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SUMMARY

In long-lived C. elegans insulin/IGF-1 pathway mu-
tants, the life-extending FOXO transcription factor
DAF-16 is present throughout the animal, but we
find that its activity in a single tissue can delay the
aging of other tissues and extend the animal’s life
span. To better understand the topography of DAF-
16 action among the tissues,we analyzed a collection
of DAF-16-regulated genes. DAF-16 regulated most
of these genes in a cell-autonomous fashion, often
using tissue-specific GATA factors to direct their
expression to specific tissues. DAF-16 could also
act cell nonautonomously to influence gene expres-
sion. DAF-16 affected gene expression in other cells,
at least in part, via the lipid-gene regulator MDT-15.
DAF-16, and probably MDT-15, could act cell non-
autonomously in the endoderm to ameliorate the
paralysis caused by expressing Alzheimer’s Ab pro-
tein in muscles. These findings suggest that MDT-
15-dependent intercellular signals, possibly lipid
signals, can help to coordinate tissue physiology,
enhance proteostasis, and extend life in response
to DAF-16/FOXO activity.

INTRODUCTION

Insulin and IGF-1 signaling pathways influence the rate of aging

in many species, and they appear to affect human aging, as well

(Barzilai et al., 2012; Kenyon, 2010). However, the mechanisms

by which insulin and IGF-1 hormones coordinate the aging of

individual tissues are poorly understood. In C. elegans, the life-

span extension produced by reduced insulin/IGF-1 signaling

requires the FOXO transcription factor DAF-16 (Kenyon et al.,

1993; Lin et al., 1997; Ogg et al., 1997). DAF-16/FOXO is an

important longevity regulator, as its disruption accelerates the

rate of normal aging (Garigan et al., 2002; Haithcock et al.,

2005)—and increasing its activity can extend life span (Hender-

son and Johnson, 2001; Lee et al., 2001; Lin et al., 2001). Its

function in life-span regulation may be ancient: forkhead-box
C

transcription factors can extend life span in yeast (Postnikoff

et al., 2012), and FOXO proteins can extend the life span of

Drosophila (Giannakou et al., 2004; Hwangbo et al., 2004) and

possibly humans (Barzilai et al., 2012).

DAF-16 extends the life span of C. elegans insulin/IGF-1-

pathway mutants by affecting the expression of stress-

response, metabolic, innate-immunity, signaling, germline, and

other genes (Curran et al., 2009; Lee et al., 2003; McElwee

et al., 2003; Murphy et al., 2003; Wang et al., 2008). Presumably,

these genes hold much of the answer to the question of how life

span can be extended; yet, we know little about their positions in

this regulatory network. How are their activities distributed

among the different tissues? In which tissues are their activities

altered in long-lived mutants? Is each gene regulated directly

by DAF-16, or are intermediate, possibly intercellular, factors

required? These are fascinating, system-wide questions that

address the function of this endocrine pathway as a whole.

DAF-16 is expressed in many tissues, raising the possibility

that it directly regulatesmany genes in a strictly cell-autonomous

fashion. Consistent with this idea, expressing daf-16(+) exclu-

sively in the intestine, muscles or neurons of a daf-2(�) mutant

switches on the sod-3 superoxide dismutase gene in that tissue

alone (Libina et al., 2003). The sod-3 promoter contains

consensus DAF-16/FOXO-binding elements (DBEs) (Biggs

et al., 2001; Furuyama et al., 2000; Pierrou et al., 1994), which

bind DAF-16 both in vitro (Furuyama et al., 2000) and in vivo

(Oh et al., 2006).

DAF-16 activity can also influence cells at a distance. First, in

a process we call FOXO-to-FOXO signaling, increasing daf-16

gene dosage in one tissue (neurons, intestine) upregulates

DAF-16 activity in other tissues (Libina et al., 2003). Intestinal

DAF-16 mediates FOXO-to-FOXO signaling, at least in part, by

downregulating an intestinal insulin gene (Murphy et al., 2007).

The C. elegans intestine is the animal’s entire endoderm, also

functioning as the adipose tissue, liver, and pancreas. Consistent

with this, overexpressing dFOXO specifically in the fat body of

Drosophila reduces the expression of the insulin-like peptide

gene dilp-2 in neurons and reduces insulin/IGF-1 signaling in

peripheral tissues (Giannakou et al., 2004; Hwangbo et al., 2004).

DAF-16 also appears to initiate a fundamentally different

type of cross-tissue communication, one that does not require

DAF-16 activity in responding tissues. Expressing daf-16 exclu-

sively in the intestine of a daf-16(�); daf-2(�) double mutant
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extends life span by 50%–70%, and expressing daf-16 only in

nonintestinal tissues extends life span by 50% (Libina et al.,

2003). To a lesser extent, DAF-16 can also act exclusively in

neurons (Libina et al., 2003) or skin (this study) to increase life

span, as well. The finding that DAF-16 is not absolutely required

in any one tissue to extendC. elegans’ life span implies that DAF-

16 can extend life span by modulating expression of genes en-

coding downstream hormones or metabolites that act indepen-

dently of daf-16 to delay aging in responding tissues. If so, then

genes like sod-3, which require DAF-16 cell autonomously for

their expression, might be the exception and not the rule.

To address these questions more systematically, in vivo,

we surveyed longevity genes that are either up- or downregu-

lated by DAF-16 in long-lived daf-2(-) mutants to ask (1) in

which tissues they are expressed; (2) whether DAF-16 regulates

them in a strictly cell-autonomous fashion, or remotely, at a

distance; and (3) what mechanisms control their tissue-specific

expression.

RESULTS

DAF-16 Can Affect Tissue Aging at a Distance
daf-2(�) mutants expressing daf-16 only in the intestine are

long-lived (Libina et al., 2003) (Table S3 and Figure S6A), but is

this increased longevity correlated with a more youthful appear-

ance of individual tissues? Aging C. elegans muscles resemble

those of human sarcopenia patients, in which muscle filaments

fragment and break. We found that expressing daf-16 exclu-

sively in the intestine of daf-16(�); daf-2(�) mutants reduced

this muscle deterioration (Figures 1A and 6A) and improved

body movement (Figure S6B). Thus, intestinal DAF-16 can act

at a distance to delay the aging of daf-16(�) muscles.

Analysis of DAF-16-Regulated Genes In Vivo
To better understand the DAF-16 regulon at the tissue level, we

studied, in vivo, a diverse collection of DAF-16-regulated genes

that we had identified in gene-expression arrays comparing

long-lived daf-2(�) mutants to daf-16(�); daf-2(�) mutants

(Murphy et al., 2003). Our set included stress-resistance, chap-

erone, signaling, innate immunity, and metabolic genes whose

RNAi knockdown influenced life span, as well as additional

genes for which RNAi analysis had not been performed.
Figure 1. DAF-16 Acts Cell Nonautonomously to Regulate Muscle Agin

(A) Intestinal DAF-16 protects daf-16(�)muscles from age-dependent deterioratio

scored/animals analyzed) (see Supplemental Experimental Procedures) (Man

Percentages of animals with extensive degeneration (Class C, as defined by Her

sarcomere of a day 10 Class C animal is shown; 250X magnification. Scale bar: 5

seen in nontransgenic daf-16(+); daf-2(�) mutants, just as it does not extend life

(B) Left panels: A mtl-1::rfp translational reporter is expressed mainly in the pha

daf-2(�) mutants in a daf-16-dependent manner. Right panels: intestinal GFP-ta

daf-16 does not affectmtl-1::rfp expression. The body is outlined. daf-2(e1370) an

bar: 130 mm.

