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Abstract

This paper gives an explicit construction of the Tate resolution of sheaves arising from the d-fold
Veronese embedding of P

n. Our description involves the Bezoutian of n + 1 homogeneous forms of de-
gree d in n + 1 variables. We give applications to duality theorems, including Koszul duality.
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1. Introduction

Given a finite dimensional vector space W over a field k with dual V , a coherent sheaf F
on P(W) gives a Tate resolution T •(F), which is a minimal bi-infinite exact sequence of free
graded E = ∧

V -modules

· · · −→ T −2(F) −→ T −1(F) −→ T 0(F) −→ T 1(F) −→ T 2(F) −→ · · · .

These resolutions were introduced by Gel’fand [8] in 1984 and are part of the BGG correspon-
dence [2] from 1978.

The paper [4] gives an explicit formula for T •(F), namely

T p(F) =
⊕

i

Ê(i − p) ⊗k H i
(
P(W),F(p − i)

)
, (1.1)
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where Ê = Homk(E, k) = ∧
W as an E-module. Also note that deg(W) = 1 since deg(V ) = −1

and that Ê � E(−dim(W)) (noncanonically).
The maps T p(F) → T p+1(F) are less well understood. For the ith summand of T p(F), the

map to T p+1(F) looks like

Ê(i − p) ⊗k H i(F(p − i))

...

Ê(i − p − 1) ⊗k H i(F(p + 1 − i))⊕
Ê(i − p − 2) ⊗k H i−1(F(p + 2 − i))⊕

...⊕
Ê(−p) ⊗k H 0(F(p)),

where for simplicity we have omitted “P(W)” in the cohomology groups. The horizontal map
in this diagram is known from [4], while the diagonal maps are more mysterious. Examples of
these diagonal maps can be found [4,5], and explicit descriptions of certain diagonal maps in
the toric context were given by Khetan in his work [10,11] on sparse determinantal formulas in
dimensions 2 and 3.

In this paper, we will use Bezoutians to describe the diagonal maps in the Tate resolution for
a particular choice of F . Let S = k[x0, . . . , xn] have the standard grading and let W = Sd be
the graded piece in degree d � 1. Thus dim(W) = (

n+d
d

)
. Given any � ∈ Z, the d-fold Veronese

embedding

νd : Pn −→ P(W)

gives the coherent sheaf

F = νd∗OPn(�)

on P(W). We will give an explicit construction of the Tate resolution T •(F).
Since OP(W)(1)|νd (Pn) = νd∗OPn(d), we have

Hi
(
P(W),F(j)

) = Hi
(
P

n,OPn(� + jd)
)
.

This cohomology group will be denoted Hi(�+ jd). Using Serre duality and standard vanishing
theorems for line bundles on P

n, we also have

Hi(� + jd) =
{

S�+jd i = 0,

S∗
−n−1−(�+jd) i = n,

0 otherwise,

where Sm is the graded piece of S = k[x0, . . . , xn] in degree m.
In the Tate resolution, it follows that
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T p(F) = Ê(−p) ⊗k H 0(� + pd)
⊕

Ê(n − p) ⊗k Hn
(
� + (p − n)d

)
= Ê(−p) ⊗k S�+pd

⊕
Ê(n − p) ⊗k S∗

−n−1−(�+(p−n)d).

To simplify the subscripts, we set a = �+ (p +1)d and ρ = (n+1)(d −1). Then the description
of T p(F) becomes

T p(F) = Ê(−p) ⊗k Sa−d

⊕
Ê(n − p) ⊗k S∗

ρ−a,

and the map T p(F) → T p+1(F) has the following form:

Ê(n − p) ⊗k S∗
ρ−a

αp

δp

Ê(n − p − 1) ⊗k S∗
ρ−a−d⊕ ⊕

Ê(−p) ⊗k Sa−d

βp

Ê(−p − 1) ⊗k Sa.

