Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne

Sukumaran S¹, Kiruba S², Mahesh M¹, Nisha SR¹, Miller Paul Z¹, Ben CP¹, Jeeva S¹*

¹Centre for Biodiversity and Biotechnology, Department of Botany, N.M. Christian College, Marthandam, Kanyakumari – 629 165, Tamilnadu, India
²Department of Zoology, Scott Christian College (Autonomous), Nagore, Kanyakumari – 629 003, Tamilniedu., India

Objective: To investigate the preliminary phytochemistry and antibacterial activity of the flower extract of Peltophorum pterocarpum. Methods: Phytochemical analysis was done by using the standard methods given by Harbone. The methanolic flower extract were tested against Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella typhi, Serratia marcescens, Acinetobacter baumannii, Enterobacter sp., Proteus mirabilis, Enterococcus faecalis and Streptococcus pyogenes by the agar disc diffusion method. Results: Preliminary phytochemical screening of flower extract showed the presence of phenolic compounds, flavonoids, saponins, steroids, tannins, xanthoproteins, carboxylic acids, coumarins and carbohydrates. The flower extract of Peltophorum pterocarpum showed significant activity against four gram positive (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis and Streptococcus pyogenes) and three gram negative bacteria (Proteus mirabilis, Acinetobacter baumannii and Serratia marcescens), out of 12 pathogenic bacteria studied. Conclusions: The findings of the present study confirm the presence of significant antibacterial activity against human pathogens in the flowers of Peltophorum pterocarpum.

1. Introduction

Since time immemorial plants have been used as a medicine among the indigenous community of India, and posses a vast array of bioactive compounds[1-5]. The bioactive compounds obtained from medicinal plants have been used to treat various ailments caused by microorganisms[6-10]. The most important of these bioactive principles are alkaloids, phenolic compounds, flavanoids and tannins that may be evolve d in plants as self defense against pests and pathogens[11-15]. Nature selects such type of plants and these plants are normally free from pest as well as pathogens[16]. Several members of Angiosperms surviving in this present era have such compounds helping the plant to establish itself. It is very difficult to see any diseased or damaged leaves in such plants, especially trees like, Polyalthia longifolia, Albizia lebbeck, Albizia amara, Cassia sp., etc. One such tree is Peltophorum pterocarpum (DC.) Baker ex Heyne (P. pterocarpum)[17].

P. pterocarpum, belongs to the family Caesalpiniaeceae, is a native species of Sri Lanka, the Andamans, the Malay Peninsula and North Australia, commonly called copper pod or yellow flame tree. It is a very attractive tree with its spreading crown of many branches consisting of feathery mimosa like leaves and abundance of bright yellow blooms and gives wonderful sight when the copper–red seedpods cover the tree in profusion. Thus the tree is having high ornamental value and planted as avenue trees. Moreover, the leaves of the trees are used to feed the goats and the dead branches are collected by village people to use as fire wood. In terms of biodiversity it serves as a good nectar source for Hymenopteran insects including honey bees, humble bees and several economically important vasps[18, 19]. Apart from these it is also having potent medicinal value. Traditionally the bark of the tree is used to treat wounds among the Paliyar tribe[20] and dentifrice among the indigenous inhabitants of Tamilnadu for oral healthcare practices[21]. Orang Asli tribe of Kampung Bawong, Malaysia is using the powdered bark of this plant to treat psoriasis[22]. Recent studies revealed that the plant bark and leaves has antimicrobial[23-28], antioxidant[29], antifungal[30-32], apoptotic[33] and haematological[34]. Past studies revealed that so far there is no study pertaining

*Corresponding author: Dr. S. Jeeva, Assistant Professor, Department of Botany
Nesamony Memorial Christian College Marthandam, Kanyakumari – 629 165
Tamilnade, India
Tel: +91-9952202112
E-mail: solomonjeeva@gmail.com
phytochemical constituents and antibacterial activity of the flowers of *P. pterocarpum*. As this tree blooms twice in a year, the floral resources were wasted unutilized. Hence it is imperative to evaluate the phytochemical constituents and antibacterial efficacy of *P. pterocarpum*, commonly known as Perungondrai in Tamil.

2. Materials and methods

2.1. Collection and identification of plant specimen

The flowers of *P. pterocarpum* was collected from the arboretum of Botany Department, Nesamony Memorial Christian College (NMCC), Marthandam, Tamilnadu, India and authenticated by Dr. K. Paulraj, Head, Department of Botany and Research Centre, NMCC, Marthandam, then a voucher specimen of the plant was deposited in the herbarium of the Botany department, NMCC, Marthandam for further studies.

2.2. Preparation of plant extracts

The air-dried and powdered plant materials (100 g of each) were extracted with 250 mL of methanol by using a Soxhlet apparatus for 72 h at a temperature not exceeding the boiling point of the solvent. The extract was concentrated under reduced pressure using rotary evaporator and freeze dried to give the crude dried extract. The extract was dissolved in 0.1% dimethyl sulphoxide (DMSO) for antibacterial studies.

