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a b s t r a c t

First we show that the class of netlike partial cubes is closed under retracts. Then we prove,
for a subgraph G of a netlike partial cube H, the equivalence of the assertions: G is a netlike
subgraph of H; G is a hom-retract of H; G is a retract of H. Finally we show that a non-trivial
netlike partial cube G, which is a retract of some bipartite graph H, is also a hom-retract of
H if and only if G contains at most one convex cycle of length greater than 4.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The class of netlike partial cubes was introduced in Part I [7] of this series of papers as a special class of partial cubes
(isometric subgraphs of hypercubes) with median graphs, even cycles, benzenoid graphs and cellular bipartite graphs as
particular elements.

This paper is entirely devoted to the study of retracts and hom-retracts of netlike partial cubes. A retraction (resp. hom-
retraction) of a graph G is an idempotent nonexpansive (resp. edge-preserving) self-mapping of G. The retract construction
has been a flourishing topic in graph theory since Pavol Hell’s Ph.D. thesis [4]. Retracts have been one of the basic ingredients
of metric graph theory; for example in the study of absolute retracts, the one with varieties of graphs – that is classes of
graphs closed under retracts and products – and also to obtain fixed subgraph theorems in diverse classes of metric graphs,
which will actually be the case for the class of netlike partial cubes (see [8]). In addition to the properties which will be used
in [8], the main results of this paper deal with the links between retraction and hom-retraction.

Although a hom-retract is obviously a retract, the converse is not true in general. However there are graphs for which
these two concepts coincide, an example of which are median graphs. In fact median graphs and certain bipartite graphs G
satisfy the following two properties:

1. Hom-Retract Property:
Any retract with at least two vertices of G is a hom-retract of this graph.

2. If G has at least two vertices and is a retract of a bipartite graph H, then G is a hom-retract of H.

The first property, which is weaker than the second, is a consequence in the case of median graphs of two results of
Bandelt [2]. This property, which is also clearly satisfied by even cycles, is not a common property of partial cubes (see
Section 7). The question of determining which partial cubes have the Hom-Retract Property arises naturally. In this paper
we settle this question for netlike partial cubes.

Having proved in Section 3 that the class of netlike partial cubes is closed under retracts, we introduce in Section 4 the
concept of netlike subgraphs of a netlike partial cube in order to extend a result of Bandelt [2, Theorem 1] on median graphs.
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It turns out that the definition of a netlike subgraph is compatible with the one of a median subgraph, that is any netlike
subgraph of a median graph is a median subgraph of this graph.

The main result (Theorem 4.5) of this paper is that a netlike subgraph of a netlike partial cube H is a hom-retract of H.
Because any retract of H is a netlike subgraph of H, the Hom-Retract Property follows immediately. To prove this result we
show (Theorem 4.6) that, for any netlike subgraph G of H, there exists a minimal netlike extension G∗ of G—that is a netlike
subgraph of H which properly contains G and which is minimal with respect to the subgraph relation—such that G is a hom-
retract of G∗. We also prove an analogous result (Proposition 6.1) by considering convex subgraphs instead of any netlike
subgraphs.

The results of Section 6 are essential to prove the last result (Theorem 7.4) of this paper which deals with Property 2. As
was noticed in [7], the class of netlike partial cubes is not closed under cartesian product. As we shall see, the Hom-Retract
Property – which was a necessary condition in the choice of the class of netlike partial cubes – does not hold for cartesian
product of netlike partial cubes. This observation is linked to the concept of prism-retractable graphs, a concept which was
introduced by Sabidussi [10] in order to generalize Property 2. Contrary to the Hom-Retract Property, this property is not
extendable to all netlike partial cubes. In Theorem 7.4 we characterize those that have this property.

2. Preliminaries

2.1. Graphs

The graphs we consider are undirected, without loops or multiple edges, and may be finite or infinite. If x ∈ V(G), the set
NG(x) := {y ∈ V(G) : xy ∈ E(G)} is the neighborhood of x in G, NG[x] := {x} ∪ NG(x) is the closed neighborhood of x in G and
δG(x) := |NG(x)| is the degree of x in G. For a set X of vertices of a graph G we put NG[X] :=

⋃
x∈X NG[x] and NG(X) := NG[X]−X, and

we denote by ∂G(X) the edge-boundary of X in G, that is the set of all edges of G having exactly one endvertex in X. Moreover,
we denote by G[X] the subgraph of G induced by X, and we set G− X := G[V(G)− X].

A path P = 〈x0, . . . , xn〉 is a graph with V(P) = {x0, . . . , xn}, xi 6= xj if i 6= j, and E(P) = {xixi+1 : 0 ≤ i < n}. A path
P = 〈x0, . . . , xn〉 is called an (x0, xn)-path, x0 and xn are its endvertices, while the other vertices are called its inner vertices,
n = |E(P)| is the length of P. If x and y are two vertices of a path P, then we denote by P[x, y] the subpath of P whose endvertices
are x and y.

A cycle C with V(C) = {x1, . . . , xn}, xi 6= xj if i 6= j, and E(C) = {xixi+1 : 1 ≤ i < n}∪{xnx1}, will be denoted by 〈x1, . . . , xn, x0〉.
The non-negative integer n = |E(C)| is the length of C, and a cycle of length n is called a n-cycle and is often denoted by Cn.

Let G be a connected graph. The usual distance between two vertices x and y, that is, the length of an (x, y)-geodesic
( =shortest (x, y)-path) in G, is denoted by dG(x, y). A connected subgraph H of G is isometric in G if dH(x, y) = dG(x, y) for all
vertices x and y of H. The (geodesic) interval IG(x, y) between two vertices x and y of G is the set of vertices of all (x, y)-geodesics
in G.

2.2. Convexities

A convexity on a set X is an algebraic closure system C on X. The elements of C are the convex sets and the pair (X,C)
is called a convex structure. See van de Vel [12] for a detailed study of abstract convex structures. Several kinds of graph
convexities, that is convexities on the vertex set of a graph G, have already been investigated. We will principally work with
the geodesic convexity, that is the convexity on V(G) which is induced by the geodesic interval operator IG. In this convexity, a
subset C of V(G) is convex provided it contains the geodesic interval IG(x, y) for all x, y ∈ C. The convex hull coG(A) of a subset
A of V(G) is the smallest convex set which contains A. The convex hull of a finite set is called a polytope. A subset H of V(G)
is a half-space if H and V(G)− H are convex. We will denote by IG the pre-hull operator of the geodesic convex structure of
G, i.e. the self-map of P (V(G)) such that IG(A) :=

⋃
x,y∈A IG(x, y) for each A ⊆ V(G). The convex hull of a set A ⊆ V(G) is then

coG(A) =
⋃

n∈N In
G(A). Furthermore we will say that a subgraph of a graph G is convex if its vertex set is convex, and by the

convex hull coG(H) of a subgraph H of G we will mean the smallest convex subgraph of G containing H as a subgraph, that is

coG(H) := G[coG(V(H))].

2.3. Netlike partial cubes

First we will recall some properties of partial cubes, that is of isometric subgraphs of hypercubes. Partial cubes are
particular connected bipartite graphs.

For an edge ab of a graph G, let

WG
ab := {x ∈ V(G) : dG(a, x) < dG(b, x)},

UG
ab := WG

ab ∩ NG(W
G
ba).

Where no confusion is likely, we will simply denote WG
ab and UG

ab by Wab and Uab, respectively. Note that the sets Wab and
Wba are disjoint and that V(G) = Wab ∪Wba if G is bipartite and connected.
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Two edges xy and uv are in the Djoković–Winkler relation Θ if
dG(x, u)+ dG(y, v) 6= dG(x, v)+ dG(y, u).

If G is bipartite, the edges xy and uv are in relation Θ if and only if dG(x, u) = dG(y, v) and dG(x, v) = dG(y, u). The relation
Θ is clearly reflexive and symmetric.

