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Abstract

Trapp, R., A linear representation of the mapping class group ./ and the theory of winding
numbers, Topology and its Applications 43 (1992) 47-64.

This paper describes a linear representation @ of the mapping class group 4, of an o-ientable
surface S with one boundary component. The representation & extends the symplectic representa-
tion, and is defined for surfaces of arbitrary genus £> 1. The main tools used to define & are

crossed homomorphisms e, : # — H'(S; Z) which are defined using nonvanishing vector ficids
X on c and the theorv of windino numbhers of curves on surfaces deccribed bv Chillineworth in
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[1,2]. These crossed homomorphisms were essentially described by Morita in [6]. A geometric
interpretation of @ is then given. If T, S denotes the unit tangent bundle of S, then & records
the action of 4 on H,(T,S; Z). The kernel of & is then characterized using knowledge of the

crossed nomomorpnlsms €. if mairix eniries are iaken moduio Alg l, the reprﬁcmanon & faciors
tlnmnnh the mgP?lnn olace g_mnn ﬂ of a closed orientable surface of genus g> 1. Thus & induces

rep'esentatlons of @, of .M for any n|2g—2. The_di_ ., were dnscovered by Slpe in[7,8), and it is
noted that her characterization of the image of @, carries over to _the integer valued case. The
structure found in charactenzing ker @ is then used to study ker @,.. In particular, it is shown

that a- ql.lotlﬂl( of ker 'l'" is a semidireci proaucr for eacn even n QIVFC"‘" .cg 2.
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where g is the genus of S. The Torelli group, %, is the subgroup of # acting trivially
on H,; in other words, $ =ker p. The representation @ extends p, and is defined
for surfaces of genus g > 1. The main tools used to define & are crossed homomorph-
isms e, :.# > H'(S;Z) which are defined using nonvanishing vector fields X on
S, and winding numbers of curves on surfaces described by Chillingworth in [1, 2].
Given a nonvanishing, smooth vector field X on S, and a curve vy on S, the winding
number of y with respect to X can be intuitively defined as the number of times
the tangent vector to 7y rotates with respect to the X-vector as y is traversed once
positively. The notion of winding numbers is used, in turn, to define crossed
homomorphisms e, : # — H '(S; Z). Intuitively, for f € #, theclasse,(f) e H (S;2)
measures how f changes the winding numbers of homology classes with respect to
X. The fact that the e, are crossed homomorphisms is precisely what allows for the
definition of representations @, of 4. It should be noted that, even though e.(f)
is well defined on homology classes, the winding numbers of homologous curves
are not necessarily equal. Hence the action of ¥ on winding numbers is not trivial.

The use of vector fields in the definition of P, suggests a geometric interpretation.
Let T,S be the unit tangent bundle of S, and ﬁ. = H\(T,S; Z). Given any fe 4, its
derivative Df acts on H,, and one would expect a representation of 4 in terms of
this action. The difficulty in finding such a representation arises in choosing a basis
for fI., and then calculating the action of Df on this basis. The vector field X will
be used to lift curves on S to curves in T,S, and the crossed homomorphism e,
facilitates the necessary calculations. Theorem 2.2 then shows that, for any fe 4,
®.(f) gives th action of Df on H, with respect to a particular basis. A different
choice of vector field corresponds to a change of basis for I?,. Thus the representa-
tions &, are all conjugate, and are considered a single representation .

Since P extends the symplectic representation p, it is immediate that ker < 4.
Moreover, the fact that the action of $ on winding numbers is nontrivial implies
that ker @ is a proper subgroup of #. In order to understand ker @, then, it is
necessary to study ®|s. The representation @ is celculated on an infinite set of
generators for $, giving rise to a characterization of ker &.

