian motion in
intensive search (Plank and James, 2008). Optimal GUT foragers for
landscapes with a high degree of resource aggregation behaved
like a conventional composite searcher. The optimal GUT foragers
for other landscapes used the conventional extensive strategy but
deviated from the conventional intensive strategy (mint < 3). The
optimal non-directional sensory foragers used intensive and
extensive movement parameters that are consistent with conven-
tional composite search (although the criteria they use for mode-
switching distinguishes them from previous composite search
models).

3.2. Search strategy comparisons

After identifying optimal parameters for non-composite,
GUT, and non-directional sensory foragers, we compared the
Table 2
Parameter values used in the simulation model.

Parameter Value

Resources

Initial number of resources 100, 400, 700, 1000

Number of clustersa 15

Radius of resource clusterb 4, 8, 16, 32, 64

Forager

Speed (distance/time step) 0.25

Detection radius 0.5

Lévy exponent (m)

Extensive search mode 1.0, 1.2, 1.4, 1.6, . . ., 3.0

Intensive search mode 1.0, 1.2, 1.4, 1.6, . . ., 3.0

Mode-switching criteriac

Giving-up time 0, 50, 100, 150, 200, . . ., 500

Sensory field threshold 0, 0.0005, 0.001, 0.002, . . ., 0.128, 0.256

a Poisson random variable with an expected value of 15.
b Resource aggregation decreases with increasing cluster radius.
c Forager employs only one mode-switching criteria in a run of the simulation.
search efficiencies of these foraging strategies. The composite
search strategies outperformed the non-composite search
strategy when resources were highly aggregated, and the
relative advantage of composite search increased with the
degree of resource aggregation (Fig. 2). Composite search also
produced lower variability in search efficiency than non-
composite search when resources were aggregated (Fig. 3).
For all search strategies, both search efficiency (Fig. 2) and
variability in search efficiency (Fig. 3) increased with degree of
resource aggregation.

The non-directional sensory strategy performed better than the
GUT strategy across the full spectrum of resource aggregation
(Fig. 2). At first glance, this result may seem obvious; having
sensory capabilities is clearly better than not having them at all.
Recall, however, that the non-directional sensory forager is not
simply an enhanced GUT forager. The GUT forager has the ability to
keep track of time since the last resource encounter, an ability that
the non-directional sensory forager lacks.

The non-directional sensory forager’s performance advantage
over the GUT forager can be attributed to two main reasons. First,
the sensory forager has more opportunities to switch search mode.
The GUT forager only switches mode upon encountering resources
or when the time threshold expires. The sensory forager examines
the sensory field at every resource encounter and at the end of
every step of its random walk; this happens very frequently when
move lengths are short (i.e., when m is close to 3.0). When the
sensory forager engages in intensive mode, it is not making a large
time commitment, because it has frequent opportunities to revert
to extensive mode. When the GUT forager engages in intensive
search, it is stuck in that mode until the time threshold elapses.
Second, the GUT forager’s search strategy relies on the spatial
autocorrelation of resources. When a GUT forager encounters a
resource, it enters intensive search, under the assumption that
other resources are nearby. In contrast, the sensory forager can be
triggered into intensive search by local deviations in the sensory
field, which is beneficial regardless of the spatial autocorrelation of
the resources. This effect is evident in Fig. 2, where the advantage



Fig. 2. Normalized searching efficiency for three search strategies across 5 levels of resource aggregation (measured by cluster radii) and 4 levels of resource density: (A) 100,

(B) 400, (C) 700, (D) 1000. Searching efficiency was normalized for comparison across resource densities. Error bars represent 95% confidence intervals. Non-directional

sensory search (solid lines) outperforms GUT search (dashed lines) across all landscape types. On landscapes with low aggregation (large cluster radii), the advantage of GUT

over non-composite search (dotted lines) vanishes, but the advantage of non-directional sensory over non-composite search does not.
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of sensory search over GUT search increases slightly as landscapes
become more dispersed.