Theorem 2.1 (Djoković [3, Theorem 1] and Winkler [13]). A connected bipartite graph G is a partial cube if and only if it has one
of the following properties:

(i) For every edge ab of G, the sets Wab and Wba are convex (and thus half-spaces).
(ii) The relation Θ is transitive.

Note that every interval and every polytope of a partial cube are finite. We will now recall the concept of pre-hull number
of a partial cube. This concept was more generally defined for any convexities in [9].

Definition 2.2. Let G be a partial cube. The least non-negative integer n (if it exists) such that coG(Uab) = In
G(Uab ∪ {x}) for

each edge ab of G and each x ∈ coG(Uab) is called the pre-hull number of G, and is denoted by ph(G). If no such n exists we put
ph(G) := ∞.

As we will only deal with partial cubes whose pre-hull number is at most 1, except with a few counterexamples, it is
useful to recall a simple characterization of these graphs.

Definition 2.3. We say that a set A of vertices of a graph G is ph-stable if, for all u, v ∈ IG(A), v ∈ IG(u,w) for some w ∈ A.

We obtain immediately:

Lemma 2.4 (Polat [7, Proposition 2.4]). If a set A of vertices of a graphG is ph-stable, then, for all u, v ∈ IG(A), IG(u, v) ⊆ IG(a, b) for
some a, b ∈ A. In particular, each edge of G[IG(A)] belongs to an (a, b)-geodesic for some a, b ∈ A, and moreover coG(A) = IG(A).

Proposition 2.5 (Polat and Sabidussi [9, Theorem 7.5]). Let G be a partial cube. Then ph(G) ≤ 1 if and only if Uab and Uba are
ph-stable for every edge ab of G.

We denote by CV(G) (resp. 3V(G)) the set of vertices of a graph G which belong to a cycle of G (resp. whose degree is at
least 3). We say that a set A ⊆ V(G) is C-convex (resp. (3)-convex) if CV(G[IG(A)]) ⊆ A (resp. 3V(G[IG(A)]) ⊆ A). The set of
C-convex subsets of V(G) and the one of (3)-convex subsets of V(G) are convexities on V(G) which are finer than the geodesic
convexity.

Lemma 2.6 (Polat [7, Proposition 3.5]). Any C-convex set of a connected graph is ph-stable.

Corollary 2.7. If A is a C-convex set of a connected graph G, then IG(A) is convex.

This is a consequence of Lemmas 2.4 and 2.6.

Lemma 2.8 (Polat [7, Proposition 3.7]). Let A be a ph-stable set of vertices of a graph G. Then A is C-convex if it is (3)-convex.

Definition 2.9. We will say that a partial cube G is netlike if Uab and Uba are C-convex for each edge ab.

In particular median graphs and even cycles are netlike partial cubes, and any convex subgraph of a netlike partial cube
is a netlike partial cube.

Proposition 2.10 (Polat [7, Proposition 2.6]). The pre-hull number of a netlike partial cube is at most 1.

We have the following characterization of netlike partial cubes:

Proposition 2.11 (Polat [7, Theorem 3.8]). A partial cube G is netlike if and only if Uab and Uba are ph-stable and (3)-convex for
each edge ab.

From another characterization [7, Theorem 3.10] of netlike partial cubes, we have the following property:

Proposition 2.12. Each isometric cycle of a netlike partial cube is convex or its convex hull is a hypercube.

A netlike partial cube G such that, for each edge ab, IG(Uab) and IG(Uba) induce trees, is called a linear partial cube.

Lemma 2.13 (Polat [7, Theorem 7.4]). Let G be a partial cube. The following assertions are equivalent:
(i) G is linear.
(ii) G is a netlike partial cube which contains no hypercube of dimension greater than 2.
(iii) G is a netlike partial cube whose isometric cycles are convex.

Lemma 2.14 (Polat [7, Lemma 6.1]). Let ab be an edge of a netlike partial cube G. Then any convex cycle of G[Uab] is a 4-cycle.

Lemma 2.15 (Polat [7, Corollary 7.2]). A netlike partial cube is a median graph if and only if any of its convex cycles is a 4-cycle.
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Fig. 1.

3. Retracts

We recall that, if G and H are two graphs, a map f : V(G)→ V(H) is a contraction (weak homomorphism in [5]) if f preserves
or contracts the edges, i.e., if f (x) = f (y) or f (x)f (y) ∈ E(H) whenever xy ∈ E(G). Notice that a contraction f : G → H is a
nonexpansive map between the metric spaces (V(G), dG) and (V(H), dH), i.e., dH(f (x), f (y)) ≤ dG(x, y) for all x, y ∈ V(G). A
contraction f of G onto an induced subgraph H of G is a retraction, and H is a retract (weak retract in [5]) of G, if its restriction
to V(H) is the identity. A retract of a graph G is a particular isometric subgraph of G.

Because a median graph is a retract of a hypercube, it follows that a retract of a median graph is also a median graph. We
will see that this property also holds for netlike partial cubes.

Theorem 3.1. The class of netlike partial cubes is closed under retracts.

Proof. Let H be a retract of a netlike partial cube G, and let f be a retraction of G onto H. Let ab be an edge of H. We will
prove that UH

ba is C-convex. Because H is an isometric subgraph of G, it follows that WH
ab = WG

ab ∩ V(H), WH
ba = WG

ba ∩ V(H) and
IH(UH

ba) ⊆ IG(UH
ba) ∩ V(H).

We will show that UH
ba = UG

ba∩IH(UH
ba). Clearly UH

ba ⊆ UG
ba∩IH(UH

ba). Conversely, let u, v,w be three vertices of UG
ba such that

v ∈ IG(u,w). Let u′, v′,w′ be the neighbors in UG
ab of u, v,w, respectively. Then, by the Djoković–Winkler relation, v′ is the only

neighbor of v which belongs to IG(u′,w′). Therefore, if u,w ∈ UH
ba with v ∈ IH(u,w), then f (v′) ∈ IH(u′, v′) ⊆ IG(u′, v′) since H

is an isometric subgraph of G. Hence f (v′) = v′, and thus v ∈ UH
ba. Consequently UG

ba ∩ IH(UH
ba) ⊆ UH

ba.
It follows that:

CV(H[UH
ba]) = CV(G[UG

ba]) ∩ IH(U
H
ba)

⊆ UG
ba ∩ IH(U

H
ba) since UG

ba is C-convex
= UH

ba.

Therefore, UH
ba is C-convex. Analogously UH

ab is also C-convex. This proves that H is a netlike partial cube. �

Due to the fact that any isometric cycle of a retract of a graph G is also an isometric cycle of G, Lemma 2.13 and Theorem 3.1
immediately imply:

Corollary 3.2. The class of linear partial cubes is closed under retracts.

Remark 3.3. If the class of netlike partial cubes is closed under retracts, this is however not true for the class PC1 of all
partial cubes whose pre-hull number is at most 1, as is shown by the following example. Let G be the graph in Fig. 1. Then
the function which maps c′ and c′′ to c, d′ to d, e′ to e and f ′, f ′′ and f ′′′ to f is clearly a retraction of G onto the subgraph H
induced by the set {a, b, c, d, e, f , g}. It is easy to check that G, which is an isometric subgraph of the 4-cube Q4, has a pre-hull
number equal to 1, while H, which is the partial cube Q−3 (the 3-cube minus a vertex), has a pre-hull number equal to 2. Also
note that H is a convex subgraph of G. This proves that the class PC1 is not closed under convex subgraphs.

