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We prove local and global existence theorems for a model equation in nonlinear 
viscoelasticity. In contrast to previous studies, we allow the memory function to 
have a singularity. We approximate the equation by equations with regular kernels 
and use energy estimates to prove convergence of the approximate solutions. 
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1. I~m0DucT10N 

Many constitutive models for viscoelastic materials lead to equations of 
motion which have the form of a quasilinear hyperbolic PDE perturbed by 
a dissipative integral term of Volterra type. In the recent literature, a num- 
ber of existence theorems have been proved for such equations [24, 10-14, 
17, 21-22, 261. These papers establish the existence of classical solutions 
locally in time and (in some cases) globally in time if the given data are 
suitably small. For large data, global existence does not hold in general 
and shocks are expected to develop [7,9, 18, 19,251. 

Common to all the works referred to above is the assumption that the 
kernel in the integral term is sufficiently smooth on [O, co). We are here 
interested in the possibility that this kernel is singular at 0. Kinetic theories 
for chain molecules [S, 24, 281 and some experimental data [15] suggest 
that this a realistic possibility, at least for some viscoelastic materials. 
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Although some rheological properties of models with singular kernels have 
been investigated (see, e.g., Cl]), there do not seem to be many studies 
from a fundamental mathematical point of view. 

The only existence theorem for (nonlinear) models with singular kernels 
that we are aware of is a result of Londen [16] concerning the existence of 
weak solutions to an abstract integrodifferential equation. His existence 
theorem is applicable to the problem introduced below in the special case 
where $ = r$. Londen’s assumptions require the viscoelastic memory 
function to have a singularity which is stronger than logarithmic. 

Renardy [23] has studied linear wave propagation. His results show that 
certain singular kernels do not permit propagation of singularities and have 
a smoothing effect. Hannsgen and Wheeler [S] show (for the constant 
coefficient linear problem on a bounded domain) that the evolution 
operator is compact for positive time if and only if the kernel is singular. 
This suggests that, if anything, models with singular kernels should have 
“nicer” existence properties than those with regular kernels. However, this 
also indicates that one cannot expect the methods of previous existence 
proofs to extend to singular kernels. These proofs rely on an iteration 
scheme that treats the hyperbolic part as the principal term and the 
integral as a perturbation. This, of course, works irrespective of the sign of 
the integral. If, however, singular kernels lead to smoothing, then the 
opposite sign of the integral must lead to instantaneous blow-up, and a 
local existence theorem cannot hold. 

In this paper, we focus on the history value problem 

%t(X, t) = 4(%(X, t)), + j;;, a’(t - z) ti(u,(x, z)), dz +.0x, t), 

O<x<l, -cQ<t<<, (1.1) 

u(0, t) = u( 1, t) = 0, --co<<<<, (1.2) 

u(x, t) = v(x, t), 0 6 x < 1, - co < t < 0, (1.3) 

which was studied by Dafermos and Nohel [4]. (Closely related problems 
with regular kernels have also been studied by MacCamy [17], Dafermos 
and Nohel [3], Staffans [26], Hattori [9], and Hrusa and Nohel [13]. 
See [12] for a summary of these works.) 

Like Dafermos and Nohel, we assume d(O) = $(O) = 0, @>O, yY > 0, 
&-a(O) +‘>O. They require that the kernel a is strongly positive definite; 
for technical reasons we make the stronger assumption that a is positive, 
monotone decreasing, and convex. While they assume that 
a, a’, a”oL1(O, co), we allow a’ to have a singularity at 0, e.g., 
a’(t)- -t-CL, O<cc< 1, as tl0. 



PARTIAL INTEGRODIFFERENTIAL EQUATIONS 197 

For definiteness, we shall always consider (1.1) with Dirichlet boundary 
conditions (1.2). We emphasize, however, that our local existence proof can 
be applied without change for Neumann or mixed boundary conditions or 
for the all-space problem (i.e., x varies from -cc to co). We have pur- 
posely avoided the use of Poincart inequalities in our estimates for this 
reason. The global result can also be generalized to other boundary con- 
ditions. For the case of Neumann conditions, we need a trivial modification 
in the statement of the theorem, due to the possibility of rigid motions 
which need not decay as t -+ co. We do not know how to extend the global 
result to the all-space problem. Recent work on this problem by Hrusa and 
Nohel [13] makes very essential use of the assumption that the kernel is 
regular. 

It is not easy to quantify the regularizing effect of a singular kernel in 
general terms. Roughly speaking, certain types of waves are smoothed, 
while others are not. For those waves that are smoothed, the precise degree 
of smoothing depends crucially on the nature of the singularity in the ker- 
nel. This is discussed in detail for linear problems in [29]. 

In our treatment, we assume that f is smooth on [0, l] x (-co, co) and 
that the history v satisfies Eq. (1.1) and the boundary conditions (1.2) for 
t d 0. This ensures that the data (f and v) are compatible with the boun- 
dary conditions and that derivatives of v as t t 0 are compatible with 
derivatives of u as t JO. It is possible to remove the assumption that u 
satisfies the equation (provided f and v are compatible with the boundary 
conditions), with the result that certain derivatives of u may be discon- 
tinuous across t = 0. 

The paper is organized as follows: In Section 2, we prove some 
preliminary lemmas concerning the kernel. In Section 3, we prove an 
existence result for a linear problem with variable coefficients. This is done 
by approximating the problem by problems with regular kernels, for which 
existence is known. We then use energy estimate that hold uniformly as the 
kernel becomes singular to show that the solutions of these approximate 
problems converge to a limit. In Section 4, we establish local existence for 
the nonlinear problem by using the results of Section 3 and a contraction 
argument. Section 5 contains a brief discussion of global existence. We 
notice that once local existence is known, the assumption u” E L’ is not 
essential for the global existence proof of Dafermos and Nohel and can be 
avoided by a minor modification. 

