
 Procedia IUTAM   5  ( 2012 )  124 – 133 

2210-9838 © 2012 Published by Elsevier Ltd. Selection and/or Peer-review under responsibility of Takashi Hikihara and Tsutomu Kambe
doi: 10.1016/j.piutam.2012.06.015 

IUTAM Symposium on 50 Years of Chaos: Applied and Theoretical 

Analysis of ILM Logic Operations via van der Pol Phase Planes

M. Satoa*, Y. Takaoa, N. Fujitaa, S. Imaia, S. Nishimuraa, W. Shia, Y. Sogaa

and A. J. Sieversb

aGraduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan 
bLaboratory of Atomic and Solid State Physics, Cornell University, Ithaca NY, USA 

Abstract 

Logic operations that have previously been numerically demonstrated using intrinsic localized modes (ILMs) in a 
driven nonlinear 1-D lattice are analyzed using van der Pol phase planes. The time dependent application of a 
vibrational impurity mode either can produce or destroy an ILM. The appearance or absence of the resulting ILM can 
be understood via trajectories in the phase plane controlled by the evolving attractors associated with the time 
dependent impurity mode. Switching between the two possible branches depends on the phase of the amplitude 
modulation when the impurity mode is removed.  
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1. Introduction 

Micro-electro-mechanical systems (MEMS) now have a variety of applications.[1-3] With the 
continuing decrease in size the nonlinear vibrational properties of such MEMS resonators can no longer 
be ignored. To this end we have studied driven 1-D micromechanical nonlinear lattices. A general 
dynamical feature of such a lattice, that only depends on discreteness and nonlinearity, is an intrinsic 
localized mode (ILM), a dynamically localized excitation that for positive nonlinearity can appear above 
the plane wave frequency band. [4-8] Because of damping a driver is required to maintain a steady state 
ILM.[9-15] Such a steady state excitation can be generated by chirping the frequency of the driver beyond 
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the range of the plane wave spectrum and maintained at that frequency with a cw oscillator of constant 
amplitude.[16] These driver locked ILMs are self sustained localized oscillations and are stationary stable. 
It can be moved from one lattice site to another by introducing a mobile impurity into the lattice.[17] 
When an autoresonant[18] ILM is near an impurity mode it releases some amplitude and becomes trapped 
at the impurity mode site; on the other hand, if the impurity mode is removed the ILM recovers its 
intrinsic amplitude. These features suggested that this excitation may be attractive for information 
processing. Starting from this idea we carried out numerical simulations introducing a spatially 
inhomogeneous, harmonic force constant, time dependent perturbation into the nonlinear lattice to control 
ILMs that are locked to the driver.  We found that ILMs could be produced or destroyed and the existence 
or absence of such an ILM was then coded to logic "1" or "0". By the application of such a timed 
disturbance to the 1-D cantilever array an inverter and NOR operation were demonstrated. 

In this paper we show that an impurity mode trajectory in the van der Pol phase plane can be used to 
determine the correct time dependent application of a spatial impurity pattern to either produce or destroy 
an ILM. The appearance or absence of an ILM can be understood via paths in the phase plane controlled 
by evolving attractors driven by the time dependent impurity pattern.  The next section focuses on the 
necessary background material.  Section 3 makes contact with the van der Pol phase plane application.  
The results are summarized in Section 4.  

2. Background 

2.1. Equations of motion 

We have used a simulation lattice model based on experiments. The experimental array is composed of 
one long and one short cantilever in a unit cell so that the highest frequency optic mode of this di-element 
lattice can be excited uniformly by a PZT attached to the sample. The equations of motion for the 
simulations are  
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where i is the site number of the cantilever, mi is the mass, is the relaxation time, k2Oi and k4O are 
harmonic and quartic onsite spring constant, k2I

(j) is the harmonic spring constant for the intersite 
connection up to j-th neighbor, and k4I is the quartic spring constant for the intersite connection. The right 
hand side is the driving term. Parameters, listed in Table II, Ref. [16], are estimated from experimental 
data of the cantilever array.  The driving parameters are =139 kHz and =500 m/s2.