4. Hom-retracts and netlike subgraphs

A contraction f : G → H which preserves the edges is called a homomorphism of G into H. If a retraction f : G → H is
a homomorphism, then we will say that f is a hom-retraction and that H is a hom-retract. We will extend to netlike partial
cubes the following result of Bandelt:
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Proposition 4.1 (Bandelt [2, Theorem 1]). Let G be a median graph. Then the hom-retracts of G are the non-trivial (i.e., with at
least two vertices) median subgraphs of G.

We will first state a simple property of netlike partial cubes that will be frequently used.

Lemma 4.2. For each edge ab of a netlike partial cube G, there exists a unique isometry (i.e. a distance-preserving bijection) φab

of IG(Uab) onto IG(Uba) such that, for every vertex x ∈ Uab, φab(x) is the neighbor of x in Uba.

φab will be called the canonical isometry of IG(Uab) onto IG(Uba).

Proof. This is clear if IG(Uab) = Uab. Suppose that there there is a vertex x ∈ IG(Uab) − Uab. Then, because Uab is C-convex,
there exists u, v ∈ Uab and a (u, v)-geodesic P containing x such that each inner vertex of P has degree 2 in G[IG(Uab)] by
Proposition 2.11. It follows that IG(u, v) = V(P) since Uab is C-convex. Let u′ and v′ be the neighbors of u and v in Uba,
respectively. Let P′ be a (u′, v′)-geodesic. Then 〈u′, u〉 ∪ P ∪ 〈v, v′〉 ∪ P′ is an isometric cycle of G, and thus a convex cycle
of G by Proposition 2.12. Therefore, IG(u′, v′) = V(P′). Therefore, because dG(u, v) = dG(u′, v′), the map f such that f (u) = u′

and f (v) = v′ has a unique extension of IG(u, v) to IG(u′, v′). �

Let G be a netlike partial cube. If a triple (x, y, z) of vertices of G has a median, then this median is unique. We will denote
it by mG(x, y, z). If G is not a median graph, then some triple of vertices have no median. Hence the median operation mG is
partial. We will say that a subgraph G of a netlike partial cube H is stable under mH if each triple (x, y, z) of vertices of G which
has a median in H has also a median in G and mG(x, y, z) = mH(x, y, z).

We will now define what we mean by a netlike subgraph.

Definition 4.3. A subgraph G of a netlike partial cube H is called a netlike subgraph of H if G is isometric in H and stable under
mH .

We can easily notice that the netlike subgraphs of a median graph are the median subgraphs of this graph. Clearly any
convex subgraph and thus in particular any interval, and moreover any retract of a netlike partial cube H is a netlike subgraph
of H. Furthermore, for any edge ab of H, the subgraphs H[Wab] and H[Wba] are also netlike subgraphs of H.

Proposition 4.4. Let G be a netlike subgraph of a netlike partial cube H. Then G is a netlike partial cube such that UG
ab =

UH
ab ∩ IG(U

G
ab) for each edge ab of G.

Proof. G is a partial cube since it is isometric in H. Let ab ∈ E(G). Then WG
ab = WH

ab ∩ V(G) and WG
ba = WH

ba ∩ V(G) because G is
isometric in H. Moreover UG

ab ⊆ UH
ab ∩ V(G), that implies UG

ab ⊆ UH
ab ∩ IG(U

G
ab) since UG

ab ⊆ IG(U
G
ab). Let x ∈ UH

ab ∩ IG(U
G
ab). Then

x ∈ IG(u, v) for some u, v ∈ UG
ab. Suppose that x 6= a. Then φab(x) = mH(φab(u),φab(v), x) = mG(φab(u),φab(v), x) because G is

stable under mH . Hence φab(x) ∈ V(G), and thus x ∈ UG
ab.

It follows immediately that UG
ab is C-convex since UH

ab is C-convex by assumption. Consequently G is a netlike partial
cube. �

Note that an isometric subgraph of a netlike partial cube H which is netlike in its own right is not necessarily a netlike
subgraph of H, as is shown by the example of a 6-cycle in a 3-cube.

We will now state the following extension of Proposition 4.1.

Theorem 4.5. Let G be a non-trivial subgraph of a netlike partial cube H. Then the following assertions are equivalent:
(i) G is a netlike subgraph of H.
(ii) G is a hom-retract of H.
(iii) G is a retract of H.

We first prove another important result which will be the cornerstone of the proof of Theorem 4.5. If G is a netlike
subgraph of a netlike partial cube H, then a minimal netlike extension of G in H is a netlike subgraph of H which properly
contains G as a subgraph and which is minimal with respect to the subgraph relation.

Theorem 4.6. Let G be a proper netlike subgraph of a netlike partial cube H. There exists a minimal netlike extension G∗ of G in H
such that G is a hom-retract of G∗ whenever G is non-trivial.

The proof of this theorem is very long, and we will deal with it in the next section. We will first give the proof of
Theorem 4.5.

Proof of Theorem 4.5. The implications (ii)⇒ (iii) and (iii)⇒ (i) are obvious.
(i)⇒ (ii): Let G be a non-trivial netlike subgraph of H. For each ordinal α, we inductively construct the subgraph Gα as

follows:

• G0 := G;
• Gα+1 is a minimal netlike extension of Gα;
• if α is a limit ordinal, then Gα :=

⋃
β<α Gβ.
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Note that Gα is also a netlike subgraph of H if α is a limit ordinal because the set {Gβ : β < α} is totally ordered by
inclusion, and any geodesic is a finite graph. Let γ be the least ordinal such that Gγ = H.

Now, for each ordinal α ≤ γ, we will construct a hom-retraction fα of Gα onto G0. Let f0 be the identity map on V(G0). Let
α ≥ 0. Suppose that fβ has already been constructed for every β < α. If α = β + 1 for some ordinal β, then fα := fβ ◦ fGα
where fGα is a hom-retraction of Gα onto Gβ induced by Theorem 4.6. Then fα is obviously a hom-retraction of Gα onto G0.

Suppose that α is a limit ordinal. Let fα :=
⋃
β<α fβ, i.e. fα is the map of Gα onto G0 such that, for each vertex x of Gα,

fα(x) := fβ(x), where β is the least ordinal such that x ∈ V(Gβ). In particular fα(x) = x if x ∈ V(G0). It remains to prove that fα
is a homomorphism. Let x, y be two adjacent vertices of Gα. Then there is an ordinal β < α such that x, y ∈ V(Gβ). Therefore,
fα(x) = fβ(x) and fα(y) = fβ(y). It follows that fα(x) and fα(y) are adjacent because fβ is a homomorphism by the induction
hypothesis. Consequently fα is a hom-retraction of Gα onto G0.

Finally fγ is then the desired hom-retraction of H onto G. �

5. Proof of Theorem 4.6

We need two lemmas.

Lemma 5.1. Let G be a netlike subgraph of a netlike partial cube H. Then any vertex of H − G is adjacent to at most two vertices
of G.

Proof. Suppose that a vertex x of H − G is adjacent to three vertices u, v,w of G. Since G is an isometric subgraph of H, the
distance in G between any two of these neighbors is 2. Then we have two cases.

If u, v,w have a common neighbor y in G, then {x, y, u, v,w} induces a K2,3, contrary to the fact that H is a partial cube.
Therefore u, v,w are vertices of 6-cycle 〈u, a, v, b,w, c, u〉 of G. Then the edges {u, c}, {v, b} and {x,w} are in relation Θ in

H, and thus the first two of these edges are in relation Θ in G because G is isometric in H. Hence w ∈ IG(c, b) ∩ UH
cu, and thus

w ∈ UG
cu by Proposition 4.4. It follows that x must belong to UG

uc, contrary to the fact that x 6∈ V(G). �

Lemma 5.2. Let H be a netlike partial cube, and 〈x, a, y, b, x〉 a 4-cycle of H. Let

XH
aybx := Uxa ∩ Uxb, YH

aybx := Uya ∩ Uyb,

AH
aybx := Uay ∩ NH(Y), BH

aybx := Uby ∩ NH(Y).