(1.2)

By [4], the map

βp ∈ HomE

(
Ê(−p) ⊗k Sa−d , Ê(−p − 1) ⊗k Sa

)
0 � Homk(W ⊗k Sa−d , Sa)

(the subscript “0” means graded E-module homomorphisms of degree 0) corresponds to mul-
tiplication W ⊗k Sa−d = Sd ⊗k Sa−d → Sa , and αp similarly corresponds to the natural map
W ⊗k S∗

ρ−a → S∗
ρ−a−d induced by multiplication.

The diagonal map δp in (1.2) lies in

HomE

(
Ê(n − p) ⊗k S∗

ρ−a, Ê(−p − 1) ⊗k Sa

)
0 � Homk

(∧n+1
W,Sρ−a ⊗k Sa

)
. (1.3)

The map δp is not unique; hence our main result (Theorem 1.3 below) will give one possible
choice for this map.

We next recall the definition of the Bezoutian.

Definition 1.1. Consider the polynomial ring k[x0, . . . , xn, y0, . . . , yn].

(1) For f ∈ k[x0, . . . , xn] and 0 � j � n, define Δj(f ) to be the polynomial

f (y0, . . . , yj−1, xj , xj+1, . . . , xn) − f (y0, . . . , yj−1, yj , xj+1, . . . , xn)

xj − yj

.

(2) The Bezoutian of homogeneous polynomials f0, . . . , fn ∈ k[x0, . . . , xn] of degree d is the
(n + 1) × (n + 1) determinant

Δ = detΔj(fi).

Remark 1.2. Here are some observations about the Bezoutian of f0, . . . , fn.
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(1) Each Δj(fi) is homogeneous of degree d − 1 in x0, . . . , xn, y0, . . . , yn, so the Bezoutian is
homogeneous of degree ρ = (n + 1)(d − 1) in these variables.

(2) Writing Δ as a polynomial in the yis with coefficients in k[x0, . . . , xn], we obtain

Δ =
∑

|α|�ρ

Δα(x)yα,

where Δα(x) ∈ S = k[x0, . . . , xn] has degree ρ − |α|.
(3) Under the natural bigrading of k[x0, . . . , xn, y0, . . . , xn], the graded piece of Δ of bidegree

(ρ − a, a) is

Δρ−a,a =
∑
|α|=a

Δα(x)yα.

(4) Recall the isomorphism k[x0, . . . , xn, y0, . . . , xn] � S⊗k S given by xi �→ xi ⊗1, yi �→ 1⊗xi .
Since Δ is multilinear and alternating in f0, . . . , fn, the Bezoutian construction gives a linear
map

∧n+1
Sd −→ (S ⊗k S)ρ =

ρ⊕
a=0

Sρ−a ⊗k Sa.

Bezoutians can be defined in greater generality (see [1,12]), but the case considered in Defin-
ition 1.1 is the only one we need for our main result.

By Remark 1.2, the Bezoutian in degree (ρ − a, a) gives a linear map

∧n+1
W =

∧n+1
Sd −→ Sρ−a ⊗k Sa,

which by (1.3) corresponds to an E-module homomorphism

Bp : Ê(n − p) ⊗k S∗
ρ−a −→ Ê(−p − 1) ⊗k Sa. (1.4)

Theorem 1.3. The sheaf F = νd∗(OPn(�)) has a Tate resolution with

T p(F) = Ê(−p) ⊗k Sa−d

⊕
Ê(n − p) ⊗k S∗

ρ−a, a = � + (p + 1)d,

and the differential dp :T p(F) → T p+1(F) is given by

Ê(n − p) ⊗k S∗
ρ−a

αp

(−1)pBp

Ê(n − p − 1) ⊗k S∗
ρ−a−d⊕ ⊕

Ê(−p) ⊗k Sa−d

βp

Ê(−p − 1) ⊗k Sa,

where Bp is the Bezoutian map from (1.4) and αp,βp are as in (1.2).
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2. Proof of the main result

We begin with two lemmas needed for the proof of Theorem 1.3. The notation will be the
same as for the previous section. First observe that the graded pieces of Bp from (1.4) induce
linear maps

∧n+1+m
W ⊗k S∗

ρ−a −→
∧m

W ⊗k Sa

for any integer m. This follows from Ê(n − p)p+1+m = ∧n+1+m
W . These maps will be called

Bp by abuse of notation. Then one of the graded pieces of the differentials dp from Theorem 1.3
gives the diagram

∧n+2
W ⊗k S∗

ρ−a

αp

(−1)pBp

∧n+1
W ⊗k S∗

ρ−a−d

(−1)p+1Bp+1⊕
W ⊗k Sa

βp+1
Sa+d .