To produce an ILM at a specific lattice location and frequency the driver is set to the desired frequency 
and a lattice defect is introduced at that site in the array so that it produces a linear defect mode above the 
top of the band. In simulations, this is achieved by changing the onsite harmonic spring constant k2Oi

locally. The defect pattern is shown in Fig. 1(a). It generates many impurity modes above the regular 
band mode as shown in Fig. 1(b). The strength of the defect array is increased with time as shown in Fig. 
1(c) until the highest frequency impurity mode coincides with the driver frequency. The resultant signal, 
shown in Fig. 1(d), first appears as an amplitude modulated vibration because of the transient initiation.  
When the impurity array is removed at the same rate the ILM remains, as shown in Fig. 1(d). This process 
is similar to the seeding process described in Ref. [16], where one impurity with a time dependent 
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impurity strength is used.  For a logic operation it is important to have a spatial spread of impurities so 
that an interaction with one or two input ILMs can occur. 
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Fig. 1  (a) Spatial impurity pattern that is applied to manipulate an ILM. The disturbance is characterized by the ratio of the on-site 
impurity spring constant to the pure one. (b) Linear eigenvector patterns from the highest resonance frequency down to the 19-th
mode. The top 16 island modes show a variety of localization behavior.  (c) Impurity spatial and strength distribution as a function
of time. (d) Result of the application of those impurities with fixed driver at 139 kHz. Energy density is plotted as a function of 
time: darker indicates larger energy. After the removal of the impurity, one ILM remains. 

2.2 NOR logic operation 

The Not-OR operation, or NOR for short, is defined as A B  in Boolean algebra where A and B are 
inputs. It gives 1 only when A=0 and B=0. Figure 2 shows the NOR logic operation through ILM  
simulations. The same impurity operation shown in Fig. 1 is applied with different initial conditions.  The 
ILM appears in Fig. 2(a) where no initial ILM exists while in Figs. 2(b)-(d), the initial ILM is destroyed. 
If we code the absence or existence of an ILM as "0" or "1", then a NOR logic operation has been 
produced.   
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Fig. 2 NOR logic operation demonstrated in the array by simulations. The same impurity operation used in Fig. 1(a) was applied 
with different initial conditions. The vertical dashed line indicates the position of the distributed impurities. (a) When no initial ILM 
exists, one ILM is produced. (b) The initial ILM at site 87, and no ILM remains. (b) The initial ILM at site 131, and no ILM remains. 
(d) Initial ILMs at sites 87 and 131, and no ILMs remains. Time dependence of the impurity harmonic spring constant is shown in
lower part of the panel (d). 

In previous papers, we have noted that either an ILM is generated or no ILM appears in the perfect 
lattice depending on the relative phase of amplitude modulation (AM) at the time when the impurity 
mode strength is decreased.[19, 20] We separate the analysis of the operation into three stages: generation 
of the transient AM modulation at the initial stage, detection of the AM phase by removal of the defects at 
the final stage, and reversing the phase by interaction with the input-ILM at the middle stage.  We will 
analyze these stages in the van der Pol phase plane, to be is introduced in the next section. 
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3. Analysis in the van der Pol phase plane 

3.1. van der Pol phase plane for a driven nonlinear oscillator 

The van der Pol phase plane diagram for a single driven nonlinear oscillator is well known. Here we 
consider the particular example of a Duffing oscillator for a single particle of the form 

2
3

2 42
cos

d y m dy
m k y k y m t

dtdt
. (2)

It corresponds to Eq. (1) when the coupling to other particles is eliminated. To match the nonlinear lattice 
problem at hand the following parameters have been chosen: m=5.06×10-13 kg, k2=0.2 N/m, k4=5.0×108