Let S be the closed surface obtained from S by attaching a 2 disc aiong iis
boundary, and . its mapping class group. Let 5: .# — Sp(2g; Z) denote the corre-
sponding symplectic representation, and £ =ker p. The groups .# and ./ are closely
related. In particular, if T,S is the unit tangent bundle of S, then Johnson showed
in [5] that the following sequence is exact:

1> 7 (T, S)> M5 M ~>1. (1.1)

Moreover, the subgroup m,(T,S) of  is actually a subgroup of %, giving the exact
sequence

1-7(T,S)>$>F->1. (1.2)

A natural question arises. Does the representation @ factor through .#? The
calculations of ®|; show that @ factors through .# when the matrices @(f) are
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taken with entries in Z,, rather than Z for any n|2g —2 (where g is the genus of S).
Let @, denote the representation @ with matrix entries taken in Z,,. For n|2g -2,
then, the representations @, induce representations @, of . Sipe discovered the
representations @, in [7], and characterized the image of &, in [8]. It is noted that
Sipe’s characterization of im &, carries over to im &. Following the notation in
[7, 8], let N, be the congruence subgroup of level n in Sp(2g; Z), and G, ,, =ker P,.
Sipe shows that 5(G,,)= N,,. The characterization of ker @ is used to describe
€..n = G,.,N %, obtaining the exact sequence

1-%,,>G,n> N, > 1. (1.3)

Moreover, it is shown that, for n even and dividing 2g —2, a quotient of G, , =ker &,
is a semidirect product. It is interesting to note that in [8] Sipe shows that im &,
is a semidirect product for n odd, and that a quotient of ker @, is a semidirect
product for n even.

The paper is organized as follows. Section 1 is preliminary in nature, describing
the tools needed to define &. Section 2 provides the main treatment of the representa-
tion &, and Theorem 2.2 gives the desired geometric interpretation of &,. Knowledge
of the crossed homomorphisms e, is used to calculate @ on generators of ¥; thereby
obtaining a characterization of ker @. The calculations are then furthered to more
general diffeomorphisms in #. The relationship between the representations &, of
M discovered by Sipe and the representation & of ./ is studied in Section 3. In
particular, the results of Section 2 are used to reveal more of the structure of the
groups G, =ker @,.

Remark. The representation & was actually found in a somewhat different context
from that described in this paper. Squier, in [9], describes a method of defining
two-parameter representations of Artin groups. The group .# admits a presentation
with “Artin group™ and two extra relations (see [10]). The question of when these
two extra iclations are satisfied was asked. This happens precisely when the specializ-
ation t=—s""' is made, where (4, s) are the parameters in 5juier’s work. In that
case, it turned out that the remaining parameter occured only trivially, and the
resulting representation was &. From this point of view, Theorem 2.2 is surprising
indeed.

1. Preliminaries and notation

In this section the necessary background information and definitions are given.
Mapping class groups are discussed 1n Section 1.1, with an emphasis on the Torelli
group. Section 1.2 deals with the unit tangent bundle of a surface with one boundary
component and conventions about vector fields. Winding numbers are the topic of
Section 1.3. Here the crossed homomorphisms e, are defined, and some of their
properties discussed. This material, although it may be the least familiai o the



reader, is the most important in what is to come. Here is a summary of the notation
snntmndisnad cn far
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e € a closed orientable surface of genus g>1
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® p, p the respective sympleciic representations, with kernels #, 5,
TS, T,S the respective unit tangent bundies,

.
® H,=H\(T,S; Z),
® X an arbitrary, smooth, nonvanishing vector fieid on S,
® ¢, the crossed homomorphism defined by X,
® &_ the representation defined using e,,
® & the representation given by any vector field,
® &, the representation @ with matrix entries taken in Z,,,
® &, the induced representations of .4,
® N, . the congruence subgroup of level n in Sp(2g; Z),
® G,.=kerd,; €,.=6G, NI
Other notation will be introduced; however, this reference may be helpful.