Our global existence theorem requires the data to be small. It is con- 
ceivable that for certain singular kernels, global smooth solutions of (l.l), 
(1.2), (1.3) also exist for large data. However, we have been unable to 
verify this. 

With the exception of Section 2, subscripts x and t indicate partial dif- 
ferentiation. A prime denotes the derivative of a function of a single 
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variable, and we use the symbol := for an equality in which the left-hand 
side is defined by the right-hand side. All derivatives should be interpreted 
in the distributional sense. 

2. PRELIMINARIES 

This section contains some preliminary results (concerning the kernel a) 
that will be used in the subsequent sections. Let Zf be a complex Hilbert 
space with inner product ( ., . ) and associated norm I/ * 11. For each 
b~L’(0, oo), TER, and u~L~((-co, T];H), we set 

Q(u, t, 6) :=jr (u(s), j‘ b(s-T) u(z)dr) ds Vte(-co, T]. 
--m -co 

(2-l) 

We use a hat to denote the Laplace transform evaluated along the 
imaginary axis, i.e., 

@(co) := jam e+‘q(r) dt Vo E R, (2.2) 

for real and H-valued functions q. For TE R, h > 0, U: ( - cc, T] -+ H, and 
t E ( - co, T], we employ the notations 

d/$(t) :=u(t)-u(t-h) ‘dt~(-co, T], (2.3) 
and 

U,(T) := u(t - T) vz>o; (2.4) 

in particular, 

a,(o) := jm e -‘Q(t-7) dz VweR. 
0 

(2.5) 

The concept of a strongly definite kernel will play a central role in our 
analysis. We recall that a real-valued function b E L,‘,,[O, co) is said to be 
positive definite (or of positive type) if * s I w(s) ‘b(s-r)w(r)drdsaO vtao, (2.6) 

0 0 

for every w  E C[O, co); b is called strongly positive definite if there exists a 
constant I > 0 such that the function defined by b(t) - A-‘, t > 0, is 
positive definite. As the terminology suggests, strongly positive definite 
implies positive definite. 

Throughout this section, we assume that 

a, a’ E L’(0, cm), a is strongly positive definite. (2.7) 
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It follows from (2.7) that a E AC[O, co), a(O) > 0, and’ 

A 
Re 6(o) > - 

0*+1 
VUER, (2.8) 

for some constant II >O. Consequently, Re 6 is integrable and 
(1/27c) jYm Re L?(W) do = (l/2) a(0). (See, for example, [ZO] for more infor- 
mation on strongly positive definite kernels.) 

In our analysis of Eq. (l.l), terms of the form lim,l, (l/h*) Q(d,u, t, a) 
will arise, where it is known a priori merely that u E L*(( - co, T]; H). Of 
course, this is not sufficient to guarantee that the limit in question exists. 
However, if we know from other considerations that the limit does exist, 
some rather useful conclusions can be drawn. 

LEMMA 2.1. Let TE R and ME L*(( - co, T]; H) be given. Assume that 
(2.7) holds and that limhl, (l/h*) Q(d,u, t, a) exists (and is finite) for a.e. 
tE(-cq T]. Then,for a.e. tE(-co, T], 

Fii QVhu, t, a) =;a@) Ilu(t) +&[“, CD’ Re b(w)llti,(o)ll* do 

m Im($(o))li,(w)do (2.9) 
-00 

In particular, each term in (2.9) is well-defined for a.e. t E ( - co, T]. 

Proof: For each h > 0, we have 

by Parseval’s identity. Next, we observe that 

ri,+h(~)={Om u(t-h--)e-‘“‘d7 

s 

co 
= u( t - CT) e --imu eioh do 

h 

=e iwhii,(o) - eioh Job u(t - a) e-ioa do, (2.11) 

1 In fact, for aeL’(O, co) to be strongly positive definite it is necessary and suffkient that 
(2.8) hold for some 1> 0. 
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and consequently 

s h 
+ eiwh 

u(t-o) e --iw0 da 2 do. 
II 

(2.12) 
0 

Using the fundamental theorem of calculus and the dominated convergence 
theorem, we find that 

=- 2’, jr Re 44 llW12 do m 

= ; 40) I14~)l12. (2.13) 

(In particular, the limit on the left-hand side of (2.13) exists for a.e. 
t E (-co, T].) The desired result now follows from the facts that 
limhLO(l/h)(l -eiWh)= -io, I(l/h)(l -eiwh)l < (01 Vh>O, and Ims(w)= 
w  Reb(w). 1 

It is important to note that the first and second terms on the right-hand 
side of (2.9) are nonnegative. The next lemma provides a useful estimate for 
the last term in this expression. 

LEMMA 2.2. Assume that (2.7) holds and let E >O be given. Then, there 
exists a constant C(E) such that 

4 (Imz(o)) G,(o)do 2 
-cc II 

GE 
I 

O3 co* Re i(w) llfi,(o)11* do 
-cc 

+ C(E) jm Il4(~)ll'd~ a.e. t~(-co, T], (2.14) 
-m 

for every TE R and every u E L*(( - co, T]; H). (No claim is made that the 
integrals in (2.14) are all finite.) 

Proof: Observe that 

lIma( = Jx+Jm, 0 # 0. (2.15) 

Using (2.15) and the Cauchy-Schwarz inequality, we find that for each 
a > 0. 
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III O” (Im&D)) a,(w)& 2 
--m II 

< 4a s a Ilti,(w)l12 do. sup II&&w,,2 
--a C-WI 

where A, := (-co, a] u [a, co). Recalling that Im$(m) = o Re 4(o) and 
that Re ci is integrable over (- co, oo), the lemma follows from (2.16) for a 
sufficiently large choice of a. 