N/m3, =8.5ms and =500 m/s2. Figure 3(a) shows the driven response as a function of frequency. The 
harmonic resonance frequency is at 100 kHz. As the driving frequency increases beyond the harmonic 
value the amplitude continues to grow until it reaches the bifurcation point where the amplitude drops 
precipitously to a very small value. Decreasing the driving frequency from that value, as shown by the 
arrows, results in a second transition from a smaller to a larger amplitude state somewhat above but closer 
to the harmonic frequency. 
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Fig. 3 (a) Response versus driving frequency of a nonlinear Duffing resonator. Arrows illustrate the hysteresis effect as the 
frequency is varied first to higher, then to lower frequencies. Vertical dashed lines (101 and 101.5 kHz) indicate particular driver 
frequencies for the van der Pol plane shown in (b) and (c). (b) Transient state trajectories leading to two attractors at 101 kHz. At 
this frequency, high and low amplitude stable periodic solutions exist. Gray curve is the trajectory that approaches the lower 
amplitude periodic state. Black curve represents the trajectory that leads to the large amplitude periodic state. Dashed curve starting 
from the origin indicate movement of the high amplitude attractor as a function of the driver frequency. It is near by the origin when 
the driver frequency is low as 99 kHz, and at the point marked by the open circle at 101 kHz. (c) The same figure as (b), but for 
101.5 kHz driver frequency. The large amplitude state has moved along the dashed curve farther away from the origin compared to
101 kHz in (a). 

For an approximate solution to Eq. (2) we assume the form

y(t)=a(t)cos t + b(t)sin t                                                                                                               (3) 

The van der Pol phase plane plot of b(t) versus a(t) describes the transient states, which lead to the 
periodic states for a given driving frequency.[21] As an example consider the particular driving frequency 
101 kHz represented by the dotted line (left) in Fig. 3(a). At this frequency, two stable solutions exist, one 
is for a high amplitude state and the other is for a low amplitude state. To keep track of the stability of the 
driven system it is helpful to present the results in a different form. Taking the starting condition as 
a(0)=y(0)=4.1×10-6 and 4.0×10-6 with b(0)=y'(0)/  the resulting phase plane is shown in Fig. 3(b).  
The black trace leads to the high amplitude attractor while the gray trace leads to the low amplitude one. 
For slightly larger driver frequency (101.5 kHz) the large amplitude stable state moves along the dashed 
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line farther from the origin. As the driving frequency changes the trajectories of each of the two attractors 
changes.   

For the logic operation, the transient effect is important in the operation. The van der Pol phase plane 
is useful to illustrate how the transient state is different from the stable state, and how it approaches one 
of the attractors.  

3.2. van der Pol phase plane for an impurity mode/ILM in a lattice 

Although the nonlinear lattice system in question involves many degrees of freedom an ILM by its 
nature spans only a few lattice sites; moreover, the amplitude of this driver locked vibration is determined 
by the driver frequency, just as for a driven single Duffing oscillator. Since the (impurity mode/ ILM) 
vibration has a frequency very different from the plane wave spectrum form the expected solution will be 
similar to Eq. (3); namely, 

xcenter(t)=a(t)cos t + b(t)sin t.                                                                                                        (4) 

Figure 4 presents both the amplitude of the top most impurity mode shown in Fig. 1(b), and the center 
site of the ILM as a function of the driver frequency. The top most trace, with arrows showing the 
direction of the frequency sweeps, is the highest frequency impurity mode. The small peaks at lower 
frequencies are due to lower frequency impurity modes, shown in Fig. 1(b). 
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Fig. 4 Amplitude of the top impurity mode (upper and middle) and the ILM (bottom) as a function of the driver frequency.  
Numbers indicate the harmonic spring constant ratio at the center site, k2Oi'/k2Oi. Only the amplitude at the center site of the top most 
local mode is displayed here. The upper band limit for small oscillations of the pure lattice is at 137.1 kHz. The arrows show the
frequency increasing from 139kHz to 144 kHz, then decreased to 137 kHz. The small multiple peaks in the upper and middle curves 
are due to island modes generated by impurities in Fig. 1(b). Bottom curve is for the ILM in a pure lattice. During the logic 
operation, the driver frequency is kept at 139 kHz throughout the paper (dashed vertical line).