(i) The restrictions of φxb ◦ φxa and of φxa ◦ φxb to XH
aybx are equal, and this map, denoted by µH , is an isomorphism of H[XH

aybx]

onto H[YH
aybx].

(ii) AH
aybx = Uax ∩ NH(XH

aybx) = Uax ∩ Uay and BH
aybx = Ubx ∩ NH(XH

aybx) = Ubx ∩ Uby.
(iii) The sets AH

aybx, B
H
aybx, X

H
aybx, Y

H
aybx are convex.

(iv) For each pair of vertices (α,β) ∈ AH
aybx × BH

aybx, the triples of vertices (x,α,β) and (y,α,β) have a median, and

mH(y,α,β) = µH(mH(x,α,β)).

(v) XH
aybx = {mH(x,α,β) : (α,β) ∈ AH

aybx × BH
aybx} and YH

aybx = {mH(y,α,β) : (α,β) ∈ AH
aybx × BH

aybx}.
(vi) Each triple (p, q, r) of vertices in XH

aybx has a median, and

µH(mH(p, q, r)) = mH(µH(p),µH(q),µH(r)).

(vii) Let p ∈ XH
aybx, q ∈ Wax ∩ Wxb and r ∈ Wxa ∩ Wbx be such that the triple (p, q, r) has a median m. Then m ∈ XH

aybx and
µH(m) = mH(µH(p), q, r).

Proof. Because no confusion is likely, in the following we delete the symbols H and aybx in the notation of the four different
sets AH

aybx, B
H
aybx, X

H
aybx and YH

aybx. See Fig. 2. Note that these sets are not empty since they contain the vertices a, b, x and y,
respectively.

(i) Let u ∈ Y. The edges uφya(u) and ya are in relation Θ . Henceφya(u) ∈ IG(u, a). Thenφya(u) belongs to a cycle of H[IH(Uyb)]
since u ∈ Y. Therefore, φya(u) ∈ Uyb because H is netlike. In the same way φyb(u) ∈ Uya.

Clearly φyb(φya(u)) = φya(φyb(u)) ∈ X. Analogously, for each m ∈ X, φxa(φxb(m)) = φxb(φxa(m)) ∈ Y. It follows that the
restriction µH of φxb ◦ φxa to X is a bijection of X onto Y, and moreover it is clearly an isomorphism of G[X] onto G[Y].

(ii) Let α ∈ A. Then α = φxa(µ
−1
H (φay(α))). Then A = Uax ∩ NH(X). Analogously B = Ubx ∩ NH(X).

Then, in particular, A ⊆ Uax∩Uay. On the other hand, for any vertex α′ ∈ Uax∩Uay we can prove, as in (i), that φay(α
′) ∈ Uyb.

It follows that A = Uax ∩ Uay, and analogously B = Ubx ∩ Uby.
(iii) Let u, u′ ∈ Y , and let P be any (u, u′)-geodesic. Then P ∪ 〈u,φyb(u)〉 ∪ φyb(P) ∪ 〈φyb(u′), u′〉 is a cycle of H[IH(Uya)], and

thus the vertex set of this cycle is contained in Uya because H is netlike. Similarly P ∪ 〈u,φya(u)〉 ∪ φya(P) ∪ 〈φya(u′), u′〉 is a
cycle of H[IH(Uyb)], and thus the vertex set of this cycle is contained in Uyb. Hence V(P) ⊆ Uya ∩Uyb = Y, and thus Y is convex.
Analogously A, B and X are convex.

(iv) By Lemma 2.14, any convex cycle of H[X] and of H[Y] is a 4-cycle. Hence, by Lemma 2.15, H[X] and of H[Y] are median
graphs. Therefore every triple of vertices of these graphs has a median.
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Fig. 2.

Let (α,β) ∈ A × B. Then the triple (x,φax(α),φbx(β)) has a median in H[X], which is its median in H since X is convex by
(iii), and this median is clearly the median of (x,α,β). Analogously mH(y,α,β) = mH(y,φxb(α),φby(β)) ∈ Y. Then, by the
uniqueness of the median: mH(y,α,β) = µH(mH(x,α,β)).

(v) By (iv), for each (α,β) ∈ A × B, mH(x,α,β) ∈ X and mH(y,α,β) ∈ Y. Conversely, for each m ∈ X, m =

mH(x,φxa(m),φxb(m)); and, for each u ∈ Y , u = mH(y,φya(u),φyb(u)). Hence

X = {mH(x,α,β) : (α,β) ∈ A× B} and Y = {mH(y,α,β) : (α,β) ∈ A× B}.

(vi) is clear because H[X] and H[Y] are median graphs, X and Y are convex in H, and µH is an isomorphism of H[X] onto
H[Y].

(vii) Let p ∈ X, q ∈ Wax∩Wxb and r ∈ Wxa∩Wbx be such that the triple (p, q, r) has a medianm. Then p = mH(x,φxa(p),φxb(p)),
and the triple (φxa(p),φxb(p), q) has clearly a median in H:

mH(φxa(p),φxb(p), q) = mH(φxa(p),µH(p), q) because q ∈ Wxb

= φxa(p) because q ∈ Wax.

Then, by the associativity of the median operation:

m = mH(p, q, r) = mH(x,mH(φxa(p),φxb(p), q), r)

= mH(x,φxa(p), r) = mH(x, p, r) since r ∈ Wxa ∩Wbx.

Hence m ∈ IH(x, p) ⊆ X since X is convex by (iii). Because q ∈ Wax ∩Wxb and r ∈ Wxa ∩Wbx, there exists a (q, r)-geodesic P
which contains 〈φxa(m),m,φxb(m)〉 as a subpath. Then P[q,φxa(m)]∪〈φxa(m),µH(m),φxb(m)〉∪P[φxb(m), r] is a (q, r)-geodesic.
Therefore, µH(m) ∈ IH(q, r).

Furthermore φxa(m) ∈ IH(q,φxa(p)) because m ∈ IH(q, p) and q ∈ Wax. Then µH(m) ∈ IH(q,µH(p)) since q ∈ Wxb.
Analogously µH(m) ∈ IH(r,µH(p)). It follows that µH(m) = mH(µH(p), q, r). �

We will distinguish three cases for the proof of Theorem 4.6.
Case 1. There exists a vertex x ∈ NH(V(G)) which has two neighbors in G.
Let a and b be the neighbors of x in G, and let y be the common neighbor of a and b in G. In the following we will denote

the sets AH
aybx, B

H
aybx, X

H
aybx and YH

aybx introduced in the statement of Lemma 5.2 by AH, BH, XH and YH , respectively.
We introduce the following notations:

Y := UG
ya ∩ UG

yb,

A := AH
∩ V(G),

B := BH
∩ V(G),

X := {mH(x,α,β) : (α,β) ∈ A× B},

Gx := H[V(G) ∪ X].

Lemma 5.3. Gx is a minimal netlike extension of G in H, and G is a hom-retract of Gx.

Proof. Claim 1. Y = YH
∩ IG(UG

ya) ∩ IG(U
G
yb).

By Lemma 5.2 and Proposition 4.4 since G is a netlike subgraph of H,

Y = UG
ya ∩ UG

yb = UH
ya ∩ IG(U

G
ya) ∩ UH

yb ∩ IG(U
G
yb)

= YH
∩ IG(U

G
ya) ∩ IG(U

G
yb).
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Claim 2. G[Y], G[A] and G[B] are isometric in H.
By Claim 1, Y = YH

∩IG(UG
ya)∩IG(U

G
yb). The set YH is convex by Lemma 5.2(iii). Furthermore IG(UG

ya)∩IG(U
G
yb) is convex in

G by Corollary 2.7 since G is netlike by Proposition 4.4. Therefore, Y is convex because G is isometric in H and G[Y] is isometric
in H.

