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This paper describes @ of the mapping 
surfaceSwithonebo representation @ e 
tion, and is de&d for surfaces of azbitrary genus g> L The 
crossed homomorphisms 4% :AV w H’(S; 2) which are de&ted usi 
X on 8 and the theory of winding numbers of curves on surfaces 
[I, 21. These cmssd homomorphisms were essenti&y described 

Q, is then given. If T,S denotes the unit tangent 
on H,(T,S, 2). The kemel of @ is then characterized using knowledge of the 

crossed homomorphisms 4%. If matrix entries are taken modulo Zg - 2, the represcnta tion Q factors 
through the mapping class group 3 of a closed orientable surf&cc of genus g > 1. Thus #P induces 
representations of & of 2 for any n [2g -2. The &m were discovered by Sipe in [7,8], and it is 
noted that her characterization of the image of @m carries over to the integer valued case. The 
stnlaure found in characterizing ket @ is then used to study ker &. In particular, it is shown 
that a quotient of ker 6” is a semidirect product for each even n div@yg 2g -2. 
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Introductioll 

This paper describes a linear representation @ of the mapping class group 
an orientable surface S with one boundary component. Let HI = H,(S; Z). Then 
acts on HI and this action is given by the well-known sympfectic representation 

P: Jt * Sp(2g; a, 
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where g is the genus of SI The Torelli group, .%, is the subgroup of d acting trivially 
on ~~ ; in other words, .% = ker p. The representation @ extends p, and is defined 
for surfaces of genus g > 1. The main tools used to define @ are crossed homomorph- 
isms e,: Jcc w H ‘(S; Z) which are defined using nonvanishing vector fields X on 
s, and winding numbers of curves on surfaces described by Chillingworth in [1,2]. 
&~en a nonvanishing, smooth vector field X on S, and a curve y on S, the winding 
number of 7 with respect to X can be intuitively defined as the number of times 

t vector to y rotates with respect to the X-vector as y is traversed once 
The notion of winding numbers is used, in turn, to define crossed 

- H ‘(S; Z). Intuitively, forfE 4f, the class e,(f) E H’(S; 2) 
the winding numbers of homology classes with respect to 

X The fact that the e, are crossed homomorphisms is precisely what allows for the 
definition of representations @jX of t should be noted that, even though e,(f) 
is well defined on homology classes, winding numbers of homologous curves 
are not ly equal. Hence the action of on winding numbers is not trivial. 

The use of vector fields in the definition of aJp suggests a geometric interpretation. 
Let T,Sbetheunit bundle of & and fi, = H,( T,S; 2). Given any f e 4, its 
derivative watts and one would expect a representation of JY in terms of 
this action. The difficulty in finding such a representation arises in choosing a basis 
for &, and then calculating the action of Qf on this basis. The vector field X will 
be used to lift curves on S to curves in T’$‘, and the crossed homomorphism e, 
faci the nec;essary calculations. Theorem 2.2 then shows that, for any f e A& 
Q)x( es thy action of Df on fi, with respect to a particular basis. A different 
choice of vector field corresponds to a change of basis for I&. Thus the representa- 
tions & are all conjugate, and are considered a single representation @. 

Since Qi extends the symplectic representation p, it is immediate that ker @t 9. 
Moreover, the fact that the action of .% on winding numbers is nontrivial implies 
that ker @ is a proper subgroup of 9. In order to understand ker @, then, it is 
nece=y to study @I,. The representation @ is calculated on an infinite set of 
generators for 9, giving rise to a characterization of ker @. 

Let S be the closed surface obtained from S by attaching a Z-disc aiang 5as 
boundary, and 2 its mapping class group. Let p’ : 2 I+ Sp(2g; 2) denote the corre- 
sponding symplectic representation, and .@ = ker p The groups & and 2 are closely 
related. In particular, if 7$ is the unit tangent bundle of s, then Johnson showed 
in [S] that the following sequence is exact: 

l+rr,(TI~)+.&&#+l. (1.1) 

Moreover, the subgroup ?rl( T,s) of .& is actually a subgroup of 9, giving the exact 
sequence 

l+q(T,S)+4+&1. (1.2) 