1.1.
Given S, S as above, the curves {a;, 8;},_, ., pictured in Fig. 1(a) will be called
the standard generators for both 7,(S, *) and #,(S, *). A collection of simple closed
(-2 I &% ? 4 aN £ ] 4 ¢ 9
onrves ia. b.l. . _ will he called a svmnlectic basis for H. if (a.. a.)=0=(b._b.).
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o h\ af tha enirvac . 8 1 fnem o cumnlantin hacice
l“" Iq, R Ll WL YWD lu., P.j ANJiiiz @& BJIII A Wi VGBI

{e) - 7 7,
/0 Sw Iy /0
[~ W ~ |
00 O O]
\ ()5 \ /
. \J N/

Fig. 1.
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Recall that the representation &, which will be described, extends the symplectic
representation; therefore, the kernel of @ is contained in %. In order to understand
ker 9, it is necessary to know more about the structure of the group $. Toward this
end, two special types of curves on S are distinguished which will give rise to
important classes of maps in 4.

Definition 1.1.1. A simple closed curve y on S is a bounding simple closed curve
(BSCC) if it bounds a subsurface S, < S. The genus of S, is the genus g(y) of ¥
(see Fig. 1(b)).

Definition 1.1.2. A pair of disjoint, homologous, simple closed curves (v, 8) is called
a bounding pair (BP) if y is not homologous to 0. Then the pair (v, §) bound a
subsurface S, ;, and the genus of the bounding pair is the genus of S, ; (see Fig. 1(c)).

By conventions, the subsurface S, (respectively S, ; ) is chosen to be the subsurface
which y (respectively (v, 8)) bounds that does not contain the boundary of S. The
curves just defined give rise to the following diffeomorphisms in 5.

Definition 1.13. A Dehn twist about a BSCC y is called a BSCC map and
denoted T,.

Definition 1.1.4. A bounding pair map (BP map) is comprised of opposite twists
s ' about a BP (7, ). The genus of a BP map is the genus of the associated BP.

Johnson showed in [3] that, for g=3, # is actually generated by BP maps of
genus one. To derive the corresponding result for $, g=3, one notes that $ is a
quotient of $ (see exact sequences (1.1), (1.2)). Thus £ is also generated by BP
maps of genus one, for g =3. Moreover, in the process of proving the exactness of
sequence (1.2), Johnson shows that 7,( T, S) < £ is generated by 2P maps of maximal
genus; i.e., of genus g—1. This fact will be used in determmmg how to obtain
representations of .% from &. :

The case g =2 is a bit different. In this case, Johnson showed that # is generated
by BP maps of genus one together with BSCC maps. Note that when g =2, any BP
map is of maximal genus, thus ,(7,S) is the group of BP maps. Thc subgroup of
# (respectively £ ) generated by all BSCC maps will be denoted by X (respectively
). It will be shown that % < ker ®; therefore, BP maps of genus one will be of
primary importance when calculating &|, for all g=2.

1.2.

Some properties of the unit tangent bundle, which will be needed later, are review« d
in this paragraph. Let § have some Riemannian structure, inducing a norn: | bl
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on each fiber TS, of the tangent bundle TS. Then T,S is the collection of all tangent
vectors of unit length, i.e.,

T.5=U toe TS, llol, =1}

The unit tangent bundle TS of § is defined similarly. It is well known that T.S is
the trivial bundle, or T,S=8xS"; hence, 7, =m(T,S)=m(S)xZ and H=
H,xZ=2Z%"". At times it will be useful to think of H, as a subgroup of H. in this
manner. In terms of exact sequences, that above description gives

1-Z->H,>H,>1, (1.2.1)

where the kernel is generated by the fiber class [z]e H,. In the case of the closed
surface, T,S is no longer trivial. The first homology of T,S, however, is easily
described by H, = H\(T,S; Z) =Z?¢ X Z,,_,. In other words, the fiber class [z]€ H,
has order 2g — 2 (for details, see [7, 8], for instance).