For phytochemical screening, the shade dried and powdered flowers were successively extracted with acetone, benzene, chloroform, water, ethanol and petroleum ether by cool extraction method for 24 hours. The extract was concentrated by using rotary evaporator and used for phytochemical screening.

2.3. Preliminary phytochemical screening

Phytochemical screening of plant extract was carried out qualitatively for the presence of alkaloids, phenolic compounds, flavonoids, saponins, amino acids, quinines, steroids, tannins, xanthoproteins, carboxylic acids, coumarins, and carbohydrates by using the standard methods given by Harborne[35].

2.4. Antibacterial assay

Escherichia coli, *Klebsiella pneumonia*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Bacillus cereus*, *Salmonella typhi*, *Serratia marcescens*, *Acinetobacter baumannii*, *Enterobacter sp.*, *Proteus mirabilis*, *Enterococcus faecalis* and *Streptococcus pyogenes* were used for the present study. Stock cultures were maintained at 4 °C on slants of nutrient agar. Active cultures for experiments were prepared by transferring a loopful of colonies from the stock culture to peptone water and incubated for 4h at 37 °C.

Antibacterial activity was determined by agar disc diffusion method. Standard suspension of bacteria was inoculated on the surface of Muller–Hinton (Himedia) agar plates. Sterilized filter paper discs (5 mm) containing 50 μL of each extract were arranged on the surface of the inoculated plates and incubated at 37 °C for 124h. Along with this 30 μg Amikacin disc (Himedia standard) was studied for antimicrobial activity as a positive control whereas the solvent used (DMSO) for preparing extract was used as a negative control. At the end of incubation, inhibition zones formed around the disc were measured with Himedia zone scale.

3. Results

3.1 Phytochemicals

Preliminary phytochemical screening of the present study revealed the presence of phenolic compounds, flavonoids, saponins, steroids, tannins, xanthoproteins, carboxylic acids, coumarins and carbohydrates, while it gave the negative results to alkaloids, quinone and proteins. A total of 6 plant extracts to test the availability of 12 biochemical compounds (6 × 12 = 72), only 30 gave positive results and the remaining 42 gave negative results. Acetone and benzene extract showed the presence of 6 compounds each, followed by chloroform, petroleum ether and water had 5 compounds each, while methanol showed the presence of 3 compounds (phenolic compound, tannins and steroids). Based on the preliminary phytochemical analysis methanolic extract showed the presence of three important bioactive compounds, namely phenols, tannins and steroids, hence methanolic flower extract was selected to study the pathogenic activity against 12 human pathogens.

3.2. Antibacterial activity

The antibacterial activity of the flower extracts of *P. pterocarpum* are presented in table 1. Of the twelve pathogens studied against the flower extracts, seven were susceptible (*Staphylococcus aureus*, *Proteus mirabilis*, *Acinetobacter baumannii*, *Serratia marcescens*, *Bacillus cereus*, *Enterococcus faecalis* and *Streptococcus pyogenes*), which includes four gram positive (*Staphylococcus aureus*, *Bacillus cereus*, *Enterococcus faecalis* and *Streptococcus pyogenes*) and three gram negative bacteria (*Proteus mirabilis*, *Acinetobacter baumannii* and *Serratia marcescens*), the remaining five organisms are resistant (*Escherichia coli*, *Klebsiella pneumonia*, *Enterobacter sp.*, *Salmonella typhi* and *Pseudomonas aeruginosa*) to the extracts.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower extract(50 μL)</td>
<td>Amikacin(30 μL)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>–</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>–</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>12</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>10</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>–</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>9</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>–</td>
</tr>
<tr>
<td>Enterobacter sp.</td>
<td>10</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>11</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>8</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>–</td>
</tr>
</tbody>
</table>
The methanolic flower extract showed the maximum zone of inhibition against the gram positive pathogen Staphylococcus aureus (12 mm), followed by Proteus mirabilis (11mm), Enterococcus faecalis (8 mm), Enterobacter sp., and Bacillus cereus had 10 mm zone each, whereas Serratia marcescens and Streptococcus pyogenes had 9 and 8mm zone respectively.

4. Discussion

Plants are important source of functional components for the development of new chemotherapeutic agents. Phytochemical investigation of the methanolic flower extracts of P. pterocarpum revealed the presence of various phytochemicals such as phenolic compounds, flavonoids, saponins, steroids, tannins, xanthoproteins, carboxylic acids, coumaric acids, and carbohydrates. As phytochemicals often play an important role in plant defence against prey, microorganisms, stress, as well as interspecies protections, these plant components have been used as drugs for millennia. Hence, phytochemicals screening serves as the initial step in predicting the types of potential active compounds from plants[36].

It has been reported by several workers that methanol was the most effective solvent for flower extraction than other solvents[20, 37]. Based on the previous reports and phytochemical observations, in the present study we have used methanol for the extraction of bioactive compounds from the flower petals of P. pterocarpum and obtained positive results against seven human pathogens. This antibacterial activity may be the indicative of the presence of some metabolic toxins or broad-spectrum antibiotic compounds.