G[A] and G[B] are isometric in H since AH and BH are convex by Lemma 5.2(iii), and because G is isometric in H.
Claim 3. mH(y,α,β) ∈ Y for all α ∈ WG

ay ∩WG
yb and β ∈ WG

ya ∩WG
by such that (y,α,β) has a median in H.

By Lemma 5.2(i) and (vii), m := mH(y,α,β) ∈ YH . Moreover m = mG(y,α,β) ∈ V(G) since G is stable under mH .
Because G is isometric in H, it follows that m ∈ WG

ya ∩WG
yb. Furthermore m ∈ IG(α, y) ∩ IG(β, y). Then there are two vertices

α′ ∈ UG
ya ∩ IG(α, y) and β′ ∈ UG

yb ∩ IG(β, y) such that m ∈ IG(α′, y) ∩ IG(β′, y). Thus m ∈ IG(UG
ya) ∩ IG(U

G
yb), and therefore,

m ∈ YH
∩ IG(UG

ya) ∩ IG(U
G
yb) = Y by Claim 1.

Claim 4. µ := µH |X is a bijection of X onto Y.
Let m ∈ X. Then m = mH(x,α,β) for some (α,β) ∈ A × B. Hence, by Lemma 5.2(iv), µ(m) = mH(y,α,β) = φxa(φxb(m));

and moreover mH(y,α,β) ∈ Y by Claim 3 since A ⊆ WG
ay ∩WG

yb and B ⊆ WG
ya ∩WG

by.
Furthermore, by Lemma 5.2(i), u = µ(mH(x,φya(u),φyb(u))) for every u ∈ Y. Therefore, µ is a bijection of X onto Y.
Claim 5. φxa(X) ⊆ A, φxb(X) ⊆ B and X ⊆ XH

∩ NH(A) ∩ NH(B).
Let m ∈ X. Then m ∈ XH by Lemma 5.2(vii). Then, by Claim 4, φxa(m) = φya(µ(m)) ∈ UG

ay ∩ NG(Y) ⊆ AH
∩ V(G) = A.

Analogously φxb(m) ∈ B. Therefore, m ∈ XH
∩ NH(A) ∩ NH(B).

It follows from Claim 5 and Lemma 5.1, that any m ∈ X has exactly two neighbors in G: φxa(m) and φxb(m).
Claim 6. Gx[X] is isometric in H, and µ is an isomorphism of Gx[X] onto Gx[Y].
Let m,m′ ∈ X. Then

dH(m,m′) = dH(φxa(m),φxa(m
′))

= dG(φxa(m),φxa(m
′)) by Claims 2 and 5

= dGx(m,m′) by Claim 5.

The rest of the claim is a consequence of Lemma 5.2(i).
Claim 7. WG

ay ∩WG
by = ∅.

Suppose that this is not true, and let p ∈ WG
ay ∩ WG

by. Because p ∈ WG
ay, there is a (p, y)-geodesic P that passes through a.

Since p ∈ WG
by, there is exactly one edge cd of P which is in relation Θ with yb. Then a ∈ IG(c, y), and thus x ∈ IG(d, b), contrary

to the hypothesis that x 6∈ V(G).
Claim 8. The subgraph Gx is isometric in H.
By Claim 6, we only have to prove that dGx(m, p) = dH(m, p) for all m ∈ X and p ∈ V(G). If p ∈ WG

ya ∩WG
yb, then

dH(m, p) = dH(µ(m), p)+ 2
= dG(µ(m), p)+ 2 by Claim 4 and since G is isometric in H

= dGx(µ(m), p)+ 2
= dGx(m, p).

If p 6∈ WG
ya ∩WG

yb, then, by Claim 7, p ∈ WG
ay∆WG

by, where ∆ denotes the symmetric difference of sets. Suppose that p ∈ WG
ay.

Then p ∈ WG
yb. Hence

dH(m, p) = dH(φby(m), p)+ 1
= dG(φby(m), p)+ 1 because φby(m) ∈ A by Claim 5
= dGx(φby(m), p)+ 1
= dGx(m, p).

Claim 9. The subgraph Gx is stable under mH .
Let (p, q, r) be a triple of vertices of Gx which has a median m in H. Because Gx is isometric in H by Claim 8, it is sufficient

to prove that m ∈ V(Gx) to show that m = mGx(p, q, r). We distinguish five cases.
(a) If p, q, r ∈ V(G), then m = mG(p, q, r) because G is stable under mH .
(b) If p, q, r ∈ X, then m ∈ XH since XH is convex. HenceµH(m) ∈ YH by Lemma 5.2(i). Moreover, becauseµ(p),µ(q),µ(r) ∈

Y by Claim 4, it follows that

µH(m) = mH(µ(p),µ(q),µ(r))

= mG(µ(p),µ(q),µ(r)) since G is stable under mH

∈ IG(U
G
ya) ∩ IG(U

G
yb).

Therefore, µH(m) ∈ YH
∩ IG(UG

ya) ∩ IG(U
G
yb) = Y by Claim 1. Hence m ∈ X.

(c) p, q ∈ X and r ∈ V(G).
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Then m ∈ IH(p, q) ⊆ XH since XH is convex. On the other hand, by Claim 7, r ∈ WG
ax ∪WG

bx. Suppose that r ∈ WG
ax. Then

φxa(m) = mH(φxa(p),φxa(q), r)

= mG(φxa(p),φxa(q), r) because G is stable under mH.

Hence φxa(m) ∈ A, and thus m ∈ X.
(d) p ∈ X and q, r ∈ WG

ya or q, r ∈ WG
yb.

Suppose that q, r ∈ WG
yb. Then m ∈ WH

ax. It follows that φxa(p) ∈ IH(p,m). Hence m = mH(φxa(p), q, r) = mG(φxa(p), q, r)
because G is stable under mH , and thus m ∈ V(G).

(e) p ∈ X, q ∈ WG
ay ∩WG

yb and r ∈ WG
ya ∩WG

by.
By Lemma 5.2(vii), the fact that G is stable under mH and Claim 3,µH(m) = mH(µ(p), q, r) = mG(µ(p), q, r) ∈ Y. Therefore,

m ∈ X by Claim 4.
Claim 10. Gx is a minimal netlike extension of G in H.
By Claims 8 and 9, Gx is a netlike extension of G in H. Now, let x′ ∈ X and let Y ′, A′, B′ and X′ be the subsets of V(H) which

are associated to x′ in the same way that Y, A, B and X were associated to x. Then

Y ′ = UG
µ(x′)φxa(x′)

∩ UG
µ(x′)φxb(x′)

= UG
ya ∩ UG

yb = Y.

It follows that X′ = µ−1
H (Y) = X. Therefore, Gx′ = Gx. Consequently Gx is minimal.

Claim 11. G is a hom-retract of Gx.
Let f : V(Gx) → V(G) be such that f (u) = u if u ∈ V(G), and f (u) = µ(u) if u ∈ X. We have to prove that f is a

homomorphism. Let u, u′ be two adjacent vertices of Gx. We have to show that f (u) and f (u′) are adjacent. We are done
if u, u′ ∈ X by Claim 4 and Lemma 5.2(i), and if u, u′ ∈ V(G).

Suppose that u ∈ X and u′ ∈ V(G). Then u′ = φxa(u) or u′ = φxb(u), say u′ = φxb(u) = f (u′). Then f (u) = φxa(φxb(u)) =
φxa(u′) = φxa(f (u′)), and thus f (u) and f (u′) are adjacent. Therefore, f is a hom-retraction of Gx onto G.

This completes the proof of Lemma 5.3. �

Case 2. Every vertex in NH(V(G)) has exactly one neighbor in G, and there is an edge bc of G which is in relation Θ with some
edge in ∂H(V(G)).