Since the tangent bundle TS of S is the trivial bundle, $ admits nonvanishing,
smooth vector fields. If X is a nonvanishing smooth vector field on S, it induces a
smooth global section of T,S by the formula

X(p)=X(p) IX(P),- (122)

(Both the vector field and the section will be denoted by X.) In what is to follow,
a vector field X on S will mean a global smooth section of T,S. A formula similar
to (1.2.2) can be used to define the diffeomorphism Df of T,S induced by fe .
The derivative Df of f induces a diffeomorphism of TS, also denoted by Df, defined
by

Df(p, v)=(f(p), Df(v)/ | Df(0)]|5()- (1.23)

Via differentiation, then, an action of 4 on ﬁ. is obtained, and this action will be
calculated One anticipatory remark is m order before discussing winding numbers.
Since H =Z?**!, the action of Df on H. will be given by a (2g +1) x(2g +1) matrix
with mteger coefficients. Moreover, Df wiil always preserve the fibe: class [z e d,.

If G,, b, are lifts of a;, b, to H., then the matrix of Df with respect to the basis
{z a4,,...,ad, b., b } of H. will have the vector (1,0, ..., 0) as its first column.

1.3.

In this section, the definition of winding numbers of curves on surfaces is given,
as well as a review of some of their properties. An interpretation of winding numbers
in terms of intersections in T,S is also given. This definition is particularly useful
for the calculations required in the proof of Theorem 2.2. The crossed homomorph-
ism e, is then defined, and some of its properties outlined. In particular, the behavior
of the e, under composition in # is calculated. This formula will suggest a way to
define representations &, of .. First, Remark 2 on p. 221 of [1] is reproduced.
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Let y be a regular closed curve on S which is parameterized by arc length (i.e.,
l7'()llyc)=1 for all t). Then T,S], is a torus T>. Let X be a vector field on S and
X (v) = X|,, then it is easy to see that X () is a curve on T2. Choose an orientation
on T;S. Let @ be the homotopy class of X(y) and B the homotopy class correspond-
ing to a fiber with induced orientation; then, 7,(T?) =(a, BlaBa'B~' =1). Since
v is parameterized by arc length, the curve ¥ = (y(t), y'(1)) lieson T>, and ¥ =B8™a €
m(T?) for some integer m. Chillingworth defines w,(y) = m. Note that the sign of
m depends on a choice of orientation for T,S.

Hodgson suggested an alternate description of this definition in terms of intersec-
tions in the homology of T,S. If X is a smooth global section of T;S, then X(S)
is a surface in T, i.e., X(S) € H(T,S, oT,S; Z). By Poincaré duality, X(S)e H A
and the value of X(S) on any class [¥]€ H, is given by (X(S), y). Choose an
orientation for TS so that (X (8S), z) =1, where [z] is the fiber class with induced
orientation. Calculating X (S) on the generators a, B of 7,(T?) gives

(X(S), B)=(X(S), 2)=1, (1.3.1)
and

(X(S), a)=(X(S), X(y))=0. (1.3.2)
Hence (X(S), 7)=(X(S), B"a)=m, and the following definition can be made:

o (y)=(X(S), ¥).

This definition, with careful choices of orientations, coincides with the one given
by Chillingworth.

This definition of w,(y) is only for curves on the surface S; however, Chillingworth
shows that the notion of winding number can be extended to the case of the closed
surface if values are taken in Z,,_, rather than Z. This fact will be useful in
determining how the representations @, of . can induce representations of ..

Two properties of winding numbers are used in defining the crossed homomorph-
isms e, : M — H'. First, given two vector fields X,, X, on §, :licre is a well-defined
element e,,€ H' given by

e dr]=w.(7)— 0. (y) (1.3.3)

for any [y]€ H,. This is well defined on H,< ﬁ, since e, , vanishes on the fiber
class. Secondly, note that wpg;(fy) = w.(y).

Definition 1.3.1. Let X be a vector field on S. Then e, : ./ +> H' is defined by

ex(f)[‘Y] = wx(f‘)’) - w\(Y)
for any fe M, ye H,.