A natural question arises. Does the representation @ factor through .a? The 
calculations of @I9 show that Cp factors through d when the matrices @(f) are 
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taken with entries in Z, rather than Z for any n I2g - 2 (where g is the genus of S). 
Let Qzn denote the representation Qi with matrix entries taken in 2,. For n I2g -2, 
then, the representations @” induce representations @” of a. Sipe discovered the 
representations @,, in [7], and characterized the ihnage of 6” in [8]. It is noted that 
Sipe’s characterization of im 6” carries over to im QT, Following the notation in 
[7,8], let Ng.” be the congruence subgroup of level n in Sp(2g; Z), and Gsn = ker &. 
Sipe shows that jj( Can ) = Nan. The characterization of ker 4 is used to describe 
g&n = G&, n 9, obtaining the exact sequence 

W&,+G~,-+N~,-,f, (13) 

Moreover, it is shown that, for n even and dividing 2g - 2, a quotient of G,, = ker & 
is a semidirect product. It is interesting to note that in [gf Sipe shows that im & 
is a semidirect product for n odd, and that a quotient of ker & is a semidirect 
product for n even. 

T’he paper is organixed as follows. Section 1 is preliminary in nature, describing 
the tools needed to define @. Section 2 provides the main treatment of the 
tion @, and Theorem 2.2 gives the desired geometric interpretation of ax. 
of the crossed homomorphisms e, is used to calculate @ on generators of 3; 
obtaining a characterization of ker @. The calculations are then furthered to more 
general diffeomorphisms in §. The relationship between the 4i& of 
J@ discovered by Sipe and the representation @ of .4X is studied in Section 3. In 
particular, the results of Section 2 are used to reveal more of the structure of the 
groups Gsn = ker @“. 

Remark. The representation Cp was actually found in a somewhat di&rent context 
from that described in this paper. Squier, in [9], describes a method of defining 
two-parameter representations of Artin groups. The group A admits a presentation 
with “Artin group” and two extra relations (see [lO])- The question of when these 
two extra relations are satisfied was asked. This happens precisely when the specializ- 
ation t = -s-* is made, where (0, s) are the parameters itg $ juier’s work. In that 
case, it turned out that the remaining parameter occured only trivially, and the 
resulting representation was Qz. From this point of view, Theorem 2.2 is surprising 
indeed. 

1. Preliminaries and notation 

In this section the necessary background information and definitions are given. 
Mapping class groups are discussed m Section Ll, with an emphasis on the Torelli 
group. Section 1.2 deals with the unit tangent bundle of a surface with one boundary 
component and conventions about vector fields. Winding numbers are the topic of 
Section 1.3. Here the crossed homomorphisms e, are defined, and some of tGr 
properties discussed. This material, although it may be the least familiar PO the 
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reader, is the most important in what is to come. Here is a summary of the notation 
introduced so far: 

o s a closed orientable surface of genus g> 1, 
l S = $02-disc, 
0 J(d, 3 the respective mapping class groups, 
. n* = H,(S; 2) = H,(S; 2); H’ = H’(S; Z) = If’@; 
e ~5 @ the respective symplectic repmentations, with kernels 4,& 

ve unit tangent bundles, 

smooth, nonvanishing vector field on 8 

however, this reference may be helpful. 

1.1. 

Given s S as above, the CurveS {ati, 6 6 i=a,_d, pictured ia Rg. l(a) will be called } 
generators for both q((s, *) and q(& *). A collection of simple closed 

cUWs iS, bi li==*,...d till be called a SYII@& basis for HI if (Ui, aj)=O=(bi, bj), 
and (pi, b)= a@9 where ( ,) denotes the intersection pairing in &. The projections 
(e, &+} of the CUW~S {ai, &} form a symplectic basis. 
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Recall that the representation @, which will be described, extends the symplectic 
representation; therefore, the kernel of @ is contained in .%. In order to understand 
ker @, it is necessary to know more about the structure of the group .%. Toward this 
end, two special types of curves on S are distinguished which will give rise to 
important classes of maps in §. 

DelBaItIon 1.1.1. A simple closed curve y on S is a hn&g simple closed ame 
(BSCC) if it bounds a subs&ace Sp S. The genus of S,, is the genus g(y) of y 
(see Fig. l(b)). 