Fig. 5 Initial stage of the NOR operation. (a) Vibrational energy density plot and impurity strength vs time profile (solid curve). 
Two horizontal dashed lines indicate the strengths of the time dependent van der Pol phase plane trajectories represented by the gray 
curves in panels (b) and (c). Impurity strengths in the two panels are 1.088 and 1.100, respectively. (b) Initial stage of the NOR
operation. Resultant trajectory location (circle) for a state in panel (a) that starts at t = 0 and ends at t =3200 periods. Since the circle 
is essentially at the origin the impurity mode remains in the low amplitude state. (c) Resultant trajectory location (circle) for a state 
in panel (a) that starts at t = 0 and ends at t =3500 periods. The solid curve shows how it moves from the origin. Note that the 
attractor for the low amplitude state has disappeared and the state trajectory is now rotating around the one remaining impurity mode, 
large amplitude attractor. Associated with the rotation of this state is amplitude modulation of the vibrational energy density, shown 
in panel (a).
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The vertical dashed line of Fig. 4 indicates a fixed driver frequency during the logic operations, and it 
coincides with the linear resonance frequency of the highest frequency impurity mode. For the pure lattice 
case (no impurity mode) the driver frequency is well above the top of the band frequency (137.1 kHz) and 
the ILM can exist with a large amplitude vibration or no-ILM with very small amplitude as shown by the 
bottom curve of Fig. 4. This is the first stage of the logic operation process. Both kinds of excitations 
behave similarly to a driven Duffing oscillator. For this reason it makes sense to use the van der Pol phase 
plane as an analysis tool for the ILM; even though, it is usually used to describe a single resonator. Both 
for the ILM and the impurity mode, the center motion of the excitation is described by the analog of Eq. 
(2) with the cosine driver at frequency  as a reference. Because the simulation model includes both the 
driver and damping, the system has attractor(s). A novel feature of this presentation scheme is that since 
the strength of the impurity mode changes with time the attractor(s) will also evolve with time. 

3.3. Initial stage of the logic operation: generation of amplitude modulation 

Consider Fig. 5(a) where the change in the linear impurity mode strength is shown as a function of 
time. The constant strength region is where the impurity mode frequency matches the driver frequency. 
The relatively sudden matching of the impurity resonance and the driver produces an amplitude 
modulation (AM) of the vibrational energy density as shown. The two horizontal dashed lines in Fig. 5(a) 
identify different impurity mode strengths of interest. To visualize how the vibrational state changes as a 
function of strength we now switch to the van der Pol plane representation and examine these two 
particular values. For a fixed impurity strength the vibration is completely governed by Eq. (1) and the 
display of b(t) vs a(t) starting from appropriate positions show how the transient states approach their 
respective attractors.  The gray curves in Fig. 5(b) illustrate such a time dependent picture for the weaker 
of the two impurity strengths while Fig. 5(c) is for the stronger one. Note that the number of attractors 
changes in Figs. 5(b,c) from two to one as the impurity mode strength changes over a relatively small 
time interval. In Fig. 4 this corresponds to two solutions at the driver frequency for the lower strength 
impurity mode (middle curve) but one solution for the full strength of the defect (upper curve). 

If one now calculates the end point of the time dependent trajectory from t=0 to t=3200 periods for the 
variable strength show in Fig. 5(a) the result is the open circle in Fig. 5(b), which is very close to the low 
amplitude attractor location found for the earlier static strength calculation. If one carries out the same 
calculation for the range from t=0 to t= 3500 periods one obtains the open circle shown in Fig. 5(c). Now 
there is only one attractor available and it is located at a large amplitude location. After the low amplitude 
attractor disappears, the trajectory commences to rotate around, and homes in on, the remained one. 
Because this remaining attractor is far from the origin, and because the low amplitude one was near the 
origin, a spiraling motion begins with a large radius, as represented by the solid line in Fig. 5(c). The 
resulting signature is the large amplitude modulation of the vibrational energy given by the dashed pattern 
in Fig. 5(a).  