Here, and for the remainder of the paper, fy denotes f,vy where f, J ‘he
automorphism of ,(S) induced by f. The fact that e,(f) € H ! follows from ihe fact
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that w.(fy) = wps'«(7y) and the previous discussion. The most important property
of the e, is the composition law:

e(fh)Ly)= w:(fhy) - o.(y)
= o (fhry) — wx(hy) + ox(hy) — o.(7)

= e.(f)hyl+e(h)v] (1.34)
Or, more simply stated:
e.(fh)[ 1= ex(f)hy]l+e(h)[v], (1.3.4)

for all £, he 4 and all [y] € H,. Now consider elements u€ H ! as vectors in Z*% by

u =[u(a1), ceey u(ag)’ u(bl)s ey u(bg)]

where {a;, b;} is a symplectic basis for H,. Consider the action of 4 on H' in terms
of vectors u€ H' and the symplectic representation p. The reader can convince
himself that the following formula is true:

ulhyl=[u(a,),...,u(b;)] - (p(h)-[v])
=([u(a,), ..., u(d;)]- p(h))-[y]
=(u-p(h))-[7]. (13.5)

where all products are usual matrix multiplication and [y] € H, is considered to be
a vector. Now use (1.3.5) to rewrite (1.3.4) as

e.(fh)=e.(f)- p(h)+e.(h). (1.3.6)

This formula indicates how to use the crossed homomorphism e, to define a
representation @, of 4. Before doing so, however, some remarks about ¢,|s are in
order. An immediate consequence of (1.3.6) is that the e,|s are homomorphisms
since p(h) is the identity matrix for h € #. The following property of the homomor-
phisms e,|s was proven by Johnson in [4). His argument is repeated here.

Lemma 1.3.2. The homormorphism e,|, is independent of the choice of vector field X.

Proof. Let X, X, be vector fields on S, and fe #. Then
[ex,(f) = e ()N 7]= 0y, (fy) — 0 (¥) —[05,(f¥) — 0.,(¥)]
= 0, (f7) = 05(fy) — [0 (7) - 0,(7)]
=e [ fr]l—e ]

=ely]-ely]=0. (1.3.7)
The last equality holds since fe $. O

One reason to consider e,|; is that ker @, < $. It will turn out that changing the
choice of vector field X gives rise to conjugate representations. Hence ker @, is

independent of the choice of vector field X. Lemma 1.3.2 is just another way of
stating this fact.



The mapping class group M 55
2. The representation & :.4 — Sp,

In this section the representation @, is defined using the crossed homomorphism
e, and the dependence of &, on the vector field X is studied. The definition of
winding numbers is used to show that &, calculates the action of /4 on ﬁ.. As a
result of this geometric interpretation, the image of 4 under &, is denoted by Sp,.
The representation ®|; is then studied. In particular, the image of $ under @ is
characterized along with ker &.

Definition 2.1. Given a vector field X, the representation @, : 4 — Sp,, is given by

_[1 elf)

where p(f) is the image of f e .# under the symplectic representation and e.(f) is
considered to be a vector.

To see that @, is indeed a representation, formula (1.3.6) is used in the following
calculation.

¢x(f)¢x(h) - ((l’ ex(f))(l ex(h)) = (l ex(f) . p(h).’. ex(h))

p(f)J\O p(h) 0 p(f)p(h)
1 ex(ﬂ'))= 29
(o S = (22)

The following theorem gives the desired geometric interpretation of the representa-
tion P,.

'l;heorem Z.2. Let X be a vector field on S. Then ®,( f)calculates the action of Df on
H, with respect to the basis {z, d;, b;}. where z is th> Sber c'dss and

d=a-wla;)- z; b;=b,—w,(b) - z

Proof. The calculation shall be performed for a,, all other cases are completely
analogous. Suppose p(f)[a,]=(Xf_, m;- a;+n;- b;) in H, and consider Df(d;):

Df(a,)= Df(a, - wx(a,) - z) = Df(a;) —w,(a,) - 2 =7a-;_wx(al) -z (23)

since Df(z)=z and Df(&)=7a for any regular closed curve on S. It is necessary,
then, to compute fa; in terms of the basis {z, a;, b;} for H,. Note that, since fa, and
(X%, m;- a;+n,- b,) project to the same homology class in H,,