Combining Lemmas 2.1 and 2.2, and making use of the simple algebraic 
inequality IABl < qA2 + B2/4q for all q > 0, we easily establish 

LEMMA 2.3. Assume that (2.7) holds. Then, for each E > 0, there exists a 
constant C(E) such that 

B;!pQ(dhu. t,a)2 ‘a(O)--E llu(t)lj2 
(2 ) 

- C(E) i“ IMs)ll 2 ds a.e. t E (-co, T], (2.17) 
-al 

for every TER and euery ueL2((-w,T],H) for which lim,l,(l/h2) 
Q(d,u, t, a) exists a.e. in CE (-co, T]. 

To discuss certain continuity properties of solutions of (l.l), it is impor- 
tant to know whether or not the mapping t H c,(.) is continuous from 
(-co, T] to be weighted L2-space L2(R; H/( 1 + w2 Re a(o)) do) with 
norm given by ~~~g~~~2 := Jc”oo (1 + o2 Re 4(o)) 11 g(o)l12 do. Using the 
relationship between * and the Fourier transform, the fact that the Fourier 
transform of a product is equal to the convolution of the Fourier trans- 
forms, and the formula for the Fourier transform of a step function, we find 
that for each CE (-co, T] and every real q such that t + q E (-co, T], tit is 
given by 

2ti,+,(o)=e “(‘-l-q)li,(o)-i~[e’(T-‘-q)‘li~.)](o), 

where J? denotes the Hilbert transform. The question thus reduces to 
boundedness of the Hilbert transform on L’(R; H/( 1 + o2 Re d(w)) do). 
Using Theorem 6.2 of [6, p. 2551, we find 

LEMMA 2.4. Let TE R and u E L2(( - co, T]; H) be given. Assume that 
(2.7) holds, J”“oo co2 Re 6(w) Iltir(o)l12 do exists, and that the “(A,)- 
condition” 
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w*ReB(w))du 

holds, where the sup in (2.18) is taken over all intervals Zc R. Then, 
a,( * ) E L2(R; H/(1 + w* Re ti(w)) dw) for all t < T, and the mapping 
t H G,( *) is continuous from ( - co, TJ to L’(R; H/( 1 + w* Re h(o)) dw). 

Remark 2.2. Condition (2.18) holds if 2(w)- wPoL as w  + 00, with 
0 < ct d 1. This is essentially the case if a’(t) - tr- ’ as t -+ 0. Such kernels 
are suggested by molecular theories [S, 24, 28-J. In this case 
(j’2m (1 + w* Re 6(w)) llti,(w)ll* do)“* is equivalent to a fractional order 
Sobolev norm of u,. 

Our next lemma will be used to modify the global existence proof of 
Dafermos and Nohel [4]. 

LEMMA 2.5. Assume that (2.7) holds. Then, for each E > 0, there exists a 
constant C(E) such that 

114~)112 dz + C(E) CA% t, a) ~~ 

VtE(-al, T], (2.19) 

for every TE R and every u E L*(( - co, T]; H). 

Proof: Taking Laplace transforms, (2.19) reduces to 
L--T 
la’(w))* Q E + C(E) Re 6(o) VWER. (2.20) 

This last inequality is immediate since Re B(w) > 0 and 

liml,, - oo 12(w) = 0 (by the Riemann-Lebesgue lemma). 1 

Remark 2.3. If a”~ L’(0, co), then (2.19) holds with E =0 and 
C(0) < co. This version of the lemma was used by Dafermos and 
Nohel [4]. 

We now discuss approximation of a by regular kernels. At this point,* we 
assume 

a, a’E L’(0, oo), (2.21) 

aBO, a’,<O, a”>0 (in the sense of measures); 

the measure a” has a nontrivial absolutely 

1 

(2.22) 

continuous component. 

*The problem of approximating an arbitrary strongly positive definite kernel by 
“regularized” strongly positive definite kernels does not appear to be easy. We could base our 
existence argument on an approximation method other than approximating the kernel, e.g., 
finite differences. If  this is done, (2.22) is not needed, but the proofs become much more com- 
plicated. Moreover, (2.22) is a natural assumption from the viewpoint of applications to 
viscoelasticity. 
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As is well known, this implies that a is strongly positive definite. 
(Corollary 2.2 of [20].) For each 6 > 0, we define the approximating kernel 
ad: [0, co)+R by 

a,(t):=j’ p,(r)a(t+6-7)dz Vt>O, (2.23) 
--6 

where ps is a standard mollifier with support contained in [-J/2, d/2]. 
It follows from (2.21), (2.22), (2.23) that for every 6 > 0 

U&E cmco, CQ), a,20, u;,<o, uj20, (2.24) 

U&, ah, a; E L’(0, co), (2.25) 
and 

ball 1 G II4 13 lb& II 1 G 4OL (2.26) 

where II * I(, denotes the norm in L’(0, cc). (Of course, Ilu~II 1 does not 
necessarily remain bounded as 6 JO.) It also follows that a6 is strongly 
positive definite for 6 sufficiently small a* that u6 + a pointwise (and in 
L’(0, co)) as 810. Moreover, SUP,,~ luk(w)l <u(O) for all 6 >O, and 
Re “i, + Re B in L’(R) as 6 J 0. Therefore, a simple modification of the 
proof of Lemma 2.3 yields 

LEMMA 2.6. Assume that (2.21), (2.22) hold and let E > 0 be given. Then, 
there exist constants C(E), 6,,(c) > 0 such that for every 6 E (0, &,(&)I 

f&2Q’&% t,a,)> &q--E llu(t)l12 
(2 ) 
- C(E) j-l Ilu(s ds ae. tE(-co, T], (2.27) 

--m 

for every TER and every ud2((-CO, T];H) such that 
lim,,, (1/h2) Q(d,u, t, ad) exists u.e. in t E (- 00, T]. 

In our subsequent use of this material, we shall always take H to be (the 
complexification of) L2(0, 1). 