Choose a vertex x in NH(V(G)) and the edge bc of G in such a way that, if a is the neighbor of x in V(G), then xa and bc are
in relation Θ and IH(x, b) ∩ UH

xa = {x, b}. Let

Gx := H[V(G) ∪ φax(IG(U
G
cb ∪ {a}))].

Lemma 5.4. Gx is a minimal netlike extension of G in H, and G is a hom-retract of Gx.

Proof. Because IG(x, b)∩UH
xa = {x, b}, it follows, because H is netlike, that no vertex in IH(x, b) belongs to a cycle of H[IH(UH

xa)],
and no vertex in IH(a, c) belongs to a cycle of H[IH(UH

ax)]. Then there exists exactly one (x, b)-geodesic in H, say P, and exactly
one (a, c)-geodesic in H, and thus in G, say Q .

Suppose that there is an edge b′c′ of G distinct from bc such that b′c′ and bc are in relation Θ and b 6∈ IH(x, b′). Then, since
G is isometric in H, there would exist a (b, b′)-geodesic in G, and thus in H. Hence each vertex of IH(x, b) would belong to a
cycle of H[IH(UH

xa)], contrary to the above. Therefore

Gx = G ∪ P ∪ 〈x, a〉.

Claim 1. Gx is isometric in H.
Because V(P)− {x, b} ⊆ IH(UH

xa)− UH
xa, it suffices to show that dGx(x, y) = dH(x, y) for every y ∈ V(G). Suppose that this is

not true. Then there is y ∈ V(G)∩WH
xa = WG

xa such that b 6∈ IH(x, y). Hence a ∈ IH(x, y). Since a ∈ WH
ax, for any (a, y)-geodesic R

in G there exists an edge b′c′ in R which is in relation Θ with bc. Then b ∈ IH(x, b′) by the above. Hence b ∈ IH(a, b′) ⊆ IH(a, y)
since R is also an (a, y)-geodesic in H, because G is isometric in H. Therefore, b ∈ IH(x, y), contrary to the fact that b 6∈ IH(x, y)
by the definition of y.

Claim 2. Gx is stable under mH .
Let u0, u1, u2 ∈ V(Gx) such that the triple (u0, u1, u2) has a median m in H. As in Case 1 we have to prove that m ∈ V(Gx).

We distinguish three cases.
(a) If ui ∈ V(G) for i = 0, 1, 2, then mH(u0, u1, u2) = mG(u0, u1, u2) because G is stable under mH , and thus m ∈ V(G).
(b) If ui, uj 6∈ V(G) for some i 6= j, then m ∈ V(P[ui, uj]), and thus m ∈ V(Gx).
(c) Suppose that there is exactly one i ∈ {0, 1, 2} such that ui 6∈ V(G), say i = 0. Then, for every y ∈ V(G), a or b belongs to

IG(y, u0). Hence, clearly,

m = mH(φxa(u0), u1, u2) = mG(φxa(u0), u1, u2)

because G is stable under mH , and thus m ∈ V(G).
Claim 3. Gx is a minimal netlike extension of G in H.
By Claims 1 and 2, Gx is a netlike extension of G in H. Let P = 〈x0, . . . , xn〉with x0 = x and xn = b, and let Q = 〈a0, . . . , an〉

with a0 = a and an = c. Then xn−1 is the only other vertex of Gx which belongs to NH(V(G)). The edges xn−1xn and a0a1 are in
relation Θ . Hence clearly Gxn−1 = Gx. Therefore, Gx is minimal.
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Claim 4. G is a hom-retract of Gx.
The map f : V(Gx)→ V(G) such that f (u) = u if u ∈ V(G) and f (xi) = ai+1 for i < n − 1, is clearly a hom-retraction of Gx

onto G. �

Case 3. Every vertex in NH(V(G)) has exactly one neighbor in G, and no edge of G is in relation Θ with some edge in ∂H(V(G)).
Let x be any vertex in NH(V(G)), and let

Gx := H[V(G) ∪ {x}].

Lemma 5.5. Gx is a minimal netlike extension of G in H, and G is a hom-retract of Gx whenever G is non-trivial.
Proof. Let a be the neighbor of x in G. Suppose that Gx is not isometric in H. Then there is a vertex y of G such that
a 6∈ IH(x, y) and IH(x, y) ∩ V(G) = {y}. Let z ∈ NG(y) ∩ IG(y, a). Because G is isometric in H and a 6∈ IH(x, y), it follows that
dG(a, y) = dH(a, y) = dH(x, y) + 1. Hence dH(a, z) = dH(x, y), and moreover dH(a, y) = dH(x, z) since IH(x, y) ∩ V(G) = {y}. It
follows that the edges yz and xa are in relation Θ in H, contrary to the assumption. Therefore, Gx is isometric in H.

Suppose that, for some p, q ∈ V(G), the triple (x, p, q) has a median m in H. Then

m = mH(a, p, q) because G is isometric in H

= mG(a, p, q) since G is stable under mH.

Hence m ∈ V(G), and thus m = mGx(x, p, q).
Then Gx is a minimal netlike extension of G in H. If G is non-trivial, then the map f : V(Gx) → V(G) such that f (u) = u if

u ∈ V(G) and such that f (x) is any neighbor of a in G, is a hom-retraction of Gx onto G. �

This completes the proof of Theorem 4.6.

6. Minimal convex extensions and mooring

Let G be a convex subgraph of a netlike partial cube H. Clearly a minimal netlike extension of G is not necessarily convex.
However, as we will see, there is always an extension of G which is convex and which is minimal with respect to the convex
subgraph relation. This is a consequence of the following result where, if C is a convex set, then by a minimal convex extension
of C we mean a convex set C′ which properly contains C and which is minimal with respect to inclusion.

Proposition 6.1. Let G be a netlike partial cube, and C a non-empty convex set of G. We have the following properties:
(i) A set C′ is a minimal convex extension of C if and only if C′ = IG({u} ∪ C) for some vertex u ∈ NG(C).
(ii) If C′ is a minimal convex extension of C, then C′ ∩ NG(C) is ph-stable and (3)-convex (and thus C-convex by Lemma 2.8).
(iii) If C′ is a minimal convex extension of C, then, for any edge uv of G with v ∈ C and u ∈ C′ − C, C = WG[C′]

vu , C′ − C = WG[C′]
uv

and UG[C′]
uv is C-convex in G[C′].

Proof. Let u ∈ NG(C) and let v be the neighbor of u in C. This neighbor is unique because C is convex and G is bipartite.
Claim 1. IG(Uuv ∩ NG(C)) ∩ Uuv ⊆ NG(C).
Let x ∈ IG(Uuv ∩ NG(C)) ∩ Uuv. Then x ∈ IG(a, b) for some vertices a, b ∈ Uuv ∩ NG(C). Let a′, b′ and x′ be the neighbors in

Uvu of a, b and x, respectively. Then a′, b′ ∈ C and x′ ∈ Ig(a′, b′) since G is a partial cube. Therefore, x′ ∈ C by convexity. Hence
x ∈ NG(C).

Claim 2. The set Uuv ∩ NG(C) is(3)-convex and C-convex.

V(3)(G[IG(Uuv ∩ NG(C))]) ⊆ IG(Uuv ∩ NG(C)) ∩ V(3)(G[IG(Uuv)])

⊆ IG(Uuv ∩ NG(C)) ∩ Uuv since Uuv is (3)-convex
⊆ Uuv ∩ NG(C) by Claim 1.