—— g - PFRPAY
fa,— Y mi-a+n;-b=n-z R
=
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for some integer n. To calculate n, intersect both sides of equation (2.4) with
X(S)e H'. By the definition of winding numbers, the equality

(X(S),fan— fj m;- a;,+n;* 5.->=(X (S), nz)
i=]
becomes

o (fa) - T mi (@) + - o (b)=n. @5)

i=1
Combining (2.4), (2.5), and using the definition of {a;, 5, }, gives

Jar= T me-dctn bim 3 (m- (@) - 2+ (- 0(0)) - 2+ 0far) -2

= § m;- (3~ 0.(a;} - 2)+n;- (b - a,(b;) - 2)+o(fa) - 2

i=1
=% medtnbrodm) -z 26)

With this calculation, formula (2.3) becomes

DfG)= T m Gt m- b+ [l fa) - ou(@)] 2

=5 mG+n-b+e(Na] z=0.(f) - [a] @7

In a similar manner it is shown that Df(7) = ®.(f) - [7] for all [¥]e H,. O
An immediate consequence of Theorem 2.2 is the following

Corollary 2.3. If X,, X, are vector fields on S, then the representations P, , D,, aic
conjugate.

Proof. By the theorem, both @,, and P,, describe the action of .# on fI, with respect
to the appropriate bases; therefore, they are conjugate. [

Since the representations @, are all conjugate, they are considered a single
representation @. Note, however, that the group §f>x depends on the choice of X.

From Definition 2.1 it is easy to see that the representation & extends the
symplectic representation as promised. In order to describe ker @, it is necessary
to consider @j,. For fe $, definition (2.1) gives

®,.(f)= ((l) e"l(df )). 2.8)
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Here Id is the 2g x2g identity matrix. Recall that the homomorphism e,|, is
independent of the choice of vector field; hence, the following resuits and calcula-
tions are independent of the choice of vector field. The first task is to calculate the
matrix D,(T,T.;), where (ao, ay) is the BP of genus one pictured in Fig. 2. If
fo=T,T2., then fi(a;) is conjugate to a; for i #2; likewise, fo(B;) is conjugate to
B for all i. Since winding numbers are well defined on conjugacy classes, it suffices
to consider e.(fy)[a,] in the calculation of e,(f,). The formula for calculation of
winding numbers given in [1] yields e,(fo)[a.]=—2. Thus, considering e.(f;) as a
vector gives

e.(fo)=(0,-2,0,...,0). 29)

This calculation can be used to calculate e,(T, T;") for any BP (7, §) of genus one.
Since such maps generate $ for g=3, the desired characterization of im #|, and
ker @ will follow.

Proposition 2.4. Let (7, 3) be a BP of genus one, with vy oriented so that S, ; lies to
its left. Then
ex( T‘y TS") = 2((79 al)s LA ] (‘Y, ag)y (7! bl)9 secy (‘y, bg))'

Proof. For (y, 5) =(ay, a}), equation (2.9) proves the proposition. Now let (v, §)
be any BP of genus one, and let f€ 4 be such that fa,= 1y, fao=45. Then T,T;'=
fTan T;{,‘ la and

‘I’,‘(T,T;')=(l e(f ))(1 ex(fo))(l e,(f“))

0 o(N/\0 1d J\0o p(f7")
_ ((1’ e.(f M +elf) - p(lfd")+ex(fo) - p(f )) (2.10)

But 0=, (ff ") =e.(f) : p(f )+ e(f7"), so (2.10) becomes

1 e(fo)-plf “))
0 Id '

Once it is shown that e .(f;) - p(f ") =2((, a), - - - , {% b)), the proof will be com-
plete. The calculation preceding the proposition showed that

ex(.ﬁ)) = 2((00, al); cecs <a0: bg)) = (ex(f;))[al]’ secy ex{jz))[bg]);

¢x(TyTE')=(
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therefore
e.(fo) - p(f ) = (eSS @), - .., (S S 'be))
=2((a0, £ '@, . -, (o, £ 'bg))
=2({fao, @), . - ., {fao, by)). (2.11)
By the choice of f, however, fa,= y and (2.11) becomes

PV 2N o=\ __Aars_. _\ 1.. L \\ % 19\
&Uo) " PUU ) =&NY, &y, '\ Ug/) \&eX&)
as desired. O
Proposition 2.4 facilitates the calculation of e (f) for any f=T 1 le..T T le
TUPUIIUIVIL doe T AUVITILVMLWY LV Wisswssissawan Wa Sx\J J 2wa W=y J " Oy Yn= Oy

J, where (v;, 8;) are BPs of genus one.