3. LINEAR EQUATIONS 

In this section, we study the linear history value problem 

Q-G t) = 4x3 t) %x(X, t) 

+ St a’(t - 7) P(x, 7) G(X, 7) dz +.0x, t), 
-02 



204 HRUSA AND RENARDY 

xc co, 11, tE(--CO, n (3.1) 

u(0, t) = u( 1, t) = 0, ret--, n (3.2) 

4x, t) = “(X, t), XECO, 11, tE(--CO,Ol, (3.3) 

where T is a given positive number. We begin by stating an existence result 
for the case when the kernel does not have a singularity. There are many 
such existence theorems in the literature. (See, for example, [2, lo], and 
the references therein.) The particular one which we give here has been for- 
mulated with smoothness assumptions which are appropriate for our treat- 
ment of quasilinear equations in the next section. 

We assume that the coefficients satisfy 

a, a,, al, axx, a,,, att, A Pm Pt, B,,, Pm Prt~L=‘((-a> Tl;L*(O, l)), 

a(x, t) > g > 0 VXE [0, 11, tc(-co, T]. 

Off and v we require 

f,fx,ft~L”((-m, Tl;L*(O, l))nL*((-a, Tl;L*(O, I)), 

fi,~L~((-a, Tl; L2(0, I)), 

“7 “XT “IT “xx, “xt, “tt, “xxx, “XXI, “xt,, “,,I E L”(( - ~,ol; L2(0, 1)) 
n L*((-co,O];L*(O, 1)). 

In addition, we assume that v satisfies the equation and boundary 
ditions for t < 0, i.e., 

v,,(x, t) = 0, t) u,,(x, t) 

+ r a’(? - ~1 P(x, ~1 “x,(x, 7) dz +f(x, t), 
J -co 

XE co, 11, tE(--oO,Ol, 
u(0, t) = v( 1, t) = 0, ?E(-x&O]. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

con- 

(3.8) 

(3.9) 

LEMMA 3.1. Assume that a’, a” E L’(0, co), a and /II satisfy (3.4), and 
that (3.5) holds for some constant pr > 0. Let f and v satisfying (3.6) through 
(3.9) be given. Then, the history value problem (3.1), (3.2), (3.3) has a unique 
solution u with 
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Zf, in addition, 

fx E C(CO, n m4 l)), (3.11) 

then the solution has the additional regularity 

u xxx 3 uxxt, uxtt, u,,, 6 C( co, n L2(0, 1)) (3.12) 

for positive time. 

We have been unable to locate an existence theorem in the literature which 
has precisely the same smoothness conditions as Lemma 3.1. However, this 
type of result is standard and we omit the proof. For example, a minor 
modification of the proof of Theorem 2.1 of [4] can be used to establish 
Lemma 3.1. 

We now prove an existence theorem which allows a’ to have a 
singularity at 0. For this case, we must assume that the memory term 
satisfies the appropriate sign conditions, i.e., that (2.21), (2.22) hold and 

P(x, t)2b>O VXE [O, 11, tE(-co, T]. (3.13) 

THEOREM 3.1. Assume that (2.21), (2.22), (3.4), (3.5), (3.13) hold, and 
let f and v satisfying (3.6) through (3.9) be given. Assume further that 
v,,,~EL~(( - a, 01; L*(O, 1)). Then, the history value problem (3.1), (3.2), 
(3.3) has a unique solution u which satisfies (3.10). Zf, in addition, (2.18) and 
(3.11) hold, then u has the additional regularity (3.12) for positive time. 

Proof Consider the family of approximating problems 

uf)(x, t) = cI(x, t) uL?(x, t) + I’ ab(t - z) /?(x 9 z) z@(x, z) dz 
-co 

+ f ‘YX, t), XE CO, 11, let-a, Tl, (3.14) 

u@)(O 9 t) = zP)( 1, t) = 0 3 tE(--cO, Tl, (3.15) 

zP’(x, t) = v(x, t), x E [O, 11, tE(--cO,Ol, (3.16) 

for 6 > 0, where a6 is defined by (2.33) and f (‘) approximates f in such a 
way that v satisfies Eq. (3.14) for t G 0 and f@), flp), f i6) +f, f,, f( in 
L”((-a, Tl; L2(0, l))nL2((-co, T]; L2(0, 111, f I? -+f,, in 
L2(( - co, T]; L*(O, 1)) as 6 J 0. (The existence of such an approximation to 
f follows from our assumptions on f and v and a straightforward extension 
theorem. It is here that the assumption v,,~~E L*(( -cc, 01; L*(O, 1)) is 
used.) It follows from Lemma 3.1 that for each 6 > 0, (3.14), (3.15), (3.16) 
has a unique solution u(‘) with u(‘), ulp), ui6), ~$2, u$, uif), u$?~, u$!J, ~$11, 
u;,4’ ELrn(( - co, T-J; L2(0, 1)). 
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Our objective is to show that u@) obeys certain a priori bounds, 
uniformly in 6, that imply the existence of a sequence (u@~)}~=, which con- 
verges to a solution as 6, LO. In order to simplify the notation, we suppress 
the superscripts on u@) andf @) For the purpose of deriving such bounds, . 
we set 

+ jp, j’ ~uZ+~Lx + u:,t + u:,, + u:,,}(x, s) dx ds, (3.17) 

F := .y-;, j ;  {f:: +.f:>(x, s) dx 

+ j' j1 If2 +ff +f:t)k s) dx & 
--m 0 

ire := ess-sup 
I li u2+u~+uf+u~x+u~~+u:, 

se(-co,O] 0 

+ P’+ P2 f P: + b:, + P% + P:t>k 3) dx> 

+r , := ess-sup 
I l{ C12+C(~+Clj+u~,+a~,+u~~+82 

se[O,T] 0 

+ b: + P: +8:x + P:, + fi:,>(x, s) dx, 

(3.18) 

(3.19) 