(C) The ges-1 promoter, which drives gfp::daf-16 expression, is expressed in

expression in the same cells (left panel). Young adults, 100X magnification. Scal

(D) Top panels: A nuclear-localized Pdod-17::rfp transcriptional reporter is express

daf-2(�) mutants and upregulated in daf-16(�); daf-2(�)mutants. Bottom panels

Pdod-17::rfp expression. Inset: daf-16 expression (green) is inversely correlated w

intestinal cell that does not express gfp::daf-16 (arrowhead). The body and pha

Representative images from 2 or more experiments are shown for all figures.

C

We analyzed the expression of each gene by using �1–3 kb

upstream DNA to drive expression of red fluorescent protein

(RFP), or, in a few cases, green fluorescent protein (GFP). We

first examined each reporter for its response to daf-2 RNAi,

which stimulates DAF-16/FOXO’s transcriptional activity.

Twenty of the forty-four new genes we tested exhibited the

predicted (up or down) response to daf-2 inhibition (Table S1).

The 24 negatives could include microarray false positives, or

genes influenced by regulatory elements downstream of the

promoter. Consistent with this, the mtl-1 transcriptional fusion

exhibited little or no response to daf-2 RNAi, but a translational

fusion driven by the same promoter responded very strongly

(Figures 1B and S1C).

Genes Upregulated in Long-Lived daf-2(–) Mutants
Fifteen of the twenty daf-2-sensitive reporters were upregulated

under daf-2(�) conditions (Table S1). One, lys-7, encodes an

innate-immunity lysozyme. Several, like sod-3, were stress-

resistance genes: mtl-1 encodes a metallothionein protein that

confers resistance to heavy metals. hsp-12.6 and hsp-16.2

encode small heat-shock proteins that contribute to the isotonic

stress resistance of insulin/IGF-1-pathway mutants (Lamitina

and Strange, 2005), as do four additional proteins, encoded

by hgo-1 (homogentisate 1,2-dioxygenase), tps-1 and tps-2

(trehalose-6-phosphate synthases), and tre-4 (trehalase) (Lami-

tina and Strange, 2005). In addition, several genes encode

metabolic enzymes, including gpd-2 (glyceraldehyde-3-phos-

phate dehydrogenase), nnt-1 (nicotinamide nucleotide transhy-

drogenase), dod-11 (sorbitol dehydrogenase), and dod-8 (17

beta-hydroxysteroid dehydrogenase). F09F7.7 and ZK384.3

encode proteins that are similar to human a-ketoglutarate-

dependent dioxygenase and gastricsin, respectively. Finally,

sma-10 encodes a TGF-b-pathway member.

daf-2 and daf-16 act exclusively during adulthood to influence

aging (Dillin et al., 2002), so we examined expression during early

adulthood. In thewild-type, 13 of the 15 geneswere expressed in

more than one tissue, and, with few exceptions (dod-8, tps-2,

and nnt-1), their expression increased in each of those tissues

under daf-2(�) conditions (Table S1). Interestingly, all but one

of these upregulated genes was expressed and upregulated in

the intestine. Moreover, three genes whose functions contribute

to the longevity of daf-2(�) mutants (lys-7, mtl-1, and hsp-16.2)
g and Autonomously to Regulate mtl-1 and dod-17 Expression

n. Top: Extent of sarcomere degeneration on day 10 of adulthood (micrographs

n-Whitney-Wilcoxon test of all data points; n.s., not significant). Bottom:

ndon et al. [2002]) (Student’s t test of independent experiments). A gap in the

0 mm. Note that intestinal daf-16(+) does not fully restore muscle quality to that

span to the extent seen in daf-16(+); daf-2(�) animals.

rynx (ph) and intestine (i) of wild-type, and is upregulated in the intestines of

gged DAF-16 upregulates mtl-1::rfp only in the intestine. Muscle or neuronal

d daf-16(mu86)mutations were used. Young adults, 100X magnification. Scale

a mosaic fashion in the intestine (middle panel). DAF-16 turns on mtl-1::rfp

e bar: 130 mm.

edmainly in the intestine (i) of wild-type and is downregulated in the intestine of

: expression of daf-16 in the intestine, but not muscles or neurons, suppresses

ith dod-17 expression (red). Note that Pdod-17::rfp expression is higher in an

rynx (ph) are outlined. Young adults, 250X magnification. Scale bar: 50 mm.

ell Metabolism 17, 85–100, January 8, 2013 ª2013 Elsevier Inc. 87



Cell Metabolism

DAF-16 Activity Within and Across the Tissues

88 Cell Metabolism 17, 85–100, January 8, 2013 ª2013 Elsevier Inc.



Cell Metabolism

DAF-16 Activity Within and Across the Tissues
(Murphy et al., 2003; Walker and Lithgow, 2003) were expressed

and upregulated only in the intestine.

Genes Downregulated in Long-lived daf-2(–) Mutants
DAF-16 also downregulates genes in daf-2(�) mutants, and

RNAi knockdown of certain downregulated genes lengthens

wild-type life span (Murphy et al., 2003). We analyzed: pept-1,

which encodes a predicted dipeptide transporter; vit-5, which

encodes a putative lipid transporter related to vertebrate vitello-

genins and mammalian ApoB-100, a core LDL particle constit-

uent; his-24, which encodes a C. elegans H1 linker histone;

ZC416.6, similar to human leukotriene A-4 hydrolase; and one

gene with unknown function, dod-17. Remarkably, all five genes

were expressed only in the intestine (or intestine plus pharynx)

(Table S1).

DAF-16 Regulates Many Genes Cell Autonomously
Next, we chose nine genes with strong daf-2(�) induction ratios

for DAF-16 cell-autonomy studies. We introduced transgenic

reporters for these genes into daf-16(�); daf-2(�) mutants in

which daf-16 was expressed in only one tissue: intestine,

neurons, or muscles. We confirmed the tissue specificity of

daf-16 expression by using a functional GFP::DAF-16 protein

fusion (Libina et al., 2003). Surprisingly, as with sod-3 (Libina

et al., 2003); used as a control), six of these nine genes were

regulated in a strictly cell-autonomous fashion (lys-7, mtl-1,

hgo-1, gpd-2, nnt-1, and dod-17). The demonstration of cell

autonomy was particularly striking in the intestine, because the

ges-1 intestinal promoter we used did not fire evenly in all cells.

We observed a close correlation between GFP::DAF-16 and

reporter expression among individual intestinal cells with each

of these six genes (Figure 1C, mtl-1; Figure 1D, dod-17; Fig-

ure S1B, lys-7), plus sod-3 (Figure S1A).