3.4. Final stage of the operation: detection of the AM phase 

The last stage of the operation is to create or destroy and ILM.  This is done by detecting the AM 
phase and using this phase information for the creation or destruction process. To see how the AM phase 
determines the end result, we show in Figs. 6(a, b) the effect of changing the phase by one half period.  
Fig. 6(a) is a repeat of the data in Fig. 5(a) while in Fig. 6(b) the removal of the impurity strength profile 
is started one half AM period earlier. No ILM appears at long times. 

Figure 6(c) displays the entire van der Pol phase path for the ILM development in Fig. 6(a) when the 
impurity mode frequency is varied from 0/ m=1.00 1.013 1.00, caused by the time-dependent 
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defect strength k2Oi'/k2Oi=1.00 1.10 1.00, where 0 is the impurity mode frequency and m is the 
top band mode frequency (137.1kHz). The path starts from the origin and spirals around the impurity 
mode attractor over the constant strength period. When the impurity mode strength decreases the attractor, 
represented by the thick arc, moves to a larger amplitude location while the impurity mode evolves into 
an ILM, represented by the oscillatory track, which follows the, now ILM, attractor. 

Figure 6(d) shows what happens to the trajectory when the AM phase associated with the impurity 
mode is decreased one half period sooner.  The initial spiral is the same as for Fig. 6(c) because the 
growth of the impurity strength is the same in both cases.  But now the trajectory no longer follows the 
moving attractor and instead collapses back to the small amplitude state. Depending on the relative phase 
of the amplitude modulation at the time when the impurity mode strength is decreased (a) shows the 
change into the large amplitude ILM while (b) does not.  
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Fig. 6(a) Vibrational energy density plot ends with a large amplitude ILM, by the NOR impurity operation. (b) If the impurities are 
removed a half period of the AM oscillation earlier than in case (a), no ILM is formed. (c) Complete van der Pol phase path for the 
generation of the large amplitude ILM in (a), when the impurity mode frequency is varied from 0/ m=1.00 1.013 1.00, 
where 0 is the impurity mode frequency and m is the linear top most frequency of the pure lattice. The initial spiral path is that of 
the driven impurity mode into the constant strength time interval. The large oscillatory track shows how the vibrational excitation
follows the moving attractor (solid arc) as the impurity mode strength is decreased and an ILM is produced. (d) The dashed curve
illustrates the corresponding path for the trajectory in the no-ILM case. The thick arc indicated by "A" in (c, d) shows the time 
dependent attractor for the ILM. 

To better understand this switching process we now examine the last part of the two paths where 
0/ m=1.013 1.00 since the end result strongly depends on the timing of the impurity mode removal 