These results regarding the relative efficiencies of different
search strategies have two major biological implications. First,
they indicate that non-directional sensory strategies are generally
superior to GUT strategies. From a forager’s point of view, this
means that it is better to keep track of sensory cues than time, even
if the sensory cues cannot be used for taxis. Second, these results
show that non-directional sensory foraging is a useful strategy,
even when resources are not aggregated. This means that the
advantages of composite search extend beyond environments with
clumped resource distributions.

3.3. Sensitivity

For both composite search classes, searching efficiency was
most sensitive to movement behavior in extensive mode, mext

(Fig. 4). The difference in searching efficiency between the optimal
mext and the worst mext was up to 70%. In contrast, the difference in
searching efficiency between the optimal mint and the worst mint

was no more than 45%.
Setting the threshold parameter (the time threshold for GUT

foragers, the sensory field threshold for non-directional sensory
foragers) below the optimal value caused greater decreases in
efficiency than when these parameters were set above the
optimal value. When the time threshold is set too low, the GUT
forager spends too much time in extensive mode; in the
extreme, setting the time threshold to zero leads to a reduction
in efficiency of nearly 40%. When the sensory field threshold is
set too low, the non-directional sensory forager spends too
much time in intensive search; in the extreme, setting this
threshold to zero leads to a reduction in efficiency of over 60%
(Fig. 4).

Biologically, this means that GUT foragers should error on the
side of too much intensive search (with too high a GUT threshold)
more frequently than on the side of too little intensive search (with
too low a GUT threshold). Conversely, sensory foragers should
error on the side of too little intensive search (with too high a



Fig. 3. Coefficient of variation in searching efficiency for three search strategies across 5 levels of resource aggregation (measured by cluster radii) and 4 levels of resource

density: (A) 100, (B) 400, (C) 700, (D) 1000. Composite search (solid and dashed lines) is less variable than non-composite search (dotted lines) on most landscape types,

particularly on landscapes with high resource aggregation (low cluster radii). Non-directional sensory search (solid lines) is less variable than GUT search (dashed lines) on

most landscape types.
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sensory field threshold) more frequently than on the side of too
much intensive search (with too low a sensory field threshold).

3.4. Robustness

Our robustness analysis (explained in detail in Section A.4)
allowed us to determine how a forager optimized for a particular
level of resource aggregation would fare in landscapes with
different levels of resource aggregation. The non-directional
sensory strategy was more robust to changes in resource
aggregation than the GUT strategy, particularly for foragers that
were optimized for dispersed resources (black lines in Fig. 5). GUT
foragers optimized for a high degree of resource aggregation were
relatively robust to decreasing degrees of resource aggregation
(grey dashed lines in Fig. 5), but GUT foragers optimized for
landscapes with dispersed resources had drastically reduced
searching efficiency in landscapes with more aggregated resources
(black dashed lines in Fig. 5). This contrasts with the optimal non-
directional sensory foragers, which had much smaller decreases in
efficiency (solid lines in Fig. 5).
Overall, the biological implications of the robustness analysis
are clear: non-directional sensory foragers fare better than GUT
foragers when placed in environments they are not optimized for.
This implies that non-directional sensory foragers will suffer a
smaller reduction in efficiency than their GUT counterparts if
environments change drastically over time.

4. Discussion

Composite search strategies, which consist of extensive and
intensive search modes, help foragers focus search effort on
resource rich regions and devote less effort to resource poor
regions. The central objective of this study was to compare the
efficiency of two possible criteria for switching search modes:
giving-up time (GUT) and non-directional sensory cues. Our
simulations revealed that non-directional sensory foragers out-
performed GUT foragers across a full spectrum of resource
distributions, ranging from highly aggregated to highly dispersed.
In addition, non-directional sensory foragers were more robust to
changes in resource distribution, implying that they would be



Fig. 4. Representative example of sensitivity analysis for the three parameters associated with giving-up time and non-directional sensory search strategies. Resource density

is 400; cluster radius is 4. Points represent proportional difference in searching efficiency for a single run relative to the mean searching efficiency for the optimal parameter

combination. mext is the extensive movement parameter, mint is the intensive movement parameter, GUT is the giving-up time, and SFT is the sensory field threshold.