DAF-16 Binds Multiple DNA Sequences to Upregulate
Gene Expression
Does DAF-16 bind directly to genes that it regulates cell autono-

mously? All but one of the 20 new DAF-16-regulated transgenes

we analyzed contain at least one copy of the canonical DAF-16-

binding element, consistent with this possibility. Previously,

Schuster et al. (2010) demonstrated DAF-16 binding to the
Figure 2. DAF-16 and GATA Factors Bind to dod-8 Promoter Sequenc

(A) The 504 bp dod-8 promoter fragment drives gfp (cytoplasmic) expression in t

type and is upregulated in most tissues of daf-2(�) mutants. Deletion of the D

significantly attenuated intestinal expression and abolished hypodermal expressi

Scale bar: 50 mm.

(B) Bacterially expressedGST-taggedDAF-16 gel-shifted an oligonucleotide cont

abolished the binding. Shifted oligos are highlighted. Mock: purified GST. Repres

(C) DAF-16 gel-shifted the 504 bp dod-8 promoter fragment independently of the

antibody, could be inhibited with cold competitor, a dod-8 promoter fragment

fragment following DAE deletion.

(D) Knockdown of daf-16 or elt-2/GATA significantly attenuated Pdod-8::gfp ind

(100X) using a low exposure to avoid signal saturation. Scale bar: 130 mm. Lower

was quantified. Bars, mean value ± SD. daf-2(+) background: RNAi control, n = 36

elt-2(RNAi), n = 36, p = 2.32E-08. daf-2(�) background: RNAi control, n = 24; da

(E) Both ELT-2 and ELT-3 gel-shifted DAE/GATA site-containing DNA. Binding

a mutant DAE/GATA(�)-promoter fragment. Likewise, neither ELT-2 nor ELT-3 c

copurified proteins produced by the empty vector pET-28.

(F) Both ELT-2 and DAF-16 gel-shifted wild-type but not mutant DAE/GATA seq

(G) Model for coregulation of dod-8 by DAF-16 and GATA factors. Note that DAF

C

DBE-containing genes hsp-12.6, hgo-1, tps-1, gpd-2, and

F09F7.7 in chromatin profiling experiments. We tested for

DAF-16’s binding to our eleven most highly regulated genes,

plus sod-3, in chromatin immunoprecipitation (ChIP) experi-

ments. In our experiments, DAF-16 bound to sod-3, dod-8,

hsp-12.6, and tps-1 preferentially in daf-2(�) mutants in both of

two experiments, and to mtl-1, nnt-1, hgo-1, dod-11, and

dod-17 in one of two experiments (see Figure S4D for details).

We also examined the online modENCODE database for DAF-

16 binding profiles for these same genes (http://intermine.

modencode.org/release-30/report.do?id=64000352). Even in

wild-type, in which DAF-16 is only partially activated, DAF-16

bound to genomic regions of ten of these twelve genes (sod-3,

dod-8, mtl-1, gpd-2, nnt-1, hgo-1, tps-1, tps-2, dod-11, and

hsp-12.6) (Figure S4D).

The one daf-2/daf-16-responsive reporter that lacked a DBE

contained a small, 0.5 kb, dod-8 promoter sequence (Figures

2A and S2). This reporter was noteworthy, as, to our knowledge,

DAF-16 has not been shown to bind any non-DBE sites in

C. elegans. One potential DAF-16-binding site in this fragment

was the so-called DAE (DAF-16-associated element, CTTATCA),

as this sequence is overrepresented in promoter regions of

DAF-16-regulated genes (Murphy et al., 2003). The DAE was

significant in vivo, as deleting it prevented a daf-2 mutation

from upregulating Pdod-8::gfp expression (Figure 2A). In gel-

shift assays, DAF-16 bound to an oligonucleotide that contained

six tandem wild-type copies (but not six mutant copies) of this

site (Figure 2B). Thus, DAF-16 can bind the DAE.

Unexpectedly, we found that DAF-16 was able to bind to the

0.5 kb dod-8 promoter fragment lacking the DAE (but not to

control plasmid DNA) (Figures 2C and S3B). Thus, we looked

for additional DAF-16-binding sites. Certain suboptimal DBE-

like sites with a conserved core sequence ‘‘AAACAA’’ have

been observed in upstream sequences of several FOXO-

regulated genes (Santo et al., 2006; Tran et al., 2002). Some of

these are functionally significant (Tran et al., 2002). The dod-8

promoter contains different suboptimal DBEs (Figure S3A).

We found that DAF-16 bound to dod-8 promoter-derived oligo-

nucleotides that contained these motifs, but not to random

oligonucleotides (Figure S3A). Removing these sites in the

transgene prevented hypodermal Pdod-8::gfp expression
es In Vitro and Regulate dod-8 In Vivo

he intestine (i), hypodermis (h), body-wall muscles (m), and neurons (n) of wild-

AE did not have marked effects on Pdod-8::gfp expression in wild-type but

on in daf-2(�)mutants (right, bottom panel). Young adults, 250X magnification.

aining three DBEs or, to a lesser extent, six DAEs. DBE andDAE pointmutations

entative autoradiograph from two or more experiments is shown for all figures.

DAE. Left block: DAF-16 binding, which could be super-shifted with a DAF-16

that lacked the DAE. Right block: DAF-16 still bound to the dod-8 promoter

uction in the intestine of daf-2(�) mutants. Young adults were photographed

panel: The GFP signal in the anterior quarter of the intestine (‘‘i,’’ as indicated)

(animals); daf-16(RNAi), n = 36, p = 2.19E�07 (Student’s t test, versus control);

f-16(RNAi), n = 20, p = 2.69E�17; elt-2(RNAi), n = 24, p = 3.21E�10.

could be competed away by a wild-type dod-8 promoter fragment, but not

ould gel-shift the dod-8 promoter fragment lacking the DAE/GATA site. Mock:

uences. Mock: purified GST.

-16 can bind additional, unidentified promoter sites, as well.
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Table 1. ELT-2 and ELT-3 Are Required for Expression of Some DAF-16-Regulated Genes

Gene

Reporter

Expression under

daf-2(�) Conditions

Promoter Used for Analysis Expression upon RNAi

Length (kb) DBE DAE GATA daf-16(�) elt-2(-) elt-3(-)

sod-3 Up, intestine, hypodermis,

muscles, neurons

1.1 4 + 1 sub 0 4 Down Down (intestine,

modest)

No Change

dod-8(*) Up, intestine, hypodermis,

muscles, neurons

0.5 0* 1 1 Down Down (intestine) Down (hypodermis)

lys-7 Up, intestine 3.1 7 + 4 sub 1 10 Down Down (intestine) No Change

mtl-1 Up, intestine 3.6 5 + 15 sub 2 12 Down Down (intestine) No Change

gpd-2 Up, intestine 1.1 1 0 2 Down Down (intestine,

modest)