relative to the phase of the AM. These van der Pol plots are shown in Fig. 7. With the impurity mode at 
full strength the AM impurity mode path is given by the solid curve in Fig. 7(a), starting at the bottom of 
the figure and circling around the fixed attractor center, identified by the triangle. By starting at the open 
circle position the strength of the impurity mode begins to decrease and the resultant path for this no-ILM 
is represented by the dashed curve that peels off to the left, away from that particular attractor. The time 
dependence of the center of the no-ILM attractor is identified in the figure. If, on the other hand, the 
strength of the impurity mode begins to decrease at a later time, represented by the solid dot then the 
trajectory peels off to the right, moving in the same direction as the time dependent ILM attractor, as 
shown. To follow the paths relative to the attractors, their basins are calculated for three different 
impurity mode frequencies, the maximum frequency plus two smaller values: 0/ m=1.013, 1.011, 1.010. 
Figure 7(b, c, d) are for the ILM case. The solid dot represents the ILM path position for that particular 
local mode frequency and the open circles in Fig. 7(e, f, g) represent the no-ILM positions for the same 
local mode frequencies. In each case the path just follows the spiral orbit towards its attractor located at 
that particular time (local mode frequency). Another interesting feature is the appearance of two attractors 
as the local mode frequency decreases. This illustrates how the impurity mode changes to an ILM. Finally 
compare the solid and open circles of Fig. 7(c, f) with those in Fig. 7(d, g). Initially, both trajectories are 
in the same basin of the high amplitude trapped-ILM state. However, at 0/ m=1.010, the solid circle 
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remains in the same basin while the open circle is in the other basin, of the lower amplitude (no ILM) 
state.
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Fig. 7 (a) Trajectories of the ILM and the no ILM states as a function of the initial decent time of the impurity mode frequency.
Origin is marked by "+". The open circle indicates the initial decent time for the no ILM case (dashed curve). The solid dot indicates 
the corresponding starting time for the ILM case. The one attractor located at the triangle position evolves into two attractors shown 
in gray. Frames (b-g) Evolution of the attractor basins with changing impurity mode frequency (gray spirals). Frames (b,c,d): Each
solid circle is a point on the trajectory of the solid curve in panel (a) at impurity mode frequency 0/ m=1.013, 1.011, 1.010, 
respectively. These solid circles are superimposed on the spiral orbit basins leading toward the attractor(s) for the same impurity 
mode frequencies. Frames (e,f,g): The same evolution of the trajectories, using open circles for the same three frequency ratios, for 
the no-ILM dashed curve in panel (a).   

Fig. 8 End results mapped on the van der Pol phase plane. Solid curve shows the excitation trajectory if the impurities are 
introduced as shown in Fig. 5(a) but are not removed. It approaches to the impurity attractor (triangle) continuously following the 
spiral. When the trajectory is far from the origin, the AM is large. As the trajectory approaches the attractor, the AM becomes small. 
To see the phase dependence of the end results, the initiation of the impurities is started at each marker. Solid and open circles
indicate ILM and no-ILM end results, respectively. As long as the spiral radius is large, the end result depends on the orbit position
at initiation. Roughly if the orbit is in the upper half plane an ILM results, i.e., if initiation starts when the amplitude is increasing, 
the ILM remains. For a small radius, an ILM state is always found. 

So far, only the two removal points shown in Fig. 7(a) have been tested. The next step is to determine 
the dependence of the end point result on the removal time of the impurity mode. The solid curve shown 
in Fig. 8 is the trajectory from t=0 up to a constant impurity strength. As time progresses the impurity 
mode spirals into the attractor. Removal times tested along this trajectory are identified by the solid and 
open circles, solid circles give ILM states while the open circles, no ILM states. For a large spiral radius 
the end result is either an ILM or no-ILM depending on the relative position to the attractor. Roughly, if 
the removal starts in the upper half plane the ILM remains. This corresponds to a time duration when the 
amplitude is increasing in one period of the AM. If the modulation is too small the energy is always in the 
ILM state so there is no way to switch it off.  

One can carry out the inverse onsite process of starting with an ILM at the center site and either 
destroying it or retaining it as long as AM modulation produced by the force constant perturbation is 
sufficiently rapid.  We find that the rise time used in Fig. 5(a) is too slow to generate the necessary AM to 
make this branching possible but decreasing the rise time from 2500 periods to 500 periods is sufficient to 
permit the inverse process to occur. 

3.5. Interaction stage of the logic operation: modifying the AM phase 

Figure 2(b) illustrates that another way to obtain a large AM so that an ILM can either be destroyed or 
retained is to have the ILM off center with respect to the impurity array. Since ILMs are dynamical 
impurities they can be located anywhere in the pure lattice if they are sufficiently separated from one 
another. For example, the minimum distance for noninteracting ILMs for the simulation conditions given 
in Table II of Ref. [16] is 12 lattice constants. If an impurity is added to the lattice sufficiently close to an 
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ILM with an impurity mode frequency between the top of the plane wave spectrum and the driver 
frequency, then the impurity mode attracts the ILM.  The critical distance for the attractive interaction is 
32 lattice constants for the simulations.  