De&&Ion 1.1.2. A pair of disjoint, homologous, simple cl& curves ( y, S) is called 
a bn&g puir (BP) if y is not homologous to 0. Then the pair (y, 8) bound a 
subsurface Sy,a, and the genus of the bounding pair is the genus of &a (see 

By conventions, the subs&ace ively Sr.& ) is chosen 
which y (respectively (‘y, 8)) boun oes not contain the 
curves just defined give rise to the following diffeomorphisms in 

. 
Dedidon 1.1.3. A Dehn twist about a BSCC y is called a BSCC 
denoted T7. 

Defdtion 1.1.4. A bounding pair map (BP map) is collfip;hsed of 
T, 7’;’ about a BP (y, 6). The genus of a BP map is the genw of the 

Johnson showed in [3] that, for g 23, 4r is actually generated by BP maps of 
genus one. To derive the corresponding result for 9, ga 3, one notes that 3 is a 
quotient of .% (see exact sequences (l-l), (1.2)). Thus 3 is also generated by BP 
maps of genus one, for g a 3. Moreover, in the process of proving the exactness of 
sequence (1.2), Johnson shows that n,( T$) c 9 i ge~rated by Wrnqs of maximal 
genus; i.e., of genus g - 1. This fact will be used in determining how to obtain 
representations of ## frarn G! = . 

The case g = 2 is a bit different. In this case, Johnson showed that 9 is generated 
by BP maps of genus one together with BSCC maps. Note that when g = 2, any BP 
map is of maximal genus, thus P,( T,s) is the group of BP maps. The subgroup of 
.% (respectively 3 ) generated by all BSCC maps will be denoted by X (respectively 
9). It will be shown that Xc ker @; therefore, BP maps of genus one will be of 
primary importance when calculating @I4 for all g 2 2. 

1.2. 

Some properties of the unit tangent bundle, which will be needed later, are reviemd 
in this paragraph. Let S have some Riemannian structure, inducing a IIO !! iju 
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on each fiber IsP of the tangent bundle X9. Then T,S is the collection of all tangent 
vectors of unit length, i.e., 

T,S= u (UE =p/ Il4lp = 1). 
P- 

The unit tangent bundle T,S of S is defined similarly. It is well known that T,S is 
the trivial bundle, or T,S= Sx S’; hence, G, = pl( T&5) = q(S) x and fi,= 

At times it will be useful to think of H, as a subgroup of & in this 
manner, In terms of exact squen 9 that above description gives 

14+&H,-4, (1.2.1) 

where the kernel is generated by the fiber dass [z] E fi,. In the case of the closed 
of T$‘, however, is easily 
rds, the fiber class [z] E #ii 

vial bundle, S admits nonvanishing, 
mooth vector field on s it induces a 

on of T,S by the formula 

the vector field and the section will be denoted by X) In what is to follow, 
X on S 41 mean a global smooth section of T,S A formula similar 
be used to define the diffeomorphism Qf of T,S induced by f~ 4 

The derivative woffinduces a difkomorphism of T,&, also denoted by Df, defined 
by 

(l-2.3) 

Via dierentiation, then, an action of A on fil is obtained, and this action will be 
calculated. One anticipatory remark is in order before discussing winding numbers. 
Since & = %+‘, the action of Dfon a1 will be given by a (2g + 1) x (2g + 1) matrix 
with integer coefficients. Moreover, Df wiil always preserve the fiber class [ t’j E a,. 
If &, 6 are lifts of ui, bi to @, then the matrix of w with respect to the basis 

{a, a’,, . . ..&.d ,,..., gg} of fi, will have the vector (l,O, . . . ,0) as its first column. 

1.3. 