No Change

nnt-1 Up, intestine, hypodermis 1.9 10 + 6 sub 0 8 Down Down (intestine) Down (hypodermis)

hgo-1 Up, intestine, hypodermis 2.9 4 + 9 sub 1 12 Down Down (intestine) Down (hypodermis)

tps-1 Up, intestine, muscles 2.8 6 + 2 sub 1 10 Down No Change No Change

tps-2 Up, hypodermis, muscles 2.9 5 + 8 sub 1 12 Down No Change Down (hypodermis)

dod-11 Up, intestine, hypodermis,

muscles

5.3 6 + 14 sub 2 10 Down Down (intestine,

modest)

No Change

hsp-12.6 Up, intestine, hypodermis,

muscles

2.7 9 + 13 sub 0 11 Down Down (intestine) No Change

dod-17 Down, intestine 2.6 4 + 7 sub 0 10 Up No Change No Change

The table lists the 12 genes analyzed for ELT-2 and ELT-3 influence. These genes were chosen because their expression was most strongly changed

by daf-2 RNAi. DBE, RTAAAYA, R = A/G, Y = C/T; DAE, CTTATCA; GATA, WGATAR, W = A/T; sub, suboptimal DBE (e.g., TAAAACAA and TTGTTTGT

[Santo et al., 2006; Tran et al., 2002]). RNAi experiments were initiated at the L4 stage, 25�C, and RNAi-treated animals were analyzed as young adults.

At least two independent RNAi experiments were performed, and at least ten transgenic animals were analyzed for each reporter. *: There are two

DBEs �0.66 kb upstream of the dod-8 translational start site, not included in the 0.5 kb promoter fragment we analyzed.
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in vivo and attenuated its induction in the intestine and muscles

of daf-2(�) mutants (Figure S3C). Thus, these sites appear to

play an important role in vivo.

Unexpectedly, DAF-16 still bound to the dod-8 promoter in

the absence of the DAE site and all three noncanonical binding

sites (Figure S3B). Thus, additional site(s) may contribute to

daf-16-dependent dod-8 expression in vivo, especially since,

compared with the canonical DBE, DAF-16 appeared to have

much lower affinity for the DAE and other noncanonical sites

(Figures 2B and S3A).

GATA Factors Bind to the DAE and Regulate
the Expression of Pdod-8::gfp
Since DAF-16 boundmany sites in the dod-8 promoter fragment,

we wondered why the DAE was so important in vivo. The DAE

is the reverse complement of the mammalian GATA factor

binding site (Plumb et al., 1989). Thus, the DAE site in dod-8

might also be recognized by GATA factors. C. elegans has at

least fourteen GATA-factor genes (Kormish et al., 2010; Maduro

and Rothman, 2002). Using RNAi, we knocked down ten charac-

terized GATA factors (elt-1, elt-2, elt-3, elt-5(egl-18), elt-6, elt-7,

end-1, end-3, andmed-1/med-2). Knocking down elt-2, which is

expressed in the intestine, specifically decreased intestinal

expression of Pdod-8::gfp (Figure 2D). In contrast, knocking

down elt-3, which is expressed in the hypodermis but not the

intestine (Gilleard et al., 1999; Tonsaker et al., 2012) (data not

shown), specifically decreased hypodermal expression (Fig-

ure S4C and Table 1).

Both ELT-2 and ELT-3 bound to the wild-type dod-8 promoter

in vitro, but not to a DAE-mutant dod-8 promoter (Figure 2E)

or DAE-mutant oligonucleotide (Figure 2F). As expected, the
90 Cell Metabolism 17, 85–100, January 8, 2013 ª2013 Elsevier Inc.
dod-8 promoter could bind GATA factors and DAF-16 at the

same time (Figures S4A and 2G). In vivo, knocking down either

daf-16 or elt-2 did not further reduce expression of the Pdod-

8::gfp reporter that lacked the DAE (Figure S4B). Together, these

results suggested that ELT-2 and ELT-3 recognize the DAE/

GATA site in vivo, thereby promoting expression of dod-8 in

daf-2(�) mutants.

GATA Factors and DAF-16 Coregulate a Subset
of DAF-16 Target Genes
We tested the 12 reporters that exhibited the greatest change

under daf-2(�) conditions for elt-2 and elt-3 dependency.

Knockdown of the intestinal GATA-factor gene elt-2 affected 9

of these 12 reporters (sod-3, dod-8, lys-7, mtl-1, gpd-2, nnt-1,

hgo-1, dod-11, and hsp-12.6), and only in the intestine (Table

1). Likewise, knockdown of the hypodermal factor elt-3 affected

dod-8, nnt-1, hgo-1, and tps-2 reporters, and only in the hypo-

dermis. Using qPCR, we found that RNAi inhibition of elt-2,

but not elt-3, resulted in significant attenuation of a subset of

intestine-expressed DAF-16 target genes in daf-2(�) mutants,

including sod-3, lys-7, mtl-1, nnt-1, and hgo-1 (Figure 3A).

Notably, all of the gene reporters that responded to GATA-factor

knockdowns contained at least one DAE/GATA site in their

promoters. Together, these results suggested that DAF-16 and

tissue-specific GATA factors collaborate to establish tissue-

specific expression of multiple downstream target genes.

The strong influence that the intestinal ELT-2 GATA factor had

on the expression of DAF-16 targets suggested that elt-2 might

be required for the long life spans of daf-2(�) mutants. elt-2 is

essential for development of the intestine (Fukushige et al.,

1998; Kormish et al., 2010). We found that adult-only RNAi



A
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C

Figure 3. The ELT-2 GATA Factor Regulates

DAF-16 Target Genes and Extends Life Span

(A) elt-2 knockdown affected the expression of

a subset of DAF-16-regulated genes in daf-2(�)

mutants. RNAi-sensitive rrf-3(�) mutants were

used for RT-qPCR analysis. Bars, mean value ±

SD, four biological replicates, technical triplicates.

Gene expression was normalized to the gene

nhr-23 (Supplemental Experimental Procedures).

Student’s t test, *p < 0.05; **p < 0.01; ***p < 0.001.

(B) Knockdown of daf-16 or elt-2 shortens the

life span of daf-2(�) mutants. Representative

data from at least six independent RNAi experi-

ments are shown (see Table S2). Log-rank test,

***p < 0.001.

(C) Increasing elt-2 gene dosage increases life

span. Life span was increased (7%–30%) in two

independent lines (see Table S2). Log-rank test,

***p < 0.001.
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inhibition of elt-2, but not other GATA factors (Table S2), short-

ened the life span of wild-type by �10%–20%, but consistently

produced a stronger, 30%–45% shortening of life span, and

reduced heat-stress resistance in daf-2(�) mutants (Figure 3B

and Table S2). elt-2 inhibition also shortened the life span of

calorically restricted eat-2 mutants and germline-less glp-1

mutants substantially (by 40%–50% and by 25%, respectively),

but it did not preferentially shorten the long life spans of respira-

tion mutants (Table S2). Finally, increasing elt-2 gene dosage

(Fukushige et al., 1999) increased the life span of wild-type by

7%–28% (Figure 3C and Table S2). Thus, activity of the intestinal
Cell Metabolism 17, 85–1
GATA-factor ELT-2 during adulthood has

an important influence on the life span of

C. elegans.

elt-3 played an important role in the up-

regulation of four DAF-16-controlled

genes in the hypodermis (skin). Consis-

tent with this, we found that hypo-

dermal-only daf-16 expression was able

to increase the life span of a daf-16(�);

daf-2(�) mutant by 16% and 32% in two

experiments (Figure S7). However, when

we removed elt-3 in daf-2(�) mutants,

we did not observe a decrease in life

span (Figures S5A–S5C). This apparent

paradox suggests that DAF-16 can regu-

late important hypodermal life-span

genes independently of ELT-3.