(3.20) 

and 

E[u](t) := ess-sup I ’ bfxx + u:,, + u:,, + d>(x, s) dx 
sc[O,t] 0 

VtE co, n (3.21) 

and we observe that there exists a constant Z > 0 such that 

4% t) -ad 
acx, t) 

VXE [O, 11, ZE(-co, T], (3.22) 

by virtue of (3.4), (3.5), (3.13). 
An integration by parts in (3.14) yields 

U,f = Y %,, + j’ dt- ~NBuxxlr(x, ~1 dz +f, (3.23) 
-00 
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where 

y’yx, t) := a(x, 1) -a&s(O) P(x, t). (3.24) 

We apply the backward difference operator A, (in the time variable) to 
(3.23) thus obtaining 

Then, we multiply (3.25) by dh[(flu,,)t] and integrate over 
[0, l] x (- co, t], t E [O, 7’1. After several integrations by parts, we divide 
by h2 and let h JO. The outcome of his tedious, but straightforward, com- 
putation is 

(3.26) 

where Q is defined by(2.1) with H=L*(O, 1). (We note that ut, uII, A,,u, 
Ahut, and dhu,, all vanish at x=0, 1 by virtue of (3.15). All of the spatial 
integrations by parts used in the derivation of (3.26) were carried out in 
such a way that the boundary terms (at x = 0, 1) vanish.) 

It is not a priori evident that lim,,, Wh2) QkUWxx),l, 6 4 exists for 
a.e. t E ( - co, T]. However, all of the other limits involved in the derivation 
of (3.26) exist for a.e. t E ( - 00, T], and consequently so does the limit in 
question. 

Using (3.5), (3.13), (3.24), Lemma 2.6 (with E sufficiently small relative to 
A), and the algebraic inequality lABI< qA2 + (1/4~) BZ Vv > 0, we find that 
the left-hand side of (3.26) is bounded from below by 
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- Cj’ {(~:+P:,&+f:>(x, t)dx 
0 

- c j’ o. j ;  {P’& + /3: u;,>(x, s) dx ds 
- 

VtE(-Q Tl, 6EK4~01, (3.27) 

where C is a positive constant (which depends on 12 and J.) 
Differentiating (3.14) with respect to t and x, and splitting the con- 

volution integrals, we obtain 

l.4 ,,I = au,,, +wx+f;+jO a&(t - ~)CPu,x, + Pt~x.xlCc ~1 dz --m 

(3.28) 

- s ’ 4dt- ~KPxd(x, 2) dz. 
0 

(3.29) 

It follows easily from (3.28) that 

s 1 5 1 

Z.&(X, t) dx < 5 
01 

a2z&, + afz& +.f:}(x, 2) dx 
0 

+ 10a(0)2 ess-sup 
s ’ ~~‘~:,t + B:u:xHx, s) dx 

sE[O,r] 0 

Using Gronwall’s inequality in (3.29), we obtain, after a straightforward 
computation, 
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< 8 exp[2a(O) JP1] ess-sup 
SE COdI 

+ 4a(0)2 expC240)d-‘l sy--~, jd (pelf,, + p:&}(x, S) dx 

a.e. t E [0, T]. (3.31) 

Combining (3.26), (3.30), and (3.31), and recalling the lower bound 
(3.27), we conclude that there exists a positive constant K such that 

ECul(t)~K(F+(l+f,+f,T) v) 

VtE [O, T], 6E(O, So]. (3.32) 

(The constant K depends on _a, /I, d, and a, but is independent of F, V, r,, 
rI, T, and 6.) Gronwall’s inequality and (3.32) yield 

E[u](T)<K{F+(l+r,+r,T) V}exp[K-(1+T,).(T+T3)] (3.33) 

for all 6 E (0, So]. 
To assist the reader in following the derivation of (3.32), we show the 

detailed estimation of a few typical terms. By the Sobolev embedding 
theorem, /??Jx, t) < r. for all x E [0, 11, t E (- co, 01, and flz(x, t) < f 1 for 
all x E [0, 11, t E [0, T]. Therefore, 

0 1 
1 

=5 I s em o we,, + uft,}(x, s) dx ds 

< +(r,+l) V++(I-,+l) jk[u](s)ds Vte [0, T]. (3.34) 
0 
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Next, we observe that 
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and consequently 

I 
0 

4 max v:,(C, s) ds < V. 
- cc CEC%ll 

(3.36) 

In addition, we note that 

from which we easily deduce the estimates 

s 

1 

Z.&(X, t) dx 6 2 
0 

j; u:,(x, 0) dx + 2t j; j; t&(x, s) dx ds 

< 2v+ 2PE[u](t) Vtfz co, n (3.38) 

and 

+&ugx, t)<2V+(l +2T2)ECul(t) Vt E [O, T]. (3.39) 

Using (3.36) and (3.39), we find 

I 

/I- j 
‘P u u (x,s)dxds If xx Ifl 

cc 0 

’ <t s max vL(S, 8) j: Bff (x, s) dx ds 
-02 CECO,ll 

+ 4 j” j’ v:,,(x, s) dx ds 
-cc 0 
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+ f jot iyL;:, u:,K s) jol 8:,(x, s) dx ds 
+ 4 j’ j1 z&(x, s) dx ds 

0 0 

+ + j+](s) ds VtE [O, T]. (3.40) 

The other terms can all be handled in a similar manner. 
We conclude from (3.33) that uL:i, u(xsi, u$.r), and u~P,’ are bounded in 

L”([O, T]; L2(0, 1)) independently of 8~ (0, So]. It follows from (3.38) 
(and similar inequalities for the other derivatives) that u$:, u$, z@, ul,s), 
uj@, and u(‘) are also bounded in L”([O, 7’1; L’(O, 1)) independently of 
6 E (0, So]. Therefore, there exists a function U: [0, l] x (- co, T] + R, with 
u=uon [0,11x(-co,O],andasequence {6,}~=,,with6,10asn-roo, 
such that 