In this section, the definition of winding numbers of curves on surfaces is given, 
as well as a review of some of their properties. An interpretation of winding numbers 
in terms of intersections in T,S is also given. This definition is particularly useful 
for the calculations required in the proof of Theorem 2.2. The crossed homomorph- 
ism e, is then defined, and some of its properties outlined. In particular, the behavior 
of the e, under composition in J# is calculated. This formula will suggest a way to 
define representations QX of A. First, Remark 2 on p. 221 of [l] is reproduced. 
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Let y be a regular closed curve on S which is parameterized by arc length (i.e., 

Ily’(N,W= 1 for all t ). Then T,SI, is a torus T*. Let X be a vector field on S and 
X(y) * Xl,,, then it is easy to see that X(y) is a curve on T*. Choose an orientation 
on T,S. Let a be the homotopy class of X( y) and @ the homotopy class correspond- 
ing to a fiber with induced orientation; then, nl( T*) = (a, /3 1 tujh~“‘/3’~ = 1). Since 
y is parameterized by arc length, the tune 7 = ( y( t ), y ‘( t )) lies on T*,and p = jslllQt E 
rrl( T*) for some integer m, Chiilingworth defines &y) = RP& Note that the sign of 
111 depends on a choice of orientation for T,S. 

Hodgson suggested an alternate description of this definition in terms of intersec- 
tions in the homology of T,S. If X is a smooth global section of T&t, then X(S) 
is a surface in T,S, i.e., X(S) E H2( T,S, aT,S; ). By pojnc& duality, X(S) E if’, 

and the value of X(S) on any class [+]e fit is given by (X(S), j$ Choose an 
orientation for T,S so that (X(S), z)= 1, where [z] is the fiber class with indu 
orientation. Calculating X(S) on the generators a, j3 of q(r*) gives 

wm P? = W(S), g) = 1, (1.34 

(X(S),a)=(X(S),X(y))=O. (1.3.2) 

Hence (X(S), jQ = (X(S), /3*a) = m, and the following de&titian can be 

o,(Y) =wm 3% 

This definition, with careful choices of orientations, coin 
by Chillingworth. 

with the one given 

This definition of wx( y) is only for curves on the sutiace S;, however, ChiWgworth 
shows that the notion of windin umber can be extended to the case of the closed 
surface if values are taken in 2g_t rather than I!. This fact will be useful in 
determining how the representations ex of JN can induce representations of 2. 

Two properties of winding numbers are used in defining the crossed homomorph- 
isms e, : A I--) H’. First, given two vector fields X2 ) X2 on cSi z&e is a well-defined 
element elJE 1y’ given by 

e,Jrl = o,,(Y) -w,,(Y) (1.3.3) 

for any [y] E HI. This is well defined on H, c fiI since e1,2 vanishes on the fiber 
class. Secondly, note that oDJ.,( fy) = w,(y). 

Definition 1.3.1. Let X be a vector field on S. Then e, : A k-, H’ is defined by 

e,(f)Crl=o,(fy)-o,(y) 

for any fdt, ye&. 

Here, and for the remainder of the paper? fv denotes &.r where _& L :ke 
automorphism of W,(S) induced by f: The fact that e,(f) E ’ fbfh6 from i 



54 R TmPP 

that I, = ~~-a~( y) and the previous discussion. The most important property 
of the e, is the composition law: 

~AfWCrl= o,WwhfhW 

=w,(fhr)-w,(hy)+o,(hy)-w,(y) 

= ex(fMrl+ ex(wCYl~ (1.3.4) 

Or, more simply stated: 

e&tWlrl = 4f )Ihyl+ e,(JOCy19 (1.3.4) 

forallf, he and all [y] E H,. Now consider elements u E H’ as vectors in 

u = Wol), l . . s u(q& u(b), l l - 9 W&J1 

bs} is a synpkctic basis for HR. Consider the action of 36c on H’ in terms 
UE H’ and the sympkctic representation p. The reader can convince 

f that the following formula is true: 

WY1 = [U(Ql)r - l l 9 u(b,)l l (P(h) ’ CYI) 

= (bb,), . . l 3 N&)1 l P(W) l [Yl 

= (u l PW . ZYI, (1.3.5) 

where all products are usual matrix multiplication and [ y] E HI is considered to be 
r, Now use (13.5) to rewrite (13.4) as 

c,(fTc) = df 1 l P(h)+s,m (1.3.6) 

This formula indicates how to use the crossed homomorphism e, to define a 
representation @& of Before doing so, however, some remarks about exls are in 
order. An immediate consequence of (1.3.6) is that the exls are homomorphisms 
since p(h) is the identity matrix for h E .%. The following property of the homomor- 
phisms eXIJ was proven by Johnson in [4]. His argument is repeated here. 

lcralna 1.3.2. 7%e homotmophism e,l$ is independent of the choice of vectorJeld X. 