Lemma 2.1. (−1)p+1Bp+1 ◦ αp + βp+1 ◦ (−1)pBp = 0 in the above diagram.

Proof. Given f0, . . . , fn+1 ∈ W = Sd , the polynomials Δj(fi) from Definition 1.1 satisfy the
identity

n∑
j=0

Δj(fi)(xi − yi) = fi(x) − fi(y), 0 � i � n + 1,

by a telescoping sum argument. Here we write fi(x) for fi(x0, . . . , xn), and similarly for fi(y).
It follows that in the (n + 2) × (n + 2) matrix⎛⎜⎜⎝

f0(x) − f0(y) f1(x) − f1(y) · · · fn+1(x) − fn+1(y)

Δ0(f0) Δ0(f1) · · · Δ0(fn+1)
...

...
. . .

...

Δn(f0) Δn(f1) · · · Δn(fn+1)

⎞⎟⎟⎠ ,

the first row is a linear combination (in k[x, y]) of the remaining rows. Hence the determinant is
zero. Now expand by minors along the first row and observe that the (n + 1)× (n + 1) minors of
the last n + 1 rows are Bezoutians. Hence we get an identity

n+1∑
i=0

(−1)iΔi(x, y)fi(x) =
n+1∑
i=0

(−1)iΔi(x, y)fi(y),

where Δi(x, y) is the Bezoutian of f0, . . . , f̂i , . . . , fn+1. Each side is homogeneous of degree
ρ + d in k[x, y], where ρ = (n + 1)(d − 1).
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If we write Δi(x, y) = ∑
|α|�ρ Δi

α(x)yα , then we can write the identity as

n+1∑
i=0

(−1)i
∑

|α|�ρ

Δi
α(x)fi(x)yα =

n+1∑
i=0

(−1)i
∑

|α|�ρ

Δi
α(x)fi(y)yα.

Using k[x, y] � S ⊗k S and taking the graded piece of bidegree (ρ − a, a + d) gives

n+1∑
i=0

(−1)i
∑

|α|=a+d

Δi
α(x)fi(x) ⊗ xα =

n+1∑
i=0

(−1)i
∑
|α|=a

Δi
α(x) ⊗ fi(x)xα. (2.1)

This is an identity in Sρ−a ⊗k Sa+d .
Now pick ϕ ∈ S∗

ρ−a . If we apply ϕ ⊗ 1 to (2.1), we obtain the identity

n+1∑
i=0

(−1)i
∑

|α|=a+d

ϕ
(
Δi

α(x)fi(x)
)
xα =

n+1∑
i=0

(−1)i
∑
|α|=a

ϕ
(
Δi

α(x)
)
fi(x)xα (2.2)

in Sa+d . The left-hand side of (2.2) is Bp+1 ◦αp evaluated at f0 ∧· · ·∧fn+1 ⊗ϕ, while the right-
hand side is βp+1 ◦Bp evaluated at the same element. This shows that Bp+1 ◦αp −βp+1 ◦Bp = 0,
from which the lemma follows immediately. �

To prepare for the second lemma, let N = dim(W) = (
n+d
d

)
and assume that 0 � ρ − a < d ,

so that S∗
ρ−a−d = 0. Then one of the graded pieces of the differential dp from Theorem 1.3 gives

the diagram

∧N
W ⊗k S∗

ρ−a

(−1)pBp⊕
∧N−n

W ⊗k Sa−d

βp ∧N−n−1
W ⊗k Sa.

(2.3)

Lemma 2.2. If 0 � ρ − a < d , then the maps Bp and βp in (2.3) have the following two proper-
ties:

(1) Bp is injective.
(2) Im(Bp) ∩ Im(βp) = {0}.

Proof. The Bezoutian of xd
0 , . . . , xd

n is easily seen to be

Δ =
∑

β�βd−1

xβyβd−1−β,

where βd−1 = (d−1, . . . , d−1) ∈ Z
n and β � βd−1 means that every component of β is � d−1.