&M, u(6n), &w, &w &L) u&), &M &M &M &b) 
x I xx 9 XI 3 I, xxx 3 XXf 9 xtt 7 ffl 

+ u, u,, u,, etc. weakly star in L”( [0, T]; L’(O, 1)) (3.41) 

as n + co. Standard embedding theorems and (3.41) imply 

&M, &M, &M, &L) &M &M + u x I xx 7 Xf ) ,l 2 u,, u,, u XX? u XI? u,, 

uniformly on [0, 1 ] x [0, T] (3.42) 

as n + co. It thus follows easily that u satisfies (3.1), (3.2), (3.3). 
Suppose that (2.18) and (3.11) hold. To show that the third-order 

derivatives of u belong to C( [0, T]; L’(O, l)), we argue along the lines of 
Strauss [27]. We first note that Theorem 2.1 of [27] implies that uXXX, 
24 XXI~ 2.4 X,f, and u,,, are weakly continuous from (-co, T] to L*(O, 1). 
Indeed, by (3.10) we have uXX, u,~, a,, E C(( - co, T]; L’(O, 1)) and con- 
sequently uxxx9 4xty uxtt E C(( - co, 7’1; H-‘(0, 1)). Thus, Theorem 2.1 of 
[27] implies that u,,,, u,,., and uXX, are weakly continuous from (- co, T] 
to L2(0, 1). The weak continuity of u,,, then follows from differentiation of 
(3.1) with respect to t. Now, the basic idea is to show that a certain energy 
which acts like a ‘variable norm” of third derivatives is continuous. This, in 
conjunction with the aformentioned weak continuity, will imply the desired 
strong continuity. 

We apply the procedure used to derive (3.26) to (3.1), (3.2), (3.3). We 
thus conclude that for a.e. t E (- 00, 7’1, u satisfies (3.26) with as replaced 
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by a. Using Lemmas 2.1 and 2.4, and the fact that the right-hand side of 
(3.26) is continuous in t, we find that 

MuI := f j; {~~&, + B&,)(x, t) dx (3.43) 

is continuous in t. (Observe that H[u] is coercive in u,, and uXtt, and that 
S,E C(( - co, r]; L2(0, 1)) by (3.6).) A minor modification of the proof of 
Theorem 4.2 of [27] yields 

u xx, 3 ux,t E C(( - a, n L2(0, 1)). (3.44) 

Differentiating (3.1) with respect to x and t, and using (3.44), we conclude 
that 

Uxx*E C(COT Tl; L2K4 l)), (3.45) 

and 

u,,,EC((--oO, n;L2(0, 1)). (3.46) 

It is interesting to note that (3.44) and (3.46) hold even without the 
assumption (3.11). In particular if u satisfies (3.7), (3.8), and (3.9), it 
automatically satisfies u,,~, uXtt, u,,, E C(( - co, 01; L2(0, 1)). Moreover, iff, 
belongs to C(( - co, 01; L2(0, l)), then so does vXXX. Finally, we note that 
the a priori bound (3.33) also holds for the “exact solution” u. 1 

4. LOCAL EXISTENCE 

We now apply the results of the preceding section to establish a local 
existence theorem for the quasilinear history value problem (1.1 ), (1.2), 
(1.3). 

THEOREM 4.1. Assume that 4, $E C3(R), (2.21) and (2.22) hold, and 
that 

$‘(O>O, ti’(O>O VlER. (4.1) 

Assume further that f satisfies (3.6) for every T> 0, v satisfies (3.7), 
uXXt,~L2(( -oo,O]; L2(0, l)), and that Eqs. (l.l), (1.2) hold (with u=u)for 
t < 0. Then, the history value problem (l.l), (1.2) (1.3) has a unique solution 
u defined on a maximal time interval (-co, T,), T,,>O, which satisfies 
(3.10) for every Tc T,,. ZA in addition, (2.18) holds and 

fxEC(CO, W;L2(0, l)), (4.2) 
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then (3.12) holds for every TE (0, T,). Moreover, if 

then To = co. 

Proof For each M, T> 0, let Z(M, T) denote the set of all functions 
w:[O,l]x(-co,T]+Rsuchthat 

w, wx> wt, wxx, wxt, wtt, wxxx, wxxt, wxtt, w,,,~ L”(( - ~0, Tl; L*(O, I)), 
(4.4) 

w(0, t)=w(l, t)=O t’tE(-co, T], (4.5) 

w(x, t) = u(x, t) VXECO, 11, tE(-m,O], (4.6) 

and 

ess-sup 
s ’ { “‘:xXx + w&t + w:,, + w  ftt > b, t) dx G M. (4.7) 

lS[O,T] 0 

We note that Z(M, T) is nonempty for A4 sufficiently large. Henceforth, we 
tacitly make this assumption. 

It follows from (4.1) that inf,, R [#‘(5)/$‘(<)] > 0. We temporarily make 
the stronger assumption 

4 :=~pw>0, * :=f~~w>o, y := inf m > 0, 
CER $I(<) 

(4.8) 

which will be removed later. Identifying a with &(w,) and /I with Il/‘(w,), it 
follows immediately from Theorem 3.1 that for w  E Z(M, T), the history 
value problem 

%I(& t) = #‘(w,) K&, t) + 1’ a’tt - r) Vtwhxxk T) dz +f (x, th 
-cc 

XE CO, 11, tE(--cO, Tl, (4.9) 

(1.2), (1.3) has a unique solution u which satisfies (3.10). Moreover, the 
corresponding g, p, and A can be chosen independently of M and T. 