Parameter values are normalized for comparison. Lines are smoothing splines. For both non-directional sensory and GUT search, efficiency generally declines as mext

increases, and generally increases as mint increases. See Section A.3 for details.
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better able to cope with environmental change. These results
indicate that it is better to inform search behavior with a non-
directional sensory cue than with resource encounters and elapsed
time. Together with empirical evidence indicating that sensory
cues are more important than recent resource encounters in
determining foraging mode (Persons and Uetz, 1997), our
simulations suggest that the default assumption that GUT governs
composite random search should be reexamined. If a researcher in
the field observes foragers engaged in composite random search,
the default assumption should be the foragers are using the most
efficient mode switching strategy, which our simulations show is
based on non-directional sensory cues. The alternative hypothesis,
that foragers use GUT mediated search, should be entertained only
after the researcher rules out all possible sensory cues.

Our simulations also agree with the results in Benhamou
(2007), which showed that composite search strategies outper-
form non-composite searches in patchy environments. Our
simulations show how this performance advantage varies across
a spectrum of levels of resource aggregation (Fig. 2). At the lowest
levels of resource aggregation, the performance advantage
vanishes for GUT composite foragers, but not for non-directional
sensory composite foragers.

To our knowledge, GUT is the only mode-switching mechanism
previously used to model composite strategies in the general
random search context (James et al., 2011, e.g.,][; Reynolds, 2009;
Plank and James, 2008). Our model with mode-switching based on
non-directional sensory cues is novel. Our results agree with the
system-specific model of Hill et al. Hill et al. (2003), who simulated
juvenile flatfish foraging for bivalves. In their study, simulated
flatfish movement was determined by sampling empirically
observed movement distributions. The authors studied both a
giving-up time composite search strategy and a ‘‘local density’’
strategy, in which search mode was based on the number of prey
items within a fixed radius of the fish’s position. Hill et. al found
that the local density strategy outperformed the GUT strategy,
which matches our finding that the non-directional sensory
strategy outperforms the GUT strategy. Our work, which repre-
sents very general search behavior, and that of Hill et al. Hill et al.



Fig. 5. Robustness of non-directional sensory (NDS) and giving-up time (GUT) search strategies across 5 levels of resource aggregation (measured by cluster radii) and 4 levels

of resource density: (A) 100, (B) 400, (C) 700, (D) 1000. Robustness measures how well a searcher optimized for a landscape of type X does in a landscape of type Y, relative to a

searcher optimized for type Y. A NDS searcher optimized for dispersed landscapes (black solid lines, large cluster radii) performs sub-optimally in clumped landscapes (small

cluster radii). The corresponding situation for GUT search is much more dramatic; a GUT searcher optimized for dispersed landscapes (black dashed lines) does very poorly

when placed in clumped landscapes. See Section A.4 for details.
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(2003), which focused on a specific system, provide complemen-
tary evidence for the potential importance of composite foraging
strategies that are not based on time.

In an attempt to keep our model as general as possible, we did
not include several important ecological factors. First, we did not
consider the costs involved in the evolution or development of the
cognitive and sensory abilities foragers would need to detect non-
directional cues versus the cost to keep track of time. Second, we
did not model the process of selection and evolution; an approach
similar to that implemented by Preston et al. (2010) could be used
to investigate the evolution of these strategies. Third, we only
considered non-directional sensory fields that were created by
symmetric Gaussian sources. This provides an accurate represen-
tation of sensory fields when there are no prevailing winds, as in
the Tsetse fly system described by Williams (1994). In many
systems, however, the sensory field will be altered by wind,
currents, and other environmental factors (Reynolds, 2012). In
some situations, it could be expected that turbulence would blur
what otherwise might be used as gradient-following cues,
resulting in non-directional sensory cues. In other cases, prevailing
winds or straight-line winds might create a situation in which
special movement patterns would be optimal (Nevitt et al., 2008).
Future work will be required to fully describe these situations and
conditions, but the symmetric Gaussian case studied here provides
a useful starting point. Fourth, our simulation was done in two
dimensions; for many species, especially marine organisms, a
three-dimensional model would be more appropriate. Finally, we
did not take into account factors like interspecific competition or
predation risk (Brown and Kotler, 2004; Reynolds, 2010a).
Information sharing among foragers in a group is another
complicating factor. Codling and Bode (2014) created an individ-
ual-based model of how leaderless social groups navigate toward a
target. Future research should build upon this, and examine how
information sharing applies to the context of foraging.