Hence Uuv ∩ NG(C) is (3)-convex, and analogously it is C-convex.
Claim 3. The set Uuv ∩ NG(C) is ph-stable.
By Claim 2, Uuv ∩ NG(C) is C-convex. Hence it is ph-stable by Lemma 2.6.
Claim 4. IG({u} ∪ C) = IG(Uuv ∩ NG(C)) ∪ C.
Clearly IG(Uuv ∩ NG(C)) ∪ C ⊆ IG({u} ∪ C). Conversely let x ∈ C, and let P = 〈u0, . . . , un〉 be a (u, x)-geodesic with

u0 = u and un = x. Without loss of generality we can suppose that un−1 6∈ C. Then x ∈ Wvu. It follows that v ∈ IG(u, x).
Hence dG(v, x) = dg(u, un−1) and dG(u, x) = dG(v, un−1). Therefore, the edges un−1x and uv are in relation Θ , and thus
un−1 ∈ Uuv ∩ NG(C). Consequently V(P) ∈ IG(Uuv ∩ NG(C)) ∪ C. More generally IG({u} ∪ C) ⊆ IG(Uuv ∩ NG(C)) ∪ C.

Claim 5. IG({u} ∪ C) is convex and is equal to IG({a} ∪ C) for each vertex a ∈ IG({u} ∪ C)− C.
By Claim 4, IG({u}∪C)−C = IG(Uuv∩NG(C)). By Claim 3, the setUuv∩NG(C) is ph-stable, and thus IG(Uuv∩NG(C)) is convex by

Lemma 2.4. Therefore IG({u}∪C) is convex. Now let a ∈ IG({u}∪C)−C = IG(Uuv∩NG(C)). Clearly IG({a}∪C) ⊆ IG({u}∪C). On
the other hand, sinceUuv∩NG(C) is ph-stable, it follows that IG(Uuv∩NG(C))∪C ⊆ IG({a}∪C), therefore, IG({a}∪C) = IG({u}∪C).

From Claim 5, it follows immediately that IG({u} ∪ C) is a minimal convex extension of C. Conversely, let C′ be a minimal
convex extension of C. Let u ∈ NG(C) ∩ C′. By the above IG({u} ∪ C) is a minimal convex extension of C, and moreover which
is contained in C′ since u ∈ C′. Hence C′ = IG({u} ∪ C). This proves the assertion (i). The assertion (ii) is a consequence of (i)
and of Claims 2 and 3. Because G[C′] is a netlike partial cube, as a convex subgraph, the assertion (iii) is then a consequence
of (i) and (ii). �
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An induced subgraph H (or its vertex set) of a graph G is said to be gated if, for each x ∈ V(G), there exists a vertex y (the
gate of x) in H such that y ∈ IG(x, z) for every z ∈ V(H).

The following concept, essentially due to Tardif [11], was initially defined for median graphs. Let H be a gated subgraph
of a netlike partial cube G. We denote by gH(x) the gate of x in H. A self-contraction ϕ of G is a mooring of G onto H if ϕ(u) = u
for all u ∈ V(H) and uϕ(u) is an edge of G[IG(u, gH(u))] for all u 6∈ V(H). We recall that any convex cycle of a netlike partial
cube is gated [7, Corollary 6.4]. The following result will be useful in the next section.

Proposition 6.2. If a netlike partial cube G contains a unique convex cycle C of length greater than 4, then there is a mooring of
G onto C.

Proof. Let H be a convex subgraph of G containing the convex cycle C, and let H′ be a minimal convex extension of H. By
Proposition 6.1(iii), if uv is an edge of G with v ∈ V(H) and u ∈ V(H′ − H), then the set UH′

uv is C-convex in H′, and thus convex
because the only convex cycle of G of length greater than 4 is contained in H. It follows that each vertex in V(H′) ∩ NG(V(H))
has only one neighbor in H.

For each ordinal α, we construct the subgraph Gα as follows:

• G0 := C;
• Gα+1 is a minimal convex extension of Gα;
• if α is a limit ordinal, then Gα :=

⋃
β<α Gβ.

Note that Gα is also a convex subgraph of G if α is a limit ordinal because the set {Gβ : β < α} is totally ordered by
inclusion. For each x ∈ V(G) we denote by α(x) the smallest ordinal α such that x ∈ V(Gα).

Define the self-map ϕ of V(G) such that ϕ(x) is x if α(x) = 0 and is the only neighbor of x in Gα(x)−1 if α(x) > 0. It suffices to
prove thatϕ is a contraction to show that it is a mooring of G onto C. Let x and y be two adjacent vertices of G withα(x) ≤ α(y),
we have to show that ϕ(x) and ϕ(y) are equal or adjacent. We are done if α(x) = α(y) = 0. If α(x) = α(y) 6= 0, then ϕ(x) and
ϕ(y) are adjacent because ϕ(y) ∈ U

Gα(x)
ϕ(x)x. If α(x) < α(y), then x = ϕ(y) by the definition of ϕ, and thus ϕ(x) and ϕ(y) are equal

or adjacent according to whether α(x) is or is not equal to 0. �

7. Prism-retractable netlike partial cubes

Proposition 4.1 is very important in the study of median graphs because it is the cornerstone of the proof of Bandelt [2,
Theorem 2] that median graphs are the hom-retracts of hypercubes. Independently of the concepts of subgraphs, the Hom-
Retract Property is far from being a general property of partial cubes, and not even of the elements of PC1. Actually this
property is not even satisfied by most of the cartesian products of netlike partial cubes. Take for example the cartesian
products H of K2 with the benzenoid graph G which is the union of two distinct 6-cycles having an edge in common. Then
each image of G in H is a retract of H, but it clearly cannot be a hom-retract of H because of the existence of two distinct
convex cycles of length greater than 4 in G. On the contrary the cartesian product of any even cycle by K2 clearly has the
Hom-Retract Property. More generally we will see, by studying a related problem, that the cartesian product of a netlike
partial cube G by K2 has the Hom-Retract Property if and only if G contains at most one convex cycle of length greater than
4.

The following definitions and results, which are essentially due to Sabidussi [10], were introduced in order to prove and
generalize a property of median graph (Proposition 7.3). In this section we will suppose that the vertex set of K2 is {0, 1},
i.e. K2 = 〈0, 1〉. For a graph G, the cartesian product G�K2 is called the prism over G. For i = 0, 1, we denote by G�〈i〉 the
G-fiber of G�K2 induced by V(G)× {i}.

Definition 7.1. A graph G is called prism-retractable if G�K2 can be hom-retracted onto any one of its G-fibers. In other words
if G�〈0〉 (and G�〈1〉) is a hom-retract of G�K2.

Proposition 7.2. A non-trivial graph G is prism-retractable if and only if it is a hom-retract of a bipartite graph H whenever it is
a retract of H.

Proposition 7.3. Any non-trivial median graph is prism-retractable.

We will give a simple proof of this result distinct from the one given by Sabidussi.

Proof. Let G be a non-trivial median graph. Then G�K2 is also a median graph, and moreover the G-fiber G�〈0〉 is a convex
subgraph of G�K2, and thus a median subgraph of G�K2. Hence, by Proposition 4.1, G�〈0〉 is a hom-retract of G�K2. �

Median graphs are not the only prism-retractable graphs. For example, cycles, complete graphs, unicyclic graphs,
cartesian products of any graphs by K2, are prism-retractable. Moreover, the class of all prism-retractable graphs is closed
under hom-retracts and cartesian products.

We will now state the main result of this section which extends the last proposition to netlike partial cubes.
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Theorem 7.4. A non-trivial netlike partial cube is prism-retractable if and only if it contains at most one convex cycle of length
greater that 4.

We need a lemma, in which we use the following notation. For a graph G, a vertex x of G and a cycle C of G, and for and
i = 0, 1, we denote by xi the vertex (x, i) of G�K2, and by Ci the subgraph C�〈i〉 of G�〈i〉.

Lemma 7.5. Let C be a convex cycle of length greater than 4 of a prism-retractable netlike partial cube G, and let f be a hom-
retraction of G�K2 onto G0. Then f (C1) = C0.