DAF-16 Regulates Some Target
Genes Cell Nonautonomously
Three of the nine genes we analyzed for

cell autonomy, the sorbitol dehydroge-

nase gene dod-11, the small heat-shock

protein gene hsp-12.6, and the steroid

dehydrogenase gene dod-8, were regu-

lated cell nonautonomously by DAF-16.

dod-11: In daf-2(�) mutants express-

ing daf-16(+) only in the intestine, expres-
sion of Pdod-11::rfp was induced in the hypodermis and

muscles in multiple independent lines (Figures 4A and 4B).

(Again, we confirmed the tissue specificity of GFP::DAF-16 using

fluorescence microscopy.) Thus, DAF-16 causes intestinal cells

to make a signal that can activate dod-11 independently of daf-

16 in other tissues. Within the intestine itself, GFP::DAF-16-posi-

tive cells generally expressed Pdod-11::rfp, but we observed

exceptions (Figure 4A). Thus, DAF-16 might regulate dod-11 in

a partially cell-nonautonomous fashion within the intestine, as

well. The intestine was not the only tissue capable of affecting

dod-11 expression elsewhere in the animal: animals expressing
00, January 8, 2013 ª2013 Elsevier Inc. 91
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daf-16 only in muscles exhibited dod-11 induction in the

muscles, intestine, and hypodermis (Figure 4A).

hsp-12.6: Intestine-expressed daf-16 induced hsp-12.6

expression in the intestine as well as in daf-16(�) tissues, such

as the hypodermis (Figure 4C). In addition, muscle-expressed

daf-16 was able to induce the hsp-12.6 reporter in both muscles

and hypodermis (Figures 4C and 4D).

dod-8: In two independent transgenic lines, intestinal DAF-16

activity strongly attenuated dod-8 reporter expression in the

hypodermis and muscles (Figure S2). Together, these findings

indicate that DAF-16 action in any of several tissues can influ-

ence gene expression independently of daf-16, either positively

or negatively, elsewhere in the animal. These findings provide

molecular correlates for DAF-16’s ability to affect the aging of

tissues in which it is not expressed.

The Lipid-Gene Regulator MDT-15 and Longevity
How does DAF-16 influence gene expression at a distance? To

address this question, we used RNAi to test�250 DAF-16-regu-

lated genes (twice, in two independent experiments) for their

effects on dod-11 expression in daf-2(�) mutants, and in daf-

2(�) mutants expressing daf-16(+) only in the intestine. One

RNAi clone, for mdt-15, sharply decreased dod-11 expression

in both strains (Figures 5A and 5B). mdt-15 transcriptional

reporters (Taubert et al., 2006) (obtained from the Genome

BC C. elegans Gene Expression Consortium), as well as RNA

in situ hybridizations (The Nematode Expression Pattern

Database), displayed mdt-15 expression in the intestine and

some head neurons but not in the muscles or hypodermis. We

observed a similar tissue distribution ofmdt-15 reporter expres-

sion in daf-2(RNAi) strains. Thus, mdt-15 may help to mediate

DAF-16’s action at a distance.

MDT-15 is a transcriptional mediator that regulates expression

of lipid and other metabolic genes (Taubert et al., 2006, 2008).

mdt-15 is upregulated by DAF-16 in daf-2(�) mutants (Murphy

et al., 2003) and in long-lived germline-defective animals (Mc-

Cormick et al., 2012). mdt-15 RNAi shortened the life span of

wild-type by �20% (Figure 5C and Table S4), as reported (Tau-

bert et al., 2006). However, we found that mdt-15 RNAi short-

ened the life span of daf-2(�) mutants by �45%. Similarly,

mdt-15 RNAi shortened the life span of daf-16(�); daf-2(�)

mutants by �10%–20%, but it shortened the life span of daf-

16(�); daf-2(�) mutants expressing daf-16 in the intestine by

�30% (Figures 5D and Table S4). Thus, mdt-15 is important
Figure 4. DAF-16 Regulates dod-11 and hsp-12.6 Cell Nonautonomous
(A and B) (dod-11) In (A), top panels: Pdod-11::rfp is expressed in most tissues

muscles (m) of daf-2(�) mutants in a daf-16-dependent manner. Bottom panel

hypodermis and muscles (compare with daf-16[�]; daf-2[�]). Inset: overlay of inte

(arrowhead) does not express gfp::daf-16 but does express Pdod-11::rfp. Bottom

in the intestine and hypodermis. Young adults, 250X magnification. Scale bar: 5

resulting Pdod-11::rfp expression in intestinal (i), hypodermal (h), and muscle (m

two panels: Higher magnification of the same animal, viewed using differential inte

11::rfp is expressed in the hypodermis (h) and muscles (m) when DAF-16 is activa

(C and D) (hsp-12.6) In (C), left column: Phsp-12.6::rfp is expressed at low levels

dermis; ‘‘m,’’ muscles) of daf-2(�)mutants in a daf-16-dependent manner. Right

hypodermis (top). Note that not all daf-16-expressing cells (green) express Phsp

muscles as well as hypodermis (middle). Neuronal DAF-16 does not affect hsp-1

in head neurons. Young adults, 250X magnification. Scale bar: 50 mm. In (D), DAF

(left column) as well as hypodermal cells (h) (right column) is shown. Young adul

C

for wild-type longevity, and even more important for the

extended life spans of daf-2(�) mutants. At the tissue level,

mdt-15 RNAi reduced the ability of intestinal daf-16(+) to delay

muscle deterioration (Figure 6A), while having no significant

effects on the sarcomeres of daf-16(�); daf-2(�) mutants.

However, mdt-15 may affect additional processes required for

movement, as mdt-15 RNAi decreased the motility of both daf-

16(�) and daf-16(+) animals (Figure S6C).

DAF-16 Can Act at a Distance to Protect Animals
from Amyloid Paralysis
When expressed in C. elegans’ muscles, the human Alzheimer’s

protein Ab(1-42) aggregates and paralyzes the animals during

early adulthood (Link, 1995). This paralysis is attenuated by

insulin/IGF-1-pathway mutations (Cohen et al., 2006; Florez-

McClure et al., 2007). We wondered whether DAF-16 could

also act at a distance to counteract Ab toxicity. In multiple inde-

pendent lines, we found that Ab-containing daf-16(�); daf-2(�)

adults expressing intestinal daf-16(+) moved much better than

did Ab-containing wild-type animals or daf-16(�); daf-2(�)

mutants (Figures 6B, 6C, and S6E and Table S3). (As a control,

we introduced the Ab transgene back into wild-type and found

that it still induced paralysis [Table S3].) The ability of DAF-16

to counteract Ab toxicity correlated with its expression levels in

the intestine (Figure S6D & S6E). Thus, intestinally-expressed

DAF-16 can counteract Ab-dependent muscle dysfunction.