Let S denote the mapping which carries w  into the solution of (4.9), 
(1.2), (1.3). Our goal is to show that, for appropriately chosen M and T, S 
has a unique fixed point in Z(M, T) which is obviously a solution of (l.l), 
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(1.2), (1.3). For this purpose, we employ the contraction mapping principle 
and the complete3 metric p given by 

Observe that for w  E Z(M, T), we have 

W.Y,(X~ t) = ~xx(4 0) + J-i W,,Ib, s) ds vx E co, 1 I, 

Therefore, 

t E [O, T-J 

I 
I 

0 
w;~ (x, t) dx Q 2 j-l t&(x, 0) dx + 2t j’ i“ w;,,(x, s) ds 

0 0 0 

<2V+2Mt2 VtE co, n 

where V is defined by (3.17), and so clearly 

sup s 

1 

w;~(x, t)dxd2V+2MT2 v w E Z(M, T). 
/E[O,T] 0 

Similarly, the following inequalities hold for all w  E Z(M, T): 

sup s 

I 
w;~(x, t) dx < 2 V + 2A4T2, 

lE[O.T] 0 

4 sup w’,,(x,t)<2V+(1+2T2)M, 
xtco.11 
lECO,Tl 

sup w;,(x, t) d 2V+ (1 + 2T2) M, 
x E [O, I] 
lECO,Tl 

sup w;(x,t)<2V(1+2T2)+(2T2+4T$W. 
xc [O, I ] 
lE CO,Tl 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

The a priori estimate (3.33) and the above inequalities show that S maps 
Z(M, T) into itself provided that T is sufficiently small relative to M. From 
now on, we assume that T is small enough so that S maps Z(M, T) into 
Z(M, T). 

To show that S is a contraction, let M, T> 0 and w, WE Z(M, T) be 

3 Completeness of p follows from Alaoglu’s theorem and sequential weak star lower semi- 
continuity of the norm in L”( [0, I’]; L*(O, 1)). 
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given, and set u := SW, U :=SW, W:=w-W, U:=u-ii. A simple com- 
putation shows that U satisfies 

+ j; a’(? - ~)C$‘twx) - Il/‘(*,)l L(x, r) dz, 

vxe co, 11, tE co, n (4.18) 

U(0, t)= U(1, t)=O, vt E [O, T] (4.19) 

U(x, 1) = 0 VXE[O, 1-J tE(-a&O]. (4.20) 

Integrating the first convolution term in (4.18) by parts, we obtain 

U,, = x’(wJ Uxx + j’ 4t - ~)CVtw,) ~xxlr(x, 7) dr + C~‘(W,) - &(*A Ifi, 
0 

+ j’a’tt - T)C$‘twx)- ll/‘(w,)l u,,(x, t)& (4.21) 
0 

where 

x(0 := d(5) - 40) 445) V(ER. (4.22) 

We multiply (4.21) by [$‘(w,.) U,,], and integrate over [0, l] x [0, t], 
t E [O, T], performing various integrations by parts and exploiting (4.19), 
(4.20). This yields 

t o1 bUwx) x’twx) uix+Vtwx) u:,)k t) dx+ Qt[$‘tw,, Uxxl,, t, a) s 

= - s : Cd’(w,) - 4’(w,)l +‘(w,) uxx U&G t) dx 

- j’ V(w,) uxxtx, t) j; a’tt- T)CVtw,) - $‘(*,)I %x(x, 7) dT dx 

+ j; j; (%vtwJ wx* Et - V’(wJ wxx u,, utt + vtwx) wxt uxx utt 

+ fCx”(Wx) Icl’(wx) - x’(wx) V’(wx)l wx* Gx 

+ Cd’(wJ - &(@,)I Icl’(wJ uxx* uxx 

505/64/2-6 
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+ C@‘tw,) - f’(Wx)l $‘(wJ ix, u,, K,>Cx, ~1 dx ds 

+ j; j; Icl’(wx) UXX(X> s) j; ul(s - d{ C$‘(wx) - Icl’(@,)l ox,, 

+ [t,Y’(wJ - $“(WJ] U,, W,,}(x, T) dz dx ds V t E [0, T]. (4.23) 

Using (4.1) and Lemma 2.3 with E sulliciently small, we see that the left- 
hand side of (4.23) is bounded from below by 

where C is a constant that can be chosen independently of A4 and T. 
It follows from (4.18) that 

j’ U;<Cx, t) dl< 3 j1 {4’twJ2 uf, + Cftw,) - $‘(@,)I2 CJ(x, t) dx 
0 0 

+ 6~(O)'~~;,j; ~'b'tK)'u:x 

+ CVtwJ - V(~,)I’~XG 4> dx tlt~ [0, T]. (4.25) 

We combine (4.23) and (4.25) and proceed as in the derivation of (3.33). 
Exploiting the fact that W= 0 on [0, l] x ( - co, 01, we obtain (after a 
rather long computation) and estimate of the form 

p(Sw, SG)<P(M, T)exp(T.Q(M, T))p(w, W) VW, GEZ(M, T) (4.26) 

for every M, T > 0, where P, Q: [0, cc ) x [IO, co) + [0, co) are continuous 
functions with P(M, 0) = 0 VM > 0. 

The derivation of (4.26) from (4.23) and (4.25) is in much the same spirit 
as the derivation of (3.33). We show the detailed estimation of the first 
term on the right-hand side of (4.23). For each q > 0, we have 

I j 
; C4’twx) - &(@,)I Icl’(wJ ix, Uxxh t) dxi 

Q v j,' Wx, t) dx+ (4v)-lj; C#'tw,) 

- d’(Wx)l’ $‘(w,)~ Z&G 1) dx t/t~[O, T]. (4.27) 

If we choose q sufficiently small, the first integral on the right-hand side of 
(4.27) can be absorbed by the first integral in (4.24). To estimate the last 
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integral in (4.27), we first observe that by (4.17) and the mean value 
theorem 

E4’(wJ - ~‘(~X)l’(X~ f) 6 Qi(M T) w”,b, t) V’xE co, 11, tE co, n 
(4.28) 

where @(M, T) := max 1”(<)2 and the max is taken over all < with 
~2<2V(1+2T2)+(2T2+4~)M. Using the fact that W-0 on 
[O, l] x (-co, 01, the type of argument used to derive (4.17) yields 

Wx(x, t) < 4M( T2 + T4) VXE [O, 11, te [O, T]. (4.29) 

Next, we set Y(M, T) := max I+Y(<)~, where the max is taken over all t with 
l’< 2V( 1 + 2T2) + (2T2 + 4p) M. Then, using (4.13), (4.28), and the fact 
that U E Z(M, T), we find 

s 
’ C#‘(w,) - ~‘(~,)I’ $Yd2 C(x, f) dx 

0 

< 8M(T2+T4)@(M, T) Y(M, T)(V+MT2) VCE [O, T]. (4.30) 

The remaining steps in the derivation of (4.26) can be carried out in a 
similar fashion. 