Our models use Lévy walks to describe movement types that lie
on a spectrum between the extremes of Brownian and ballistic
motion. Recently, Pyke (2015) argued that traditional Lévy walk
models are biologically unrealistic. He advocated the use of
individual based models that can incorporate phenomena like
area-restricted search, patchy resource distributions, and forager
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memory and perceptual abilities. Our modeling framework shows
that these features are compatible with Lévy walks. Lévy walks
provide a simple, general family of non-oriented superdiffusive
random walks (for details see Section A.1); their usefulness as a
descriptive modeling tool does not rest on the validity of the Lévy
foraging hypothesis (as described in Bartumeus, 2007). An analogy
can be made with Brownian motion, which is frequently used as a
descriptive model of random movement, without invoking a
Brownian foraging hypothesis. With knowledge of the traits of a
particular species and its environment, a highly detailed, specific
model can be created; our models, however, aim to explore general
principles about composite foraging strategies. We believe Lévy
walks offer an appropriate trade-off between generality and
realism.

The modeling framework outlined in this study has the
potential to help bridge the gap between two traditionally
disparate fields of study: random search theory and classic patch
use theory. The former focuses on animal movement patterns, the
latter on patch use decisions (Bartumeus and Catalan, 2009).
Recent work (Bartumeus et al., 2013) has sought to establish a
stochastic optimal foraging theory to unify these approaches; our
model could contribute to that effort. One of the foundational
results of classic foraging theory is Charnov’s Marginal Value
Theorem (MVT), which dictates that an optimal forager should
deplete patches so that the intake rate in each patch is equal to the
expected intake rate averaged over the rest of the environment
(Charnov, 1976). The predictions of the MVT provide a useful
benchmark to measure real-world foragers against. Unfortunately,
the MVT is not easily translated to the realm of random search
theory, where resources have arbitrary spatial distributions (hence
patches are not well-defined) and resource encounters are
typically discrete events (hence instantaneous intake rate is not
well-defined).

Plank and James (2008) proposed an analogue between patch-
use models and composite random search models: within patch
harvesting corresponds to intensive search, while between-patch
travel corresponds to extensive search. They further suggested that
optimal GUT composite searchers represent the random search
version of MVT optimal foragers. There are important differences
between the optimal behavior predicted by these two models,
though. MVT optimal foragers make decisions based on the current
local and global resource levels. They are omniscient, and hence
have no need to use past experience or memory. This contrasts
with GUT optimal foragers, whose behavior is highly dependent on
stochastic resource encounters. The non-directional sensory
optimal foragers introduced in this paper provide a better analogue
to MVT optimal foragers. Like MVT optimal foragers, non-
directional sensory optimal foragers make instantaneous assess-
ments of local and global resource conditions to determine when to
switch behavioral modes. Just as MVT optimal foragers provide a
useful null-model for foraging on landscapes with resource
patches, non-directional sensory optimal foragers provide a useful
null-model for foraging on landscapes with resources distributed
as arbitrary point patterns. Similar to MVT foragers, the non-
directional sensory optimal foragers can be used as a benchmark,
even when the mechanisms foragers use to locate resources are
unknown. The non-directional sensory forager model predicts
areas that warrant intensive search; by overlaying this with
observed animal movement trajectories, one can determine how
close those animals come to optimal behavior.

In summary, our results challenge the assumption that GUT is
the key criterion composite foragers use to switch between
intensive and extensive search modes. Non-directional sensory
cues and GUT are both potential mechanisms for mediating kinesis,
but our simulations show that strategies based on non-directional
sensory cues are more efficient than strategies based on GUT. This
suggests that foragers should rely more heavily on sensory cues
than elapsed time for determining search mode switches.
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Appendix A

A.1. Diffusive and superdiffusive random walks

A frequently invoked reason for using Lévy walks to model
animal movement is that they are ‘‘superdiffusive’’ (Viswanathan
et al., 2008). In this section, we clarify how this term is defined, and
address the implications for situations where walks are truncated.