Likewise, mdt-15 RNAi, similar to daf-16 RNAi, also abolished

the ability of intestinal DAF-16 to delay Ab-dependent paralysis

(Figure 6D and Table S3).

DISCUSSION

Understanding how the insulin/IGF-1 endocrine system coordi-

nates the rate of aging among different tissues is fundamentally

important, as this pathway appears to influence the rate of aging

throughout the animal kingdom, from worms to man. In this

study, we analyzed the expression of a diverse collection of

DAF-16-regulated genes in vivo to better understand how

components of this signaling network map across the tissues

of the animal. One could imagine two extreme cases: in one,

DAF-16 would act at the end of an insulin/IGF-1 signal-transduc-

tion pathway, regulating downstream genes that affect only the

health and longevity of the cells in which they are expressed.

At the other extreme, since DAF-16 activity within a single tissue
ly
of wild-type and is upregulated mainly in the intestine (i), hypodermis (h,) and

(left): intestinal DAF-16 upregulates Pdod-11::rfp in the intestine as well as in

stinal GFP::DAF-16 (green) and Pdod-11::rfp (red). Note that one intestinal cell

panel (middle): muscle DAF-16 upregulates Pdod-11::rfp in muscles as well as

0 mm. In (B), left three panels: Intestinal cells expressing gfp::daf-16 and the

) cells are shown. Young adults, 400X magnification. Scale bar: 32 mm. Right

rference contrast (DIC, top) or fluorescence microscopy (RFP, bottom). Pdod-

ted in the intestine of daf-2(�)mutants. 1000X magnification. Scale bar: 13 mm.

in wild-type and is upregulated in the same tissues (‘‘i,’’ intestine; ‘‘h,’’ hypo-

column: intestinal DAF-16 upregulates Phsp-12.6::rfp in the intestine as well as

-12.6::rfp (red) (inset: RFP only). Muscle DAF-16 upregulates Phsp-12.6::rfp in

2.6 expression (bottom). Rectangle: coinjection marker Podr-1::rfp expression

-16 activity in muscles upregulates Phsp-12.6::rfp in muscle cells (m, oblong)

ts, 400X magnification. Scale bar: 32 mm.
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Figure 5. MDT-15 Is Required for dod-11 Expression and for Longevity

(A and B) RNAi of either daf-16 ormdt-15 attenuated Pdod-11::rfp expression in the intestine (i) and hypodermis (h) of (A) daf-2(�)mutants and (B) daf-16(�); daf-

2(�) mutants expressing daf-16 in the intestine. Intestine-daf-16(+): muIs199. In (B), shown are Pdod-11::rfp expression (red, top panels) overlaid with intestinal

GFP::DAF-16 (green, bottom panels). Relative levels of Pdod-11::rfp expression in RNAi-treated animals are shown on the right (Kolmogorov-Smirnov test; n.s.,

not significant). Note that mdt-15 RNAi significantly reduced both the number and brightness of Pdod-11::rfp foci (this animal in [B] represents the ‘‘low-

expression’’ category), despite the high level of GFP::DAF-16. Rectangle: coinjection marker Podr-1::rfp expression in head neurons. Young adults, 250X

magnification. Scale bar: 50 mm.

(C) Knockdown of daf-16 or mdt-15 shortened the life span of daf-2(�) mutants to a greater extent than it affected wild-type (see Table S4). Log-rank test,

***p < 0.001.

(D)mdt-15 RNAi shortened the life span of daf-16(�); daf-2(�)mutants, but had a greater life-shortening effect on daf-16(�); daf-2(�) animals expressing daf-16

in the intestine (see Table S4). Log-rank test, **p < 0.01; ***p < 0.001.
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can delay the aging of other tissues and increase the life span of

the whole animal, DAF-16 could regulate only downstream

signaling genes whose products then activate daf-16-indepen-

dent life-extension pathways in other cells. We find that both

mechanisms operate.

Limitations of Our Gene Set
Microarray analysis (Halaschek-Wiener et al., 2005; Lee et al.,

2009; McElwee et al., 2003; Murphy et al., 2003) and direct

DNA binding assays (Oh et al., 2006; Schuster et al., 2010) can

identify C. elegans genes that are likely to be regulated directly

versus indirectly by a transcription factor. Our in vivo imaging

analysis of DAF-16-regulated genes complements these

approaches and allows us to investigate the tissue specificity

and cell autonomy of gene expression. The genes we analyzed

have diverse functions, affecting protein homeostasis, innate

immunity, and metabolism, and many have been shown to

contribute to the long life spans of daf-2(�) mutants.

However, our analysis was biased against certain types of

genes. First, neural genes: Neurons are relatively resistant to

RNAi. RNAi was used in part of the microarray analysis from

which we selected genes to study, and in our initial assessment

of the daf-2 dependence of transgene expression. However,

previously, we showed that nonneuronal daf-2 RNAi doubles

life span, and that nonneuronal daf-16 RNAi completely

suppresses the life-span extension of daf-2(�) mutants (Libina

et al., 2003). Moreover, expressing daf-16 exclusively in neurons

in a daf-16(�); daf-2(�) background produces only a small

increase in life span (Libina et al., 2003). Therefore, under-

standing the nonneuronal activities of DAF-16 is relevant for

understanding life-span regulation.

Second, because our reporters were driven by upstream DNA

sequences, we did not query potential regulatory sequences

within introns or coding sequences of DAF-16-regulated genes.

This is a concern, as the one translational fusion we did examine,

from mtl-1, was highly daf-2 responsive, whereas a transcrip-

tional fusion to the same promoter sequence did not respond

as well. In addition, we note that DAF-16 could potentially influ-

ence gene expression at the level of translation (McColl et al.,

2010), and this would not be assessed in our study.

Finally, important daf-2/daf-16-regulated genes with small

induction ratios would probably have escaped detection in our

assay—and we could have missed, simply by chance, key life-

span genes with properties that differ from the genes we

examined. Nevertheless, our analysis of this small gene set

suggests some interesting new features of this regulatory

network.

Three Modes of DAF-16 Gene Regulation
Together, our findings provide molecular support for the idea

that DAF-16 influences gene expression among the tissues of

C. elegans in three ways (Figure 6E). First, DAF-16 can act within

a tissue to regulate genes predicted to influence the health and

longevity of that tissue. Second, DAF-16 activates downstream

signal transduction cascades that act independently of daf-16

to regulate gene expression at a distance and to slow the

aging of other tissues (Libina et al., 2003) (this study) (FOXO-

to-FOXO(�) signaling). Third, as shown previously, DAF-16

regulates the expression of insulin-like genes (Murphy et al.,
C

2003), allowing DAF-16 activity in one tissue to affect DAF-16

activity elsewhere in the animal (FOXO-to-FOXO signaling)

(Murphy et al., 2007).