Roof. Let X1, X2 be vector fields on S, and f~ .%. Then 

lex,(f )-e,,(f MY1 = o,,(fY) -o,,(Y) - bx*(fY) - @xz(Y)l 

=~~,(fY)-~~*(fY)-[o,,(Y)-o,,(Y)l 

= e*z[frl - e,*2t Yl 

= e,*r Yl - e*,z[rl = 0. 

The last equality holds since f e 9. 0 

(1.3.7) 

One reason to consider e& is that ker ax c A It will turn out that changing the 
choice of vector field X gives rise to conjugate representations. Hence ker Gx is 
independent of the choice of vector field X. Lemma 1.3.2 is just another way of 
stating this fact. 
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2. The rqmsentation Qi :A t, KS 

In this section the representation ex is defined using the crossed homomorphism 
e,, and the dependence of ex on the vector field X is studied. The definition of 
winding numbers is used to show that ex calculates the action of A on fi,. As a 
result of this geometric interpretation, the image of A under #x is denoted by qx. 
The representation @I9 is then studied. In particular, the image of .% under QT is 
characterized along with ker a. 

Debition 2.1. Given a vector field X, the representation & :A c+ vx is given by 

(2.1) 

where p(f) is the image offed under the symplectic representation and e,(f) is 
considered to be a vector. 

To see that & is indeed a representation, formula (13.6) is used in the fdlw 
calculation. 

W) 

The following theorem gives the desire& geometric interpretation of the representa- 
tion @,.. 

hf. The calculation shall be performed for a”#, all other cases are completely 
analogous. Suppose p( f )[a,] = (zf=, ttQ l ai + ni l br ) in H% and consider Qf(ir’& 

since Qf(z) = z and Df( 6) = f< for any regular closed curve on 2% It is necessary, 
then, to compute fz in terms of the basis {z, l&, di} for &. Note that, since far and 

(t: FzI nti l Ei + ni l 6 ) project to the same homology class in Hz, 

i=l 
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for some integer n. To calculate n, intersect both sides of equation (2.4) with 
X(S) E fi’. By the definition of winding numbers, the equality 

( X(S), fx- f mi l i& + ni l 6 =(X(S), nz) 
i=l > 

becomes 

(2 5) . 

Combining (2.4), (2.3, and using the definition of {&, &}, gives 

With this cahhtio~ formula (2.3) becomes 

= f mi4i+ni*&+ex(f)[a,]*Z=@x(f)*[ZJ. 
i=l 

(2.7) 

In a similar manner it is shown that Df( 9) = @J f) l [f] for all [ +] E fi, . q 

An immediate consequence of Theorem 2.2 is the following 

C~rdlUy 23. If Xl v X2 ate vector fields on S, then the representations dQ,, tBs2 u”,‘c” 

conj44gate. 

Roof. By the theorem, both ax, and @x2 describe the action of A on & with respect 
to the appropriate bases; therefore, they are conjugate. El 

Since the representations eX are all conjugate, they are considered a single 
representation a. Note, however, that the group S& depends on the choice of X. 

From Definition 2.1 it is easy to see that the representation @ extends the 
symplectic representation as promised. In order to describe ker @, it is necessary 
to consider @I$. For f c JJ, definition (2.1) gives 
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Here Id is the 2g x2g identity matrix. Recall that the homomorphism e,k is 
independent of the choice of vector field; hence, the following results and calcula- 
tions are independent of the choice of vector field. The first task is to calculate the 
matrix 4&( T,T$), where (a~, ai) is the BP of genus one pictured in fig. 2. If 
fo = T,T$ then fo( q) is conjugate to CQ for i + 2; likewise, fd & ) is conjugate to 
& for all i Since winding numbers are welt defined on conjugacy CI , it su&es 
to consider ex(fol[az] in the calculation of e,(&). The formula for calculation of 
winding numbers given in [I] yields ex(fo)[a,l = -2. Thus, considering e,&) as a 
vector gives 

l%is calculation czn be used to calculate e,( T,T,-‘) 

Since such maps generate .% for ga3, the desired 
ker @ will follow. 