An initial ILM, as shown in Figs. 2(b)-(c), is attracted by the impurity array. Because the distribution 
of impurities is smooth the attracted ILM passes through the center of the distribution and oscillates about 
it with decreasing range. Figure 9(a) shows the destruction of the ILM while Fig. 9(b) shows the same 
initial condition but initiation time of the impurity removal is half AM period earlier. As in Figs. 6(a,b), 
the end results are opposite to each other. Thus, phase inversion of AM is a general property. During this 
process the impurity mode grows and interacts with the input ILM giving rise to strong AM. In addition 
the translation of the ILM excites island modes, shown in Fig. 1(b), and their vibrations complicate the 
response of the central site. Their van der Pol plots are presented in Figs. 9(c,d). These trajectories are 
very complex; however, the similarities between Figs. 9(d) and 6(c) and also between Figs. 9(c) and 6(d) 
are evident. Like Figs. 6(c,d) the end result depends on whether the impurity removal time is in the upper 
or lower half plane. 
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Fig. 9 (a) Destruction of an ILM using an impurity array with the off-centered initial ILM at site 87 while the impurities are centered 
at site 109. This is the same figure as Fig. 2(b). (b) Translation of an ILM using an impurity array. Initiation of the removal time was 
one half AM period earlier than in (a). The result is inverted from (a). (c) Van der Pol plot of the center impurity site for panel (a). 
Solid curve is the trajectory over the entire time interval. Thick gray curve is the attractor path. (d) The van der pol plot for panel (b).  

Fig. 10 The complete 3-D trajectories showing the van der Pol plane versus time. Black curve is for panel (b) and gray curve is for 
panel (a). Those curves start apart with each other at t=5900 period.  

Another way to view the two different trajectories is to display the time dependence of the van der Pol 
plot in 3-D. Figure 10 displays a 3D plot of the van der pol plane as a function of time for the two cases 
just described. The initial complexity in the 2-D plot simplifies beyond t=5900 period. The two curves 
separate. The gray one, the no ILM state, spirals back to the origin while the black curve approaches the 
high amplitude ILM state. 

4. Summary 

From this investigation we conclude that the AM of the time dependent ILM/impurity mode strength is 
the key element required to switch an ILM between two different states. When these developments are 
represented in the van der Pol plane detailed dynamics become evident. The production of a driven ILM 
due to the action of the time dependent ILM/impurity mode frequency is particularly enlightening in that 
the sudden disappearance of the low amplitude attractor is directly connected with the production of large 
AM when the impurity mode frequency approaches the driver frequency. The impurity mode trajectory 



133 M. Sato et al.  /  Procedia IUTAM   5  ( 2012 )  124 – 133 

then rotates around the impurity attractor with a large radius. Upon decreasing the impurity mode 
frequency at a specific time the excitation can either follow the large amplitude attractor and give rise to a 
stable ILM or collapse back to the small amplitude attractor depending on the AM at that time. The key is 
that when the removal starts, because of the motion of the attractor, the orbit either crosses the border of 
the basin to the low amplitude state, if the orbit is in the lower half plane; or if it is in the upper half plane 
then approaches the basin of the high amplitude attractor. 

Destroying an ILM by varying the time dependent impurity mode strength produces a more complex 
trajectory. To obtain the large AM the location of the impurity mode center is shifted with respect to the 
ILM center. When the impurity mode strength increases the ILM is attracted to it and this translational 
motion gives rise to AM at the impurity mode center. We show that once again depending on the AM 
phase the end result is either an ILM or no ILM.  In terms of the van der Pol plots the orbit either crosses 
the border of the basin to the low amplitude state, if the orbit is in the lower half plane, or the converse. 
The trajectory in the phase plane of a driven ILM can be understood in terms of motion of attractors  
controlled by application of a time-depended impurity strength.  
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