Cell-Autonomous Gene Regulation by DAF-16
Six of the nine daf-2/daf-16-responsive genes we examined

were regulated in a strictly cell-autonomous fashion by DAF-

16, as was the previously analyzed DAF-16-regulated gene

sod-3. This finding argues against themodel that DAF-16 directly

regulates only downstream signaling genes, whose effects on

other cells are completely responsible for life extension. Instead,

the behavior of this gene sample, which includes genes with

diverse functions, suggests that DAF-16 may activate numerous

types of cell-protective genes cell autonomously. All but one

promoter we analyzed contained canonical DAF-16-binding

elements. The presence of DBEs suggests direct DAF-16 regu-

lation, though our findings show that DBE-containing promoters,

such as the dod-11 and hsp-12.6 promoters, can also be

switched on by DAF-16 indirectly, through DAF-16’s activity in

other tissues. Conversely, DAF-16 could also act via a promoter

fragment that lacked canonical DBEs, apparently by binding

to suboptimal DBE sites, to the DAE/GATA site, and to other,

unidentified sequences. FOXO proteins possess chromatin-

remodeling ability (Hatta and Cirillo, 2007), so DAF-16may utilize

multiple binding sites to create a permissive environment for

gene expression.

All but one of the twenty daf-2-dependent transgenes we

examined (plus the control sod-3 transgene) were expressed

in the intestine, and eleven were expressed mainly or exclusively

in the digestive tract. This intestinal enrichment was highly sig-

nificant statistically (p = 1.1E-11; Table S1). Why might DAF-16

regulate so many intestinal genes? First, the intestine seems

to be particularly vulnerable to aging, undergoing extensive

tearing and deterioration (McGee et al., 2011). It is also a major

entry port for toxins and bacterial pathogens, and becomes

packed with bacteria with age (Garigan et al., 2002; McGee

et al., 2011). Bacterial packing and intestinal deterioration are

both reduced greatly by daf-2 mutations (Garigan et al., 2002;

McGee et al., 2011). Thus, DAF-16 may extend life and promote

stress resistance in part by ‘‘bullet-proofing’’ the intestine. For

instance, the intestinal metallothionein mtl-1 may protect the

animal from heavy metals it ingests. Finally, our 23 DAF-16-

regulated, intestine-expressed genes include at least 15 meta-

bolic genes (Table S1), raising the possibility that DAF-16 could

act in the intestine to help nourish the animals to improve

systemic health.

Insulin/IGF-1 signaling mutants are resistant to pathogenic

bacteria (Evans et al., 2008; Garsin et al., 2003), possibly due

to increased intestinal expression of the innate-immunity lyso-

zyme gene lys-7. The intestine-specific GATA-factor ELT-2

may act with DAF-16 to protect the intestine from infection,

as it is required for survival of wild-type animals exposed to

pathogens, and for intestinal expression of lys-7 (Figure 3A and

Table 1) and other lysozymes (Shapira et al., 2006).

Finally, we note that, because intestinal DNA makes up only

a small fraction of the animal’s DNA, the intestinal enrichment

of DAF-16-regulated genes could help explain why so few

DAF-16-regulated genes from microarrays have been identified

in chromatin profiling experiments (see Figure S4D, legend).
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GATA Factors Direct Expression of DAF-16-Regulated
Genes to Specific Tissues
DAF-16 is expressedwidely, andwe found that DAF-16 activates

genes tissue specifically, at least in part, by functioning in combi-

nation with tissue-specific GATA factors. The intestinal GATA-

factor ELT-2 and the hypodermal factor ELT-3 were required

for intestinal and hypodermal expression, respectively, of many

DAF-16-regulated genes. Our findings, both in vivo and in vitro,

suggest that GATA factors regulate these genes by binding to

their DAE/GATA site (as predicted previously by McGhee et al.,

2009, from DNA sequence). We note that some DAE-containing

DAF-16-regulated genes, such as lys-7 andmtl-1, are expressed

exclusively in the intestine (Tables 1 and S1). Presumably, these

genes contain additional sequences that prevent ELT-3 from

activating them in the hypodermis. In addition, some DAF-16-

regulated genes, like tps-1, were upregulated normally in both

the intestine and the hypodermis in spite of GATA factor RNAi.

Thus, DAF-16 does not absolutely require GATA factors to regu-

late gene expression in these tissues.

GATA Factors and Life Span
Since the intestinal GATA factor ELT-2 is needed for much

intestinal DAF-16-regulated gene expression, it seemed likely

that elt-2 knockdown would shorten the life span of daf-2(�)

mutants. We found that this was the case. Our data are consis-

tent with a very recent, independent report showing that elt-2

inactivation could disrupt cytoprotective gene expression and

shorten the life span of daf-2(�) mutants (Shore et al., 2012).

We found that elt-2 knockdown also shortened the life span

of calorically restricted eat-2(�) mutants substantially. This

life-span pathway is daf-16 independent but requires the

FOXA transcription factor, pha-4 (Panowski et al., 2007). Inter-

estingly, pha-4 expression is activated by ELT-2, and the two

proteins have been shown to coregulate specific genes (Ano-

kye-Danso et al., 2008).

Our findings also point to an important role for a new tissue,

the hypodermis, in life-span regulation by DAF-16, as hypo-

dermal-only daf-16 expression could extend the life span of

daf-16(�); daf-2(�) mutants up to �30%. Because ELT-3 was

required for hypodermal expression of four DAF-16-regulated

genes we examined, one might expect that knocking down

ELT-3 expression would shorten the life span of daf-2(�)

mutants. However, as observed by theMcGhee group (Tonsaker

et al., 2012), this was not the case. (Our findings differ from those

from the Kim lab [Budovskaya et al., 2008] in some respects;

please see Figure S5 for discussion.) This finding implies that
Figure 6. Effects of Intestinal DAF-16 and MDT-15 on Muscle Aging an

(A) mdt-15 RNAi reduced the ability of intestinal DAF-16 to protect daf-16(�) m

treated animals on day 12 of adulthood. Each point represents one animal (three

more severe sarcomere degeneration. Mean degeneration index is indicated by

(B and C) Intestinal DAF-16 attenuated the toxicity of muscle-expressed Ab prote

Ab(1-42) is expressed in body-wall muscles (see Table S3). Log-rank test, ***p

paralysis of the animals shown in Figure 6B (see Table S3). Log-rank test, ***p <

(D) daf-16 ormdt-15 RNAi abolished the ability of intestinal DAF-16 to ameliorate

RNAi-treated animals were scored for paralysis at room temperature (see Table

(E) Model for daf-16-dependent gene regulation. First, DAF-16 can act directly on

tissue (e.g., intestine, muscle) can stimulate downstream signaling pathways t

aggregation toxicity (FOXO-to-FOXO(�) signaling). Analysis of MDT-15 suggests

action in one tissue can affect DAF-16 activity elsewhere, for example, by feedb

C

DAF-16 regulates important hypodermal longevity genes inde-

pendently of ELT-3.