The contraction mapping principle and (4.26) imply that S has a unique 
fixed point u E Z(M, 7’) for a sufficiently small choice of T > 0. It is obvious 
that u satisfies (l.l), (1.2), (1.3) on [0, 1 ] x ( - co, T]. The uniqueness 
statement in Theorem 4.1 is immediate. If (2.18) and (4.2) hold, the 
additional regularity (3.12) follows from Theorem 3.1 and the fact that u 
satisfies (4.8), (1.2), (1.3) with w  = u. The continuation of u to a maximal 
time interval (- co, To) with the property that (4.3) implies To = co follows 
from essentially the same argument as in [4]. 

It is easy to remove the extraneous assumption (4.8). To do so, we con- 
struct a functions 6, $ E C3(R) which satisfy 

iw = 4(r), bw=*(~) VYE c-2~,2471, (4.31) 

;‘nfR ii(t) > 0, sup Q’(r) < a, (4.32) 
E p; w, > 0, 

CER 

and we consider Eq. (1.1) with 4 and $ replaced by 4 and $, respectively. 
The preceding argument shows that the modified history value problem has 
a unique solution u on ( - co, T] for some T> 0. The Sobolev embedding 
theorem implies that 

sup 02(x, t) d v. (4.33) 
XE CO.1 

a ts(-m, 1 
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By virtue of (4.31), (4.33), and the continuity properties of u,, u is a 
solution of the original problem on some smaller interval (-co, T] with 
T> 0. The additional properties of u as a solution of the original problem 
all follow easily. 1 

5. GLOBAL EXISTENCE 

The following result is a precise analog of Theorem 4.1 in Dafermos and 
Nohel [4]. Recall that ~(5) := d(r) - a(0) $(<) V&j E R. 

THEOREM 5.1. Let the following assumptions hold: 

(i) a, a’ E L’(0, co), a 2 0, a’ Q 0, a” 2 0 (in the sense of measures); 
the measure a” has a nontrivial absolutely continuous component; 

(ii) $,*EC3, d(O)=$(O)=O, @(O)>O, $‘(O)>O, x’(O)>O; 

(iii) f, f,, f,EL”((- 00, 00 1; L’(O, 1)) f-7 L2(( - ~0, ~0 1; L2(0, 1 )I, 
ft, E L’(( - 00, (32 1; L2(0, 1 )I, and the norms off, f,, f,, f,, in the indicated 
spaces are sufficiently small; 

(iv) the given history for v satisfies the equation and boundary con- 
ditions for t < 0, v and its derivatives through third order lie in L”( ( - co, 01; 
L*(O, 1)) n L2(( - co,Ol; L2(0, 1 I), oxxtt E L2(( - ~0, 01; L2(0, 1)). 
Then, (l.l), (1.2), (1.3) has a unique solution u existing for all t E (- 00, 00) 
such that u and its derivatives through third order lie in Lm(( - 00, CQ); 
L2(0, 1))n L2(( -co, 00); L2(0, 1)). Moreover, u and its derivatives through 
second order converge to zero untformly as t -+ 00. If, in addition, the (A2)- 
condition (2.18) holds andf,E C( [0, CD), L2(0, l)), then third derivatives of u 
belong to C( [0, oo), L*(O, 1)). 

The proof is essentially a line-by-line copy of the argument of Dafermos 
and Nohel. We need only note that in deriving their estimate (3.26) they 
use Lemma 2.5 with E = 0, while we have to use Lemma 2.5 with E # 0 but 
small. Apart from this simple change, their proof goes through unaltered. 

Remarks. 5.1. In assumption (iv), we did not require smallness of the 
norms. However, assumption (iii) and the fact that v satisfies the equation 
and boundary conditions for t < 0 imply that v is “small.” 

5.2. Theorem 5.1 applies without essential changes if Dirichlet con- 
ditions are replaced by Neumann or mixed conditions. In the case of 
Neumann conditions, the boundedness and decay statements apply to u 
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minus its spatial mean value (u) which evolves according to the trivial 
equation 

(~*/~~*K~>w = u->(t). 

5.3. The question of global existence for the all-space problem is more 
difficult. Hrusa and Nohel [ 131 gave a proof for regular kernels. This 
proof, however, makes essential use of the assumption a” E L’(0, co) and 
does not appear generalizable to singular kernels. 

5.4. It would be interesting if a global existence result could be 
established assuming only ~‘2 0 in a neighborhood of 0 rather than 
x’(O) > 0. Even for regular kernels, this has been accomplished only for the 
case x’ = 0 which arises in modelling shear flows of viscoelastic fluids and in 
models for heat flow in materials with memory. (See [3, 17, 261.) The 
global estimates of Dafermos and Nohel [4], which, as remarked, can be 
carried out without assuming Q” E L’, can also be adapted to x’ - 0 without 
assuming a” E L’(0, co). However, the hypotheses on f in this case must be 
different than those above. 

5.5. It is conceivable that for an appropriate class of singular kernels, 
global smooth solutions exist even for large data. However, we have not 
been able to verify this. 
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