Proof. Let C = 〈x1, . . . , x2n, x1〉with n > 2.
(a) We will first show that f (x1

i ) 6= f (x1
j ) if i 6= j. This is clear if |i − j| = 1 because f preserves the edges. Assume that

|i− j| ≥ 2, and without loss of generality that i < j.
Suppose that f (x1

i ) = f (x1
j ). Then 〈x0

i , f (x
1
i ), x

0
j 〉 is a geodesic. Hence j = i + 2 (the subscripts being modulo 2n) and

f (x1
i ) = f (x1

j ) = x0
i+1 because C0 is convex. It follows that f (x1

i−1), which is adjacent to x0
i−1 and to x0

i+1, is equal to x0
i since C0

is convex. Analogously, we have that f (x1
i+3) = x0

i+2. Therefore, we successively obtain f (x1
i−r−1) = x0

i−r and f (x1
i+r+1) = x0

i+r ,
r = 0, . . . , n− 1. Hence, in particular for r = n− 1, we have that

x0
i−n+1 = f (x1

i−n) = f (x1
i+n) = x0

i+n−1

since x1
i−n = x1

i+n, which is impossible because x0
i−n+1 6= x0

i+n−1.
Consequently f (C1) is a cycle of G0 of length 2n.
(b) Suppose that f (C1) and C0 are disjoint. Then the edges x0

1x
0
2, x0

2+nx
0
1+n, f (x

1
1)f (x

1
2) and f (x1

2+n)f (x
1
1+n) are in relation Θ in

G0. It follows that x0
3, f (x

1
3) ∈ IG0(U

G0
x0

1x
0
2
), therefore, 〈x0

2, x
0
3, f (x

1
3), f (x

1
2), x

0
2〉 is a cycle of G0[IG0(U

G0
x0

1x
0
2
)], with x0

3 6∈ U
G0
x0

1x
0
2

because

C0 is convex. This proves that UG0
x0

1x
0
2

is not C-convex, contrary to the fact that G0 is netlike.

(c) Then there is an i such that f (x1
i ) ∈ V(C0). Then f (x1

i ) is either x0
i−1 or x0

i+1. Suppose without loss of generality that i = 1
and f (x1

1) = x0
2n. Then f (x1

2) is adjacent to both x0
2n and x0

2. Hence f (x1
2) = x0

1 because C0 is convex. Then, we can successively
prove that f (x1

i+1) = x0
i for i = 1, . . . , 2n. Consequently f (C1) = C0. �

Proof of Theorem 7.4. Let G be a non-trivial prism-retractable netlike partial cube. Suppose that G contains two distinct
convex cycles C = 〈x1, . . . , x2n, x1〉 andD = 〈y1, . . . , y2p, y1〉with n and p greater that 2. Let f be a hom-retraction ofH := G�K2
onto G0. Then, by Lemma 7.5, f (C1) = C0 and f (D1) = D0. Without loss of generality we can suppose that f (x1

i ) = x0
i+1 and

f (y1
j ) = y0

j+1, and that x0 and y0 are such that

r := dG(x0, y0) = min{dG(xi, yj) : i = 1, . . . , 2n and j = 1, . . . , 2p}.

We prove by induction that dG(xi, yi) = r for i = 1, . . . , 2n, and thus that n = p. This is true by definition if i = 0. Suppose
that this holds for some positive integer i < 2n. Then dH(x1

i , y
1
i ) = r. Therefore

r ≥ dH(f (x
1
i ), f (y

1
i )) = dH(x

0
i+1, y

0
i+1) by the choice of f

= dG(xi+1, yi+1) ≥ r.

Hence dG(xi+1, yi+1) = r.
Then, with a proof similar to that of part (b) in the proof of Lemma 7.5, we can show that the set Ux1x2 is not C-convex,

contrary to the fact that G is netlike.
Conversely let G be a netlike partial cube containing at most one convex cycle of length greater that 4. If G is a median

graph, then it is prism-retractable by Proposition 7.3.
Suppose that it is not median, and let C = 〈x1, . . . , x2n, x1〉 be its unique convex cycle of length 2n > 4. By Proposition 6.2,

there is a mooring ϕ of G onto C. Let f : V(G�K2)→ V(G0) be such that f (x1
i ) = x0

i+1 for i = 1, . . . , 2n, f (x1) = ϕ(x)0 for any
x ∈ V(G− C), and f (x0) = x0 for any x ∈ V(G). Then, by the definition of a mooring, it follows that f is a homomorphism and
thus a hom-retraction of G�K2 onto G0. �

By Proposition 7.2 and Theorem 7.4 we immediately obtain:

Corollary 7.6. A non-trivial netlike partial cube G is a hom-retract of a bipartite graph H whenever it is a retract of H if and only
if it contains at most one convex cycle of length greater than 4.

Note that a netlike partial cube having a unique convex cycle of length greater than 4 is very close to a median graph in
the sense that it suffices to “fill” the “hole” due to this cycle by an adequate hypercube to get a median graph. More precisely:

Proposition 7.7. Let G be netlike partial cube containing a unique convex cycle C of length 2n > 4. Let H be an n-cube such that
C is a maximal isometric cycle of H and such that V(H) ∩ V(G) = V(C). Then G+ := G ∪ H is a median graph.
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Proof. Let C = 〈x1, . . . , x2n, x1〉. Clearly coG+(C) = H. We will show that any isometric cycle of G+ is a cycle of H or of G.
Suppose that there exists an isometric cycle Γ of G+ that contains a vertex of H− G and a vertex of G− C. Then Γ ∩ C has

exactly two vertices xi and xi+r with r ≤ 2. Without loss of generality we suppose that i = 1 and that Γ = 〈y1, . . . , y2p, y1〉

with y1 = x1 and yj = xr for some j. Because Γ is isometric and C is convex, we have j = r and p > r.
Suppose that the cycle Γ ′ = 〈x1, . . . , xr, yr+1, . . . , y2p, x1〉 is isometric in G. Then it cannot be convex since C is the unique

convex cycle of G of length greater that 4. Therefore, by Proposition 2.12, its convex hull in G is a hypercube. Hence, there is
a 4-cycle, of this hypercube which has two edges in common with C, contrary to the fact that C is convex.

Therefore, Γ ′ is not isometric in G, and thus there is an (xi, yj)-geodesic P for some i, j with 1 < i < r and r < j ≤ 2p, and
that we can choose the notation so that i is maximum with respect to these properties. Because P is a geodesic, and by the
choice of i, we have that yj ∈ WG

xixi+1
. Because C is convex, yr = xr ∈ WG

xi+1xi
and because 〈yr, . . . , yj〉 is a geodesic, it follows that

there is an edge yk+1yk of 〈yr, . . . , yj−1〉 which is in relation Θ with xixi+1. Then, because x1 ∈ IG(UG
xixi+1

), and 〈yk+1, . . . , y1〉

is a geodesic since Γ is isometric in G+, we have that y1 ∈ IG(UG
xixi+1

). Hence 〈x1, . . . , xi〉 ∪ P ∪ 〈yj, . . . , y2p, y1〉 is a cycle of
G[IG(UG

xixi+1
)]with x1 6∈ UG

xixi+1
since i > 1, therefore, UG

xixi+1
is not C-convex, contrary to the fact that G is netlike.

Consequently, every isometric cycle of G+ is a cycle of H or of G, and hence, by Proposition 2.12, its convex hull is a
hypercube. Therefore, by a result of Bandelt [1] (see also [6, Theorem 5]), G+ is a median graph. �

In general this construction does not work if the graph contains more than one convex cycle of length greater that 4. For
example take the benzenoid graph G which is the union of three distinct 6-cycles having pairwise an edge in common. Then
the “filling” of one of the “holes” gives a graph that is not netlike, and the “filling” of the three “holes” gives a graph that not
only is not median but that is not even an element of PC1 because it contains Q−3 as an induced subgraph.
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