This Bezoutian is also computed in [1].
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The monomial basis of W = Sd induces a basis of
∧i

W for every i. When i = N , the space
has dimension one, and we write its basis element as

xd
0 ∧ · · · ∧ xd

n ∧ ω ∈
∧N

W,

where ω is the wedge product of the remaining monomials of degree d . Given ϕ ∈ S∗
ρ−a , we

obtain

Bp

(
xd

0 ∧ · · · ∧ xd
n ∧ ω ⊗ ϕ

) = ω ⊗
(∑

β

ϕ
(
xβ

)
xβd−1−β

)
+ · · · , (2.4)

where the sum inside the parentheses is over all β of degree ρ − a satisfying β � βd−1, and the
omitted terms involve basis elements of

∧N−n−1
W different from ω.

Let ϕ be in the kernel of Bp . It follows that ϕ(xβ) = 0 for all xβ appearing in the above sum.
But our hypothesis that ρ − a < d guarantees that this sum includes all monomials of degree
ρ − a. These monomials form a basis of Sρ−a , so that ϕ must vanish. This proves that Bp is
injective, as claimed.

For the second part of the lemma, let A = ∑
i ωi ⊗pi ∈ ∧N−n

W ⊗k Sa−d , where {ωi}i is the
basis of

∧N−n
W coming from monomials. We can assume that the basis includes ωi = ω ∧ xd

i

for i = 0, . . . , n, where ω is as above. Then

βp(A) = ω ⊗
(

n∑
i=0

xd
i pi

)
+ · · · ,

where the omitted terms involve basis elements of
∧N−n−1

W different from ω. The monomials
appearing in

∑n
i=0 xd

i pi all have some xi with an exponent � d , yet in the ω-term of (2.4),
every xi has exponent � d − 1. Hence, if βp(A) = Bp(xd

0 ∧ · · · ∧ xd
n ∧ ω ⊗ ϕ), then their ω-

terms in
∧N−n−1

W ⊗k Sa must vanish, which as above implies that ϕ = 0. Hence Im(Bp) ∩
Im(βp) = {0}. �

We can now prove our main result.

Proof of Theorem 1.3. We first show that the differential dp :T p(F) → T p+1(F) defined in
Theorem 1.3 satisfies dp+1 ◦ dp = 0, i.e., (T •(F), d•) is a complex.

We know that αp+1 ◦ αp = 0 and βp+1 ◦ βp = 0. It remains to show that the map

Ê(n − p) ⊗ S∗
ρ−a −→ Ê(−p − 2) ⊗ Sa+d

given by (−1)p+1Bp+1 ◦ αp + βp+1 ◦ (−1)pBp is zero. Since

HomE

(
Ê(n − p) ⊗ S∗

ρ−a, Ê(−p − 2) ⊗ Sa+d

)
0 � Homk

(∧n+2
W ⊗ S∗

ρ−a, Sa+d

)
,

this follows immediately from Lemma 2.1.
Next we need to show that for each p, dp is determined by the minimal generators of the

kernel of dp+1. This is where we use the power of the formula for T p(F) given in (1.1): it tells
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us the degrees of the minimal generators of Ker(dp+1) and the number of minimal generators in
these degrees. Furthermore, dp+1 ◦ dp = 0 implies that dp maps into the kernel. So we need to
study how dp behaves in the degrees of the minimal generators.

Recall that a = � + (p + 1)d , so that ρ − a < 0 for large p. We will look closely at the case
when 0 � ρ − a < d . Here, dp+1 = βp+1 and the complex looks like

Ê(n − p) ⊗k S∗
ρ−a

(−1)pBp⊕
Ê(−p) ⊗k Sa−d

βp

Ê(−p − 1) ⊗k Sa

βp+1

Ê(−p − 2) ⊗k Sa+d .