Propebn2.4. Let(y,~)benBPofgenwo~ withy 
its kjt. Then 

e,( T,T,L’) = mG a,), l l l 9 (‘yr a,), h b,), l l l t (Y, b,)). 

Proof. For (y, 6) = (ao, a&), equation (2.9) proves the proposition. Now let (y, S) 
be any BP of genus one, and let f E At be such that fa= 7, fu&= SE. Then T,Ti* = 
f&,T;;f-‘,cuad 

@xWJi*)- -(; ;g)(; ex;-fy; ;g,y> 
1 e,(f-')+e,(f).df-*)+ex(h)=df-*) = . (2.10) 
0 Id > 

But O=e,(ff-')=e,(f).p(f-')+e,(f-*), so (2.10)becomes 

Once it is shown that e,( fJ l p( f -I) = 2(( 'y, a,), . . . , (y, b,)), the proof will be corn- 
plete. The calculation preceding the proposition showed that 

e,(fo) = W-J,, 4, - . . 9 (a,, b,)) = !e,MJM, . l . 3 eLhd?+J~; 
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By the choke off, however, fao = -y and (2.11) becomes 

e,(fo) l df-‘1 = 2((3r, QI), . . . 9 h b,)) 

as desired. 

(2.12) 

position 2~4 facilitates the calculation of e&f) for anyf= T%T&* l l l TvmTz E 
where (ri, 86) 8te BPS of genus one. 

Iff = Ta T&’ whew each (yip &) is a BP of genus one, 

e,(f) = ex( TI Tc’ l l l Tvm Tz) 

(2.13) 

Prooc, This is a direct consequence of Proposition 2.4 and the fact that exls is a 
homomorphism. c1 

Corollary 2.5 can now be used to characterize ker a. 

2.6. The Chillingworth subgroup %‘c § is defined by 

= f=T,&‘.- 
I 

Tyn T&l 1 each ( ‘yiS 6i) a BP of genus one, 

and($,2$=OiuHJ. 

Define the subgroups %“n similarly, the requirement being that (Cr=, 2x ) = 0 in 
A) rather than H, . The subgroups %g,n will be useful in studying the structure 

of the groups Gg,n of [7,8]. 
In order to characterize ker @, Corollary 2.5 will be used together with the 

following fact about the group Xc 9 generated by Dehn twists on BSCCs. 
Chillingworth shows in [2] that, if y is a SCC, the following formula is satisfied: 

. o,(Tys)=ox(B)+(Y, rB) l o,(Y), (2.14) 

for any curve /3 on S. if y is a BSCC, then (y, ~3) = 0, and formula (2.14) shows that 
Ty E ker @. Since ST is generated by such maps, Xc ker @. 
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Corollary 2.7. For g 2 3, % = ker #. 

Proof. Recalling that 9 is generated by BP maps of genus one, this is a direct 
consequence of Corollary 2.5 and Definition 2.6. 0 

Remark. The case g = 2 is special. For the purposes of this paper, it suffices to say 
that it can be shown that X= ker @. 

Corollary 2.5 can also be used to characterize im @I$. 

Pro n2.8. Forga2, thematrix (’ ff 
if v E (2z)2=. 

O Id) is in the image of 4 under @ if and ody 

Proof. Corollary 2.5 implies necessity for the subgroup of S gen 
of genus one. For is implies necessity for §* For g = 2, Corolhuy 2.S, 
with the remarks Corollary 2.7, imply necessity. Converse1 
choices of BP maps of genus one, it is easy to see that 
contained in im(e,lJ. Since exls is a homomo 

In order to see how @ can induce repesentations of 
under @ must be studied. Recall that We 
genus; hence it is necessary to caiculate @ on 

Proposition 2.9. Let T,G’ be a BP map of genus g’. zhen 

ex( T,T,‘) = 2g’((y, a,), l - l 9 (Y, a,>, 

where y is oriented so that SYss lies on its lejk 

Proof. The idea is to rewrite T,Ti’ in terms of BP 
r the calculation. Let E@, . . . , &8*-t be 

orientations. Then 

of genus one, and use 
rves pictmed in Fig 3 

T’ m-1 
I+ 8 =(T,T;;)(T,,T;:) 9 l l (I&T;;‘), * 

and, using Corollary 2.5, 

(2.15) 