Mean-square displacement (MSD) provides a useful way to
classify stochastic movement. If a particle’s position is given by the
stochastic process x(t), then we define MSD = hx2i. For Brownian
motion, hx2i � t. This linear scaling of MSD with time is referred to
as normal diffusion. If hx2i � t

a
, a > 1, then we say that the particle

is ‘‘superdiffusive’’.
For random walks with step-lengths drawn from a Pareto

distribution with m > 3, the Central Limit Theorem guarantees that
hx2i � t. Hence these random walks are normal diffusions, and
behave like Brownian motion at sufficiently large time scales. For
m = 3, the Central Limit Theorem no longer applies, and
hx2i � ln tð Þt, a marginal case between normal diffusion and
superdiffusion. This fact is mentioned in Klafter et al. (1996)
and Viswanathan et al. (2011), and a proof of the discrete space
case can be found in Zumofen and Klafter (1993). We were able to
translate Zumofen and Klafter’s approach into a continuous space
context (we were unable to find a proof of this case in the
literature). For m < 3, it is well known that the resulting Lévy walk
is superdiffusive (Viswanathan et al., 2011).

These results are valid for theoretical Lévy walks. In nature and
in simulations, there will always be an upper bound to step-
lengths. These limitations result in truncated Lévy walks, which, by
the Central Limit Theorem, eventually converge to Brownian
motion (Benhamou, 2007). There are both numerical and
philosophical reasons why this does not prevent Lévy walks from
serving as useful modeling tools. The numerical argument, as
established in Mantegna and Stanley (1994) and reiterated in
Viswanathan et al. (2011), is that the convergence to Brownian
motion is very slow, and hence a truncated Lévy walk retains its
superdiffusive quality over relevant time scales. From a philo-
sophical perspective, the theoretical (non-truncated) Lévy walk
represents a process that, together with the environment,
generates an observed (or simulated) truncated Lévy walk. As
argued by Viswanathan et al. (2011), this distinction between
process and observation is extremely important.

Another important property of Lévy walks is that they are scale-
free; that is, the probability distribution of step lengths is invariant
under scaling transformations (Reynolds and Rhodes, 2009). When
a forager interacts with its environment, either by truncating step
lengths or by switching its search mode, the scale-free property is
not retained (Viswanathan et al., 2008). In other words, although
scale-invariant probability distributions drive a forager’s intrinsic
movement tendencies, its trajectory depends on its interactions
with the environment, and hence is not scale-free. This is realistic,
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because foraging behavior should reflect the characteristic scales
of the surrounding environment.

A.2. Parameter optimization

We used a grid-based search to explore the searching efficiency
associated with large regions of the parameter space of our
simulation model. A non-composite forager is characterized by a
single parameter m. We ran non-composite simulations using
parameter values m = 1.0, 1.2, 1.4, . . ., 3.0 on each landscape type
(specified by initial resource density and resource aggregation). For
the composite foragers, we examined 4 initial resource densities,
5 cluster radii, 2 search strategies (GUT and non-directional
sensory), and 11 values for each of the 3 search parameters (mext,
mint, switching threshold). In the first sweep of the parameter
space, we conducted 100 runs for each parameter combination for
a total of 5,324,000 runs (4 densities � 5 radii � 2 strategies � 113