Past literature on antimicrobial studies revealed that plant extracts were most effective against gram positive than gram negative microorganisms[38–45]. The present findings corroborate the previous reports that the flower extracts of P. pterocarpum showed the antibacterial activity (4/3) against four gram positive and three gram negative pathogens.

Several species of Peltophorum have been proved to have high degree of antimicrobial and antioxidant activity, due to the presence of different kinds of bioactive compounds. The methanolic extract of the leaves of Peltophorum Vogeliana (Caesalpiniaceae) afforded a new phytoconstituent, 2-methoxy-4,5-dihydroxy-1(7,8-dihydroxyethylene)-8-β-D-glucopyranoside named as peltophorumyl-β-D-glucosil-4,5-dihydroxy-2-methoxy-benzoic acid derivative, 3 α C-glucopropyranosil-4,5-dihydroxy-2-methoxy-β-jucoopyranoside showed significant antimicrobial activity[46]. A new C-glucoside benzoic acid derivative, 3 α C-glucopropyranosil-4,5-dihydroxy-2-methoxy-β-jucoopyranoside named as peltophorumyl- β-D-glucopyranoside showed significant antimicrobial activity[46].

Several species of Peltophorum have been proved to have high degree of antimicrobial and antioxidant activity, due to the presence of different kinds of bioactive compounds. The methanolic extract of the leaves of Peltophorum Vogeliana (Caesalpiniaceae) afforded a new phytoconstituent, 2-methoxy-4,5-dihydroxy-1(7,8-dihydroxyethylene)-8-β-D-glucopyranoside named as peltophorumyl-β-D-glucopyranoside showed significant antimicrobial activity[46]. A new C-glucoside benzoic acid derivative, 3 α C-glucopropyranosil-4,5-dihydroxy-2-methoxy-β-jucoopyranoside showed significant antimicrobial activity[46].

A new C-glucoside benzoic acid derivative, 3 α C-glucopropyranosil4,5-dihydroxy-2-methoxy-β-jucoopyranoside named as peltophorumyl-β-D-glucopyranoside showed significant antimicrobial activity[46].

4. Discussion

Plants are important source of functional components for the development of new chemotherapeutic agents. Phytochemical investigation of the methanolic flower extracts of P. pterocarpum revealed the presence of various phytochemicals such as phenolic compounds, flavonoids, saponins, steroids, tannins, xanthoproteins, carboxylic acids, coumaric acids, and carbohydrates. As phytochemicals often play an important role in plant defence against prey, microorganisms, stress, as well as interspecies protections, these plant components have been used as drugs for millennia. Hence, phytochemicals screening serves as the initial step in predicting the types of potential active compounds from plants[36].

It has been reported by several workers that methanol was the most effective solvent for flower extraction than other solvents[20, 37]. Based on the previous reports and phytochemical observations, in the present study we have used methanol for the extraction of bioactive compounds from the flower petals of P. pterocarpum and obtained positive results against seven human pathogens. This antibacterial activity may be the indicative of the presence of some metabolic toxins or broad-spectrum antibiotic compounds.

Past literature on antimicrobial studies revealed that plant extracts were most effective against gram positive than gram negative microorganisms[38–45]. The present findings corroborate the previous reports that the flower extracts of P. pterocarpum showed the antibacterial activity (4/3) against four gram positive and three gram negative pathogens.

Several species of Peltophorum have been proved to have high degree of antimicrobial and antioxidant activity, due to the presence of different kinds of bioactive compounds. The methanolic extract of the leaves of Peltophorum Vogeliana (Caesalpiniaceae) afforded a new phytoconstituent, 2-methoxy-4,5-dihydroxy-1(7,8-dihydroxyethylene)-8-β-D-glucopyranoside named as peltophorumyl-β-D-glucopyranoside showed significant antimicrobial activity[46]. A new C-glucoside benzoic acid derivative, 3 α C-glucopropyranosil-4,5-dihydroxy-2-methoxy-β-jucoopyranoside showed significant antimicrobial activity[46].

A new C-glucoside benzoic acid derivative, 3 α C-glucopropyranosil-4,5-dihydroxy-2-methoxy-β-jucoopyranoside named as peltophorumyl-β-D-glucopyranoside showed significant antimicrobial activity[46].

The methanolic flower extract showed the maximum zone of inhibition against the gram positive pathogen Staphylococcus aureus (12 mm), followed by Proteus mirabilis (11mm), Enterococcus faecalis (8 mm), Enterobacter sp. and Bacillus cereus had 10 mm zone each, whereas Serratia marcescens and Streptococcus pyogenes had 9 and 8mm zone respectively.

Salmonella typhi, Bacillus cereus and Streplococcus pyogenes. However, in the case of Pseudomonas aeruginosa, earlier study revealed positive result, while it gave negative results in the present study, which needs to be evaluated.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors thank the management of Nesanmony Memorial Christian College, Marthandam – 629 165, Kanyakumari, Tamilnadu, India for their encouragement and infrastructure facilities to carry out this work.

References

[14] Irudayaraj V, Janaky M, Johnson M, Selvan N. Preliminary