Fig. 3. 
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However, y is homologous to &i for each i and [ y +C:LI’ Ei] = g’ l [ y]. Equation 
(2.15) becomes 

e,( T,T,-9 = 2g’((y, 4, l l . 9 (Y, &)I, (2.16) 

proving the proposition. 0 

Note that if (x6) is a BP of maximal genus, then g’= g - 1. Proposition 2.9, 
t with the fact that q( T,s) is generated by BP maps of maximal genus, imply 

Lug 210. For g 3 & the matrix (i &) is in the image of w,( T$) under # ifand 
0 E ((2g-2)2)‘9 

1 that (p, denote @ with matrix entries taken in 2”. Then Corollary 2.10 
(T$)cker& forn12g-2. the !I& induce representations 6” 
-2. The representations were discovered by Sipe, and are 

the topic of the next section. 
One final remark is in order. If is the mapping class group of a once-punctured 

sutfaoe, then there is the exact sequence 

*+l, (2.17) 

where the kernel is the infinite cyclic subgroup generated by a Dehn twist about 
the of SI Since the representation @ is trivial on BSCC maps, it follows 
that oli induces a representation of “II,, also denoted by @. All the results of this 
section carry over to the case of the mapping class group of a once-punctured surface. 

The context in which Sipe discovered the representations & is described in this 
section, and her characterization of im &,, is mentioned (for details see [S]). This 
characterization extends to one of ST%, with the appropriate choice of vector field 
X0 (recall that & depends on the choice of vector field). Yhe results of Section 2 
are then applied to gain further insight into the structure of the groups Can. 

Sipe discovered the representations 6,, while calculating the action of 2 on nth 
roots of the canonical bundle of the surface g Some of the results found in [7,8], 
are reviewed here. First, by a Chem class argument, the canonical bundle admits 
nth roots if and only if n ]2g - 2; therefore, it will be assumed that n I2g - 2, where 
g is the genus of & Sipe shows that there is a one-to-one correspondence between 
nth roots of the canonical bundle and the set 

This topological description of nth roots is used in what follows. In order to calculate 
the action of & on nth roots, then, it suffices to know the action of 2 on H,( T,s; Z,). 
Sipe was able to calculate this action, obtaining the representations &. Recall that 
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@,, denotes the representation @ of A with matrix entries taken in Zn. Furthermore, 
for n 128-2, the representation @” induces a representation of 2. The induced 
representation coincides with 8~~ since both give the action of J@ on ff,( I’,& 2,). 
Thus Sipe’s results give information about @,,, and it is natural to ask which results 
carry over to the representation @. Sipe’s characterization of im &, for example, 
immediately carries over to the integer-valued case. 

With respect to the basis {z, 4 + z, 6 + t} for fir, the following characterization 
of the image of 6” was given: 

w 3.1 (Sipe). 7%e matrix (i i) is contained in the image of & ifad only if 

Diag(B’NB) - tt E (2Z,)‘q 

where BE Sp(2g; 2,) and N = (z k’). 

Here Diag(A) is the 2g vector whose ith component is Uii and Bt is the transpose 
of B. 

Let X0 be the V-O~ field such that Wa(ai)=-t, @a( &)=-I for aEt i Tfren, by 
Theorem 2.2, #% caicuiates the action of on fir with 
(5 &+S &+Z}* 

Comolluy 3.2. ne matrix (i i) is in S& ifand only if 

Diag(B’NB)-1t~(2b)~5 

Proof. This is an immediate consequence of Theorem 2-2 and a direct generalization 
of Sipe’s arguments in [g] to the integer-vaiued case. Cl 

Note that Proposition 2.8 is the equivalent of Lemma 1 in [S], and that the results 
Of Section 2 reveal more of the geometric structure of @Is L A&bough Sipe’s arguments 
regarding im & immediately generalize to the integer-valued case, her discussion 
of ker @,, = Gsn does not, 

Let I+&@ c= Sp(2g,P) be the congruence subgroup of level n. Sipe shows that 
p’( G,J = IV&“, where p’ is the symplectic rep nt&an af $. ‘Ihis result does not 
apply to the integer-valued case since ker @c A In fact, the zesults of Section 2 
can be used to further describe the structure of G”,. The fact that @(G&J = &V&m 
characterizes the symplectic part of C,,, while the results in Section 2 can be used 
to characterize G%. n x Recall the exact sequence (1.1) and Definition 2.6 of the 

groups @&,n. 