search parameter combinations � 100 runs). Each run of the model
consisted of 20,000 discrete time steps. Even the most efficient
foragers did not come close to consuming all of the available
resources; hence totally depleting the landscape before 20,000
time steps was not an issue. The full grid-based search produced a
rough fitness surface based on the searching efficiency of each
parameter combination. The fitness surface allowed us to exclude
regions of the parameter space that led to poor searching
efficiency, thereby focusing our computational resources on
increasing replication in regions of the parameter space that were
likely to contain the optimal parameter combination. We used an
iterative process (described below) to narrow the regions of the
parameter space selected for increased replication. The iterative
process did not produce a finer-scale resolution of the parameter
space but rather increased the replication for subsets of the
parameter combinations used in the full grid-based search. Within
each landscape type, we used the mean searching efficiency from
the full grid-based search to select the top 13 of the 1331 (1%)
possible parameter combinations. For each parameter, we used the
range of values found within the top 1% to reduce the parameter
space. For example, suppose the top 1% parameter combinations
included mext values that ranged from 1.0 to 1.4, mint values from
2.6 to 3.0, and GUT values from 100 to 200. Then we would have
increased replication for the 27 parameter combinations (mext,
mint, GUT) that represented parameter values within those ranges:
mext = 1.0, 1.2, 1.4; mint = 2.6, 2.8, 3.0; GUT = 100, 150, 200. For
some landscape types, this approach did not reduce the parameter
space substantially. Thus, we conducted 200 runs for each
parameter combination in the reduced parameter space and again
calculated the top 1% of the parameter combinations to further
reduce the parameter space. This process was repeated until the
optimal parameter combination was composed of at least 500 runs
because preliminary exploration of the model indicated that
500 runs produced good estimates of mean searching efficiency.

A.3. Sensitivity

We examined the sensitivity of searching efficiency to each
search parameter by varying one search parameter while holding
the other two parameters at their optimal values. mext and mint

ranged from 1 to 3, GUT ranged from 0 to 500, and the sensory field
threshold ranged from 0 to 0.256 (Table 2). The m parameters have
a naturally bounded range, but the threshold parameters have
arbitrary upper bounds, which were selected based on preliminary
explorations of parameter space. We normalized the parameter
values to fall between 0 and 1 to facilitate comparisons across the
different ranges of the parameters. We calculated the proportional
difference in searching efficiency as DS ¼ ðy � ȳoÞ=ȳo, where y was
the searching efficiency for a single run and ȳo was the mean
searching efficiency for the optimal parameter combination. We
fitted smoothing splines to the relationship between DS and the
normalized value of each parameter for each landscape type. The
shape of the smoothing splines provided an indication of the
sensitivity of searching efficiency to changes in each parameter. In
two cases (see Table 1), the optimal mext and mint were the same,
which made the best giving-up time parameter irrelevant. Thus,
those landscape types were excluded from the sensitivity analysis.

A.4. Robustness

To assess the robustness of the optimal strategies to changes
in resource aggregation, we examined how a search strategy
that maximized the searching efficiency for one landscape
type performed in landscape types with different degrees of
resource aggregation. Specifically, we calculated robustness as
DR ¼ ðȳi; j � ȳi;iÞ=ȳi;i, where ȳi; j was the mean searching efficiency
in landscapes of type i for a forager that was optimized for a
landscape of type j. In this formula, landscape types are indexed
by cluster radius. We examined how foragers optimized for very
clumped and very disperse landscapes ( j = 4 and j = 64,
respectively) performed on a full range of landscape types
(i = 4, 8, 16, 32, 64). This analysis was done on four different
levels of resource density (100, 400, 700, 1000). Then we
resampled the data with replacement (i.e., bootstrap method)
500 times for each landscape type and calculated the mean and
2.5% and 97.5% quantiles of the distribution of robustness
values.

A.5. Boundary conditions

Landscape boundary conditions play an important role in
individual-based models (Berec, 2002). Most simulations use one
of three types of boundary conditions: reflecting, periodic, or
absorbing. Reflecting boundaries are appropriate for modeling
animals that live in a restricted environment, like animals on an
island (Berec, 2002), or animals with territories bounded by scent
marks (Giuggioli and Kenkre, 2014). Reflecting boundary condi-
tions can also be interpreted as having a new forager enter the
landscape at the exact place where the previous forager left it. This
biases the initial conditions for the new forager and creates edge
effects.