This is the first place where a nonzero diagonal map appears in the Tate resolution. Since Ê �
E(−N) (this is the notation of Lemma 2.2), there are dim(Sa−d) minimal generators of degree
N + p and dim(S∗

ρ−a) minimal generators of degree N − n + p. The former are taken care of
by the known formula for βp . For the latter, notice that the above diagram in degree N − n + p

is precisely (2.3), and then Lemma 2.2 implies that (−1)pBp maps injectively onto the minimal
generators in this degree. Hence we have the desired behavior when ρ − a < d .

We now proceed by decreasing induction on p. Suppose that ρ − a � d and that everything
is fine for larger p. As above, there are dim(Sa−d) minimal generators of degree N + p and
dim(S∗

ρ−a) minimal generators of degree N − n + p, where the former are taken care of by βp .
But now in degree N − n + p, the differential dp is given by

∧N
W ⊗k S∗

ρ−a

αp

(−1)pBp

∧N−1
W ⊗k S∗

ρ−a−d⊕ ⊕
∧N−n

W ⊗k Sa−d

βp ∧N−n−1
W ⊗k Sa.

The key observation is that the αp in this diagram is dual to the multiplication map W ⊗
Sρ−a−d → Sρ−a , which is surjective since ρ − a � d . This implies that in the degree of the
minimal generators, αp is injective. It follows that αp ⊕ (−1)pBp is injective in this degree and
its image intersects the image of βp in {0}. This shows that dp has the desired property and
completes the proof of the theorem. �
Remark 2.3. Here are two observations due to Evgeny Materov.

(1) The Tate resolution of Theorem 1.3 can be expressed as a mapping cone. Let D• denote the
part of the Tate resolution in cohomological degree 0 (i.e., the part of (1.1) involving H 0).
Thus D• is given by

· · · −→Dp = Ê(−p) ⊗k Sa−d
βp−→ Dp+1 = Ê(−p − 1) ⊗k Sa −→ · · · .
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Similarly, let C• denote the part of the Tate resolution in cohomological degree n, shifted
by −1. Thus C• is given by

· · · −→ Cp = Ê(n − p + 1) ⊗k S∗
ρ−a+d

αp−1−−−→ Cp+1 = Ê(n − p) ⊗k S∗
ρ−a −→ · · · .

The proofs of Lemma 2.1 and Theorem 1.3 give a commutative diagram

· · · Ê(n − p + 1) ⊗k S∗
ρ−a+d

αp−1

Bp−1

Ê(n − p) ⊗k S∗
ρ−a

Bp

· · ·

· · · Ê(−p) ⊗k Sa−d

βp

Ê(−p − 1) ⊗k Sa · · · ,

so that the Bezoutians {Bp−1} give a map of complexes C• → D•. Then Theorem 1.3 implies
that the Tate resolution is the mapping cone of this map of complexes. This explains the signs
(−1)p and (−1)p+1 appearing in the statement of the theorem.

(2) For a fixed degree, the Tate resolution of Theorem 1.3 is the Weyman complex discussed in
[7, 13.1.C] and [14, 9.2]. These references describe everything except the diagonal maps. In
[7, p. 432], the authors say that “No nice explicit expression . . . is known” for these maps.

3. Application to duality

We conclude by exploring the relation between duality, Bezoutians, and the Tate resolution.
We first recall how to extract information from the Tate resolution. Stated briefly, the key idea
is to look at T •(F) in a specific degree, but only after replacing W with a suitable subspace
U ⊂ W . This is the functor Ul from [5], which is equivalent to the projection formula from [6,
Section 1.2].

To make this precise, let U ⊂ W be a subspace. Since P(W) = (W ∗ − {0})/k∗, the linear
subspace P(W/U) ⊂ P(W) is the center of the projection π : P(W) ��� P(U). If P(W/U) is
disjoint from the support of F , then [5] and [6] show that

T •
U(F) = HomE

(∧
U∗, T •(F)

)
is a Tate resolution of π∗F on P(U). Note also that F and π∗F have the same cohomology since
π : P(W) \ P(W/U) → P(U) is affine.