DAF-16 Action at a Distance: FOXO-to-FOXO(–)
Signaling
In this study, we extended the case for FOXO-to-FOXO(�)

signaling from the organismal level to the level of individual

tissues (aging muscles) and genes (specifically, two metabolic

genes dod-11 and dod-8, and one chaperone gene, hsp-12.6).

These findings put the concept of FOXO-to-FOXO(�) signaling

on solid molecular footing. DAF-16 action in the intestine, which

can extend life span substantially (by 50%–70%), affected dod-

11, hsp-12.6, and dod-8 expression in multiple tissues. In addi-

tion, DAF-16 could act in other tissues to affect gene expression

in the intestine and elsewhere. This latter finding can help to

explain how, given the fragility of the intestine, daf-2(�) mutants

can live 50% longer than wild-type if daf-16 is expressed only in

nonintestinal tissues (Libina et al., 2003). In that case, perhaps

DAF-16 can act at a distance to protect the intestine.

How canDAF-16 promote signaling across tissues?Others re-

ported that the gene scl-1 was a candidate downstream

signaling gene, but we were unable to confirm this in our studies

(see Supplemental Discussion). However, we identified a new

candidate, theDAF-16-regulated genemdt-15.MDT-15 is a tran-

scriptional mediator subunit that regulates genes involved in lipid

metabolism, so it could potentially induce lipid signals that act

across the tissues to affect life span. Loss of mdt-15 reduces

dod-11 expression in many tissues, including several that do

not appear to express mdt-15. Thus, MDT-15 appears to act

on the sending end of an intercellular signaling pathway that is

activated by DAF-16.

mdt-15(RNAi) animals are unhealthy. However, two findings

suggest that mdt-15 plays an important role in aging. First, loss

of mdt-15 accelerated age-dependent sarcomere deterioration

in daf-2(�) animals expressing intestine-only daf-16(+), but not

in daf-2(�) animals that were also daf-16(�) (Figure 6). Second,

mdt-15 inhibition had a greater life-shortening effect on daf-2(�)

mutants than it had on wild-type (Figure 5C). Rogers et al. (2011)

recently reported similar, independent findings and also showed

thatmdt-15 was required for life-span extension by inhibiting the

translation factor ifg-1/eIF4G. It will be interesting to learn more

about this potential downstream signaling pathway in the future.

FOXO-to-FOXO Signaling
DAF-16 can act at a distance to upregulate DAF-16 activity

elsewhere in the animal (Murphy et al., 2007). There are many
d Age-Related Disease

uscles during aging. Top: average sarcomere degeneration indexes of RNAi-

to four images were taken for each animal). Higher number (y axis) represents

the gray bar (Mann-Whitney-Wilcoxon test; n.s., not significant).

in. In (B), Kaplan-Meier survival analysis of transgenic animals in which human

< 0.001. n.s., not significant. In (C), age-dependent Ab aggregation-induced

0.001. n.s., not significant.

toxic Ab aggregation-induced paralysis. RNAi was initiated at the L4 stage, and

S3). Log-rank test, ***p < 0.001. n.s., not significant.

its target genes in a cell-autonomous fashion. Second, DAF-16 activity in one

hat act on daf-16(�) cells to influence gene expression, aging, and protein-

that downstream lipid signals may play a role in this signaling. Third, DAF-16

ack regulation of insulin genes (FOXO-to-FOXO signaling).
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situations in which inhibiting insulin or IGF-1 responsiveness in

certain tissues extends life span. However, in the great majority

of these cases, whether FOXO is required in other, wild-type

tissues is not known. These examples include (1) the extension

of life span caused by loss of daf-2 activity in the ectoderm

(skin, neurons) of C. elegans (Apfeld and Kenyon, 1998), as

well as (2) the suppression of longevity caused by neuron-only

daf-2 expression (or intestine or neuron-only age-1/PI3K expres-

sion) in daf-2 (or age-1) mutant worms (Iser et al., 2007; Wolkow

et al., 2000). Likewise, it is not known whether the ability of

neuronal age-1(+) to influence intestinal hsp gene expression in

C. elegans (Iser et al., 2011) requires intestinal FOXO activity.

In mice, brain-specific loss of the IGF-1 receptor (Kappeler

et al., 2008) or downstream IRS genes (Taguchi et al., 2007)

can increase life span. Activating FOXO or inhibiting insulin

signaling in adipose tissue can extend life span in flies (Gianna-

kou et al., 2004; Hwangbo et al., 2004) and mice (Blüher et al.,

2003). At least in flies, this condition appears to trigger FOXO-

to-FOXO signaling (Hwangbo et al., 2004), but whether it might

trigger FOXO-to-FOXO(�) signaling as well is not known. It

would be interesting to carry out these experiments in a foxo(�)

background to determine whether FOXO is required in respond-

ing tissues. Finally, given the importance of the C. elegans

intestine, as well as the hypodermis, in life-span regulation, it

would be interesting to ask whether insulin/IGF-1-pathway

members could send life-extending signals from the intestines

or the skin of higher organisms.
DAF-16 Can Suppress Symptoms of Age-Related
Disease from a Distance
Long-lived insulin/IGF-1 mutants are resistant to many age-

related diseases, so we asked whether DAF-16 might act at

a distance in a disease setting. We found that, in a process

that requiresmdt-15, endodermal DAF-16 can partially suppress

the paralysis caused by expressing Ab in the muscles. DAF-16

and MDT-15 action could potentially reduce the expression

of Ab in muscles, or they could decrease the accumulation of

toxic Ab oligomer species. This finding is important, as it raises

the possibility that systemic, FOXO-dependent signals, perhaps

beneficial lipid signals, might be able to slow the progression

of Alzheimer’s disease, and possibly other age-related diseases,

in humans.
EXPERIMENTAL PROCEDURES

Microscopy

Transgenic animals were analyzed at the young-adult stage. For quantitative

analysis, GFP fluorescence in the anterior quarter of the intestine was

measured using the OpenLab software.

Gel-Shift Assays

Proteins were expressed and purified from bacteria. Radioactively labeled

DNA oligos were mixed with proteins, resolved on a polyacrylamide gel, and

subjected to autoradiography.

Life-Span Analysis

Lifespan assays were performed as described (Apfeld and Kenyon, 1998).

RNAi was initiated at the young-adult stage. The prefertile period of adulthood

was used as t = 0 for life-span analysis. STATA software (version 10.1) was

used for statistical analysis.
98 Cell Metabolism 17, 85–100, January 8, 2013 ª2013 Elsevier Inc.
Paralysis

Worms expressing human Ab(1-42) in body-wall muscles were raised at 20�C
and analyzed as adults. Worms that failed to move when touched with a plat-

inum wire were scored as ‘‘paralyzed’’ (Link, 1995). To avoid mis-scoring,

paralysis assays were terminated by day 8 of adulthood when wild-type

animals begin to move more slowly. RNAi-treatment was initiated at the L4

stage, and young adults were scored at room temperature (�22.5�C), which

accelerated paralysis and helped to distinguish Ab paralysis from aging effects

on motility.
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