Periodic boundary conditions can be interpreted in three
different ways. First, the landscape is literally a torus, which is an
unrealistic assumption. Second, the landscape is infinite, but
repeating; this is problematic when resource consumption is
destructive, and a forager’s actions at one point on a landscape
affect an infinite number of other points. Third, a new forager
enters the landscape at a point determined by where the original
forager left it; like with reflecting boundary conditions, this has the
potential to create edge effects. Our modeling framework presents
a few additional problems associated with periodic boundary
conditions. The resource distributions and the sensory field are
generated under the assumptions that the topology of the
landscape is a plane; periodic boundary conditions would mean
that resources on opposite ends of the landscape are close to each
other, leading to logical inconsistencies.

Alternatively, foragers that reach the boundary of the landscape
could be reintroduced at a randomly selected point on the
boundary. This poses a problem, because a random walker placed
on a boundary is highly likely to cross the boundary within a very
short time period (often immediately). This can lead to a long
repeated pattern of foragers being placed on the boundary,
crossing it almost immediately, being replaced on the boundary,
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leaving again, etc. Ideally, one would like to de-emphasize the role
of potential boundary artifacts, and minimize the time a forager
spends near boundaries. The boundary reintroduction method
does not meet that goal.

In our model, we implemented a modified version of absorbing
boundary conditions. The major challenge with absorbing bound-
ary conditions is that a forager could leave the landscape by chance
almost immediately after entering it. The performance of such a
forager would not provide much information about the efficiency
of the strategy it employed. Therefore, we chose to force each
forager to spend 20,000 discrete time steps foraging on the
landscape. If the forager was absorbed by a boundary, it was
randomly dropped back into the landscape to resume foraging.
This can be interpreted as a forager leaving the landscape, then
returning later to resume foraging. We chose 20,000 time steps,
because this was a sufficient time for foragers to appreciably
deplete landscapes. Finally, we included a small resource-free
buffer zone at the edge of the landscape. The entire landscape
(including buffers) was a square 111 units long and 111 units wide,
but only the 101 unit long, 101 unit wide square in the center
contained resources. Resource-free buffer zones occupied 5 unit
thick strips at the top, bottom, left, and right edges of the central
landscape. This ensured that all resources could be approached
from every direction, and that no resources were protected by edge
effects.
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foraging. J. R. Soc. Interface 8, 1233–1247.

Klafter, J., Shlesinger, M.F., Zumofen, G., 1996. Beyond Brownian motion. Phys.
Today 49, 33–39.

Knell, A.S., Codling, E.A., 2011. Classifying area-restricted search (ARS) using a
partial sum approach. Theor. Ecol. 5, 325–339.

Latty, T., Beekman, M., 2009. Food quality affects search strategy in the acellular
slime mould, Physarum polycephalum. Behav. Ecol. 20, 1160–1167.

Leick, V., Hellung Larsen, P., 1992. Chemosensory behaviour of Tetrahymena.
Bioessays 14, 61–66.

Levandowsky, M., Klafter, J., 1988. Feeding and swimming behavior in grazing
microzooplankton. J. Eukaryot. Microbiol. 35, 243–246.

Mantegna, R.N., Stanley, H.E., 1994. Stochastic process with ultraslow convergence
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Seymour, J.R., Simó, R., Ahmed, T., Stocker, R., 2010. Chemoattraction to dimethyl-
sulfoniopropionate throughout the marine microbial food web. Science 329,
342–345.

Strand, M.R., Vinson, S.B., 1982. Behavioral response of the parasitoid Cardiochiles
nigriceps to a kairomone. Entomol. Exp. Appl. 31, 308–315.

Tyson, R.C., Wilson, J.B., Lane, W.D., 2011. Beyond diffusion: modelling local and
long-distance dispersal for organisms exhibiting intensive and extensive search
modes. Theor. Popul. Biol. 79, 70–81.

Viswanathan, G.M., Buldyrev, S.V., Havlin, S., Da Luz, M., Raposo, E.P., Stanley,
H.E., 1999. Optimizing the success of random searches. Nature 401, 911–
914.

Viswanathan, G.M., da Luz, M.G.E., Raposo, E.P., Stanley, H.E., 2011. The Physics of
Foraging: An Introduction to Random Searches and Biological Encounters.
Cambridge University Press, Cambridge, UK.
Viswanathan, G.M., Raposo, E.P., da Luz, M.G.E., 2008. Lévy flights and superdiffu-
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