In the situation of Theorem 1.3, we have W = Sd , so that a subspace U ⊂ W satisfies

P(W/U) ∩ Supp(F) = ∅

if and only if the homogeneous polynomials in U have no common zeros in P
n. When this

happens, the above paragraph and Theorem 1.3 give a minimal exact sequence of free graded
EU -modules T •(F), where T

p
(F) → T

p+1
(F) is
U U U
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ÊU (n − p) ⊗k S∗
ρ−a

αp

(−1)pBp

ÊU (n − p − 1) ⊗k S∗
ρ−a−d⊕ ⊕

ÊU (−p) ⊗k Sa−d

βp

ÊU (−p − 1) ⊗k Sa.

(3.1)

Here, EU = ∧
U∗ and ÊU = ∧

U . As we will see, looking at this complex in specific degrees
for specific choices of U will give some interesting duality theorems.

Example 3.1. First let U = Span(f0, . . . , fn) ⊂ W = Sd , where f0, . . . , fn have no common
zeros on P

n. As is well known, this happens ⇔ f0, . . . , fn is a regular sequence ⇔ the Koszul
complex of f0, . . . , fn is exact.

Let I = 〈f0, . . . , fn〉 ⊂ S and R = S/I . Then consider T •
U(F) in degree p + 1. Using (3.1),

we obtain the following exact sequence of vector spaces:

∧n+1
U ⊗k S∗

ρ−a

αp

(−1)pBp

∧n
U ⊗k S∗

ρ−a−d · · ·⊕ ⊕
· · · U ⊗k Sa−d

βp

Sa.

It follows that (−1)pBp induces an isomorphism

Ker(αp) � Coker(βp).

Since Ker(αp) = R∗
ρ−a and Coker(βp) = Ra , we recover the known duality

R∗
ρ−a � Ra.

Furthermore,
∧n+1

U has basis element f0 ∧ · · · ∧ fn, so that if

Δ =
∑

|α|�ρ

Δα(x)yα

is the Bezoutian of f0, . . . , fn, then the above isomorphism R∗
ρ−a � Ra is given by

ϕ ∈ R∗
ρ−a �−→

∑
|α|=a

ϕ
([

Δα(x)
])[

xα
] ∈ Ra, (3.2)

where [g] ∈ R denotes the coset of the polynomial g ∈ S.

Remark 3.2. Here are some comments about Example 3.1.

(1) It is known that the duality R∗
ρ−a � Ra can be computed by (3.2). Proofs can be found in

[1,12] in the case when the fi are homogeneous of degree di , as opposed to the equal degree
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case considered here. Our contribution is to show that the Tate resolution gives a new proof
of this explicit duality in the equal degree case.

(2) The proof given in [1] that (3.2) induces R∗
ρ−a � Ra uses the Bezoutian of xd

0 , . . . , xd
n . This

is the same Bezoutian used in the proof of Lemma 2.2.

Example 3.3. Now suppose that U = Span(f0, . . . , fn, fn+1) ⊂ W , where the polynomials
f0, . . . , fn, fn+1 are linearly independent and have no common zeros in P

n. We have one more
polynomial than we had in Example 3.1. As we will see, this leads to a slightly different form of
duality.

As in the previous example, let I = 〈f0, . . . , fn, fn+1〉 ⊂ S and R = S/I , and consider T •
U(F)

in degree p + 2. Using (3.1), we obtain the following exact sequence of vector spaces:

∧n+2
U ⊗k S∗

ρ−a

αp

(−1)pBp

∧n+1
U ⊗k S∗

ρ−a−d

αp+1

(−1)p+1Bp+1

∧n
U ⊗k S∗

ρ−a−2d · · ·⊕ ⊕ ⊕
· · · ∧2

U ⊗k Sa−d

βp

U ⊗k Sa

βp+1
Sa+d .

It follows that (−1)pBp induces an isomorphism

Ker(αp) � Ker(βp+1)/ Im(βp). (3.3)

Note that Ker(αp) = R∗
ρ−a and that the bottom row of the above diagram comes from the Koszul

complex of f0, . . . , fn+1. Hence

Ker(βp+1) = Syz(f0, . . . , fn+1)a+d ,

where a syzygy (A0, . . . ,An+1) is said to have degree a + d if
∑n+1

i=0 Aifi = 0 in Sa+d . Further-
more, the image of βp :

∧2
U ⊗k Sa−d → U ⊗k Sa is the submodule of Syz(f0, . . . , fn+1)a+d

consisting of Koszul syzygies. Hence we set

Kosza+d = Im(βp).