Defieritioa 3.3. Let eg,” be the image of %& in .#, and iet @ be the image of the 
Chillingworth subgroup in J#. 

An immediate consequence of the definitions is the following 

Proposition 3.4. Gg.n fl 3 = egvn; hence the following sequence is exact: 
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Roof. Definition 3.3, Corollary 2.5, and the fact that @” induces 6”. Cl 

The characterization of G”,” fl$ is virtually a direct consequence of properties 
of @1., discussed in Section 2. With a little work, however, even more of the structure 
of Gsn is revealed- 

Note that WM1_-2c G,, foi all R 12g-2. In other words, &g-z is the subgroup 
of 3 which acts trivially on nth roots of the canonical bundle for all n l2g -2. It 
wiil be shown tha for n even, the group Gg,,/@3,_2 is a semidirect product. The 
rem er of the discussion, the% will be restricted to the case where n is even and 
rr12g-2. The strategy be to obtain a semidirect product struare on quotients 
of certain subgroups in using results from n 2, and then show that these 
quotients are isomorphic to G&J @&+ If !Q enotes ker am, then pr(%!&,) = 
G,, where pr is as in sequence (1.1). Moreover, as a result of squences (l.l), (1.2), 
and Spe’s , it follows that p( %!%,) = &,“. Definition 2.6 
and C&o11 II 17 9, giving rise to the exact squence 

for all q and %c 9, the squence (3.2) modulo Gg becomes 

lthat = ker @; therefore, the groups W&,/W, S&J % can be thought of as 
subgroups of the matrix group rp%. Explicit use of Corollary 3.2, the choice of 

and the fact that n is even, gives the following descriptions of the 

qgJ~=@JJ~&“)= vale, BEN&, . 

(3.4) 

(3.3) 

Note that since n is even, B E Ng,, implies B = (Id) mod 2, and 

Diag( B’NB) = Diag((Id)‘N(Id)) = (0,. . . , 0) mod 2. (3.6) 

Hence, if (i L) satisfies conditions (3.9, then it satisfies the conditions of Corollary 
3.2. This remark also implies that the matrix (i i) is in @,J $$,) for n even and all 
B E Ng,*. Thus any matrix (I “) o B E @%( ?$,) can be written Uniquely as a product 
(i i) l (i G), where both (’ “) (’ “) o B , o Id are in @-+(9&J. In other words, there is a 
semidirect product structure on gg,,/ Ce. Under the obvious identification of %$,/ %’ 
with (nh)2g the previous discussion gives the isomorophism 

(3.7) 
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Now that the desired semidirect product structure has been obtained on quotients 
of subgroups of A, it remains to see how this structure projects to subgroups in - 
Recall that the representation @ induces representations of a when matrix entries 
are taken module 2g -2. Moreover, % sse_2/ %? c %+,,I % for n 128 -2. Using the 
identification of %&.,/ % with (nZ)*$ it is clear that 

where k = (2g -2)/n. Now consider sequence (3.3) modulo the subgoup Wti~_#4E, 
obtaining 

(3.9) 

which becomes, after the appropriate identifications, 

1 + (Zk)*& -+ q&J rg,,_,+ NIkn + 1. (3.10) 

Consider %!,/ % to be the semidirect product (nZ)” >Q&+ and note that mo&g 
out by ((2g -2)2)** only affects the (nZ)*” factor- Hence 4p&n/ ,_2isa 
product as well. More explicitly, 

Thissemidirectp~ductstructureonsubgroupsin~ actually 
product structure on subgroups in 

toasemim 

Propa&ion 3.5. For n emn and n 12g-2, G,,/ @&--z s Cd&)*’ >QN&, 

(2s.2)/n. 

Woof. By equation (3.11), all that needs to be shown is that 

Since ker(pr) = w,( T,& c %tig-2, the proposition is a consequence of the definitions 
of g&n and @gG8-2. Explicitly, 
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