Then the duality (3.3) becomes

R∗
ρ−a � Syz(f0, . . . , fn+1)a+d/Kosza+d . (3.4)

Notice also that Bp gives an explicit description of this duality since elements of R∗
ρ−a can be

regarded as linear functionals ϕ on Sρ−a that vanish on Iρ−a . Then the left-hand side of (2.2)
vanishes, so that (2.2) becomes

n+1∑
(−1)i

∑
ϕ
(
Δi

α

)
xαfi = 0. (3.5)
i=0 |α|=a
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As noted in the proof of Lemma 2.2, this is βp+1 applied to Bp(f0 ∧ · · · ∧ fn+1 ⊗ ϕ). Thus( ∑
|α|=a

ϕ
(
Δ0

α

)
xα,−

∑
|α|=a

ϕ
(
Δ1

α

)
xα, . . . , (−1)n+1

∑
|α|=a

ϕ
(
Δn+1

α

)
xα

)

is an element of Syz(f0, . . . , fn+1)a+d coming from Bp . We call this a Bezout syzygy. It follows
that the duality (3.4) is computed in terms of Bezout syzygies.

Remark 3.4. Here are further comments on the duality of Example 3.3.

(1) If K• is the Koszul complex of f0, . . . , fn+1, then our hypothesis that the fi do not vanish
simultaneously on P

n implies that K• is almost exact. In fact, the only place exactness fails
is at K1:

· · · −→ K2
d1−→ K1

d0−→ S −→ R −→ 0.

↑ ↑ ↑ ↑ ↑
ok ok no ok ok

(This observation is used in [3].) The graded pieces of Ker(d0)/ Im(d1) are the Syz(f0, . . . ,

fn+1)a+d/Kosza+d appearing in (3.4). Thus size of

R = S/I = k[x0, . . . , xn]/〈f0, . . . , fn+1〉

gives a precise measure of the failure of an arbitrary syzygy to be Koszul.
(2) One corollary of the duality (3.4) is that the syzygy module of f0, . . . , fn+1 is generated by

Koszul syzygies and Bezout syzygies.
(3) We can write the duality (3.4) more conceptually as follows. Set σ = ∑n+1

i=0 deg(fi) −
(n + 1) = ρ + d and b = a + d . Then (3.4) becomes

R∗
σ−b � Syz(f0, . . . , fn+1)b/Koszb .

Furthermore, if Hi(K•) is the ith homology of the Koszul complex, then this duality can be
written as

H0(K•)∗σ−b � H1(K•)b.

We also note that R is an almost complete intersection in this case. By [13], the Koszul
homology H1(K•)b is related to the symmetric algebra Sym(I/I 2).

(4) More generally, suppose that f0, . . . , fm ∈ Sd are linearly independent and do not vanish
simultaneously on P

n. Note that m � n and that Examples 3.1 and 3.3 correspond to m = n

and m = n + 1, respectively. Let K• be the Koszul complex of f0, . . . , fm and set σ =∑m
i=0 deg(fi)−(n+1). Then Examples 3.1 and 3.3 easily generalize to give a Koszul duality

Hi(K•)∗σ−a � Hm−n−i (K•)a, 0 � i � m − n,

that is computed by Bezoutians.
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(5) The Koszul duality just stated applies more generally to homogeneous polynomials in S of
arbitrary degrees (not necessarily equal) that do not vanish simultaneously on P

n. The proof
that some isomorphism exists is an easy spectral sequence argument; the fact that it is given
by Bezoutians takes more work—this has been proved by Jouanolou [9]. So again, the Tate
resolution gives a quick proof of the equal degree case of an explicit duality theorem.

A final comment is that the duality theorems of Examples 3.1 and 3.3 and Remark 3.4 come
from the same Tate resolution. Once we describe the Tate resolution in terms of Bezoutians,
we get immediate Bezoutian descriptions of all of these duality results. This indicates the deep
relation between duality, Bezoutians, and the Tate resolution.
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