Corollary 28. Iff=T, T;'--- T, T;'€$ where each (y,, ;) is a BP of genus one,
then

ex(f ) = ex( Ty. TE.‘ st Ty,. T;.l)

=2(<§'. - a.), s 3::. - bg». 2.13)

Proof. This is a direct consequence of Proposition 2.4 and the fact that e,|s is a
homomorphism. O

Corollary 2.5 can now be used to characterize ker .

Definition 2.6. The Chillingworth subgroup € < # is defined by
€= {f= T, T‘g.' -+ T,, T;.!|each (v,, 8;) a BP of genus one,

and( 5 275) =0in H.}.

i=1
Define the subgroups %, similarly, the requirement being that (¥|_, 27:)=0in
H\(S; Z,) rather than H,. The subgroups €, , will be useful in studying the structure
of the groups G, , of [7, 8].
In order to characterize ker @, Corollary 2.5 will be used together with the

following fact about the group % < $ generated by Dehn twists on BSCCs.
Chillingworth shows in [2] that, if y is a SCC, the following formula is satisfied:

- 0x(T,B)=wx(B)+(, B) - w(7), (2.14)

for any curve B on S. if y is a BSCC, then (7, 8) =0, and formula (2.14) shows that
T, eker @. Since ¥ is generated by such maps, ¥ < ker 9.



The mapping class group M 59
Corollary 2.7. For g=3, € =ker ®.

Proof. Recalling that # is generated by BP maps of genus one, this is a direct
consequence of Corollary 2.5 and Definition 2.6. O

Remark. The case g =2 is special. For the purposes of this paper, it suffices to say
that it can be shown that % =ker .

Corollary 2.5 can also be used to characterize im ®|,.

Proposition 2.8. For g=2, the matrix (g 13) is in the image of $ under & if and only
if ve (22)*2.

Proof. Corollary 2.5 implies necessity for the subgroup of # generated by BP maps
of genus one. For g =3, this implies necessity for $. For g =2, Corollary 2.5, together
with the remarks preceding Corollary 2.7, imply necessity. Conversely, with careful
choices of BP maps of genus one, it is easy to see that generators of (2Z)** are
contained in im(e,|,). Since e,|, is a homomorphism, the proof is complete. 1

In order to see how & can induce representations of &, the image of z,(T,S)< $
under & must be studied. Recall that ,(T,S) is generated by BP maps of maximal
genus; hence it is necessary to calculate @ on BP maps of arbitrary genus.

Proposition 29. Let T,T;' be a BP map of genus g'. Then
ex( TyT;l) = 23'((7’ al)s erey (‘y, bg))
where v is oriented so that S, ; lies on its left.
Proof. The idea is to rewrite 7,T;' in terms of BP maps of genus one, and use

Corollary 2.5 for the calculation. Let ¢,, ..., &, be the curves pictured in Fig. 3
with the giver orientations. Then

0L, =(LT NT,T.)) - - (L,

j |

T3%),
and, using Corollary 2.5,

e.(T,T5") =z(<[y+':§ e,-], a.>, e ([Y‘F‘g ei], bg>). 2.15)

Fig. 3.
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However, y is homologous to &; for each i and [-y+Zf:,' €:]=g' - [v).- Equation
(2.15) becomes

ex( TyT;l) = 28'((7’ al)’ ey ('y, bg)), (2-16)
proving the proposition. []

Note that if (y, 8) is a BP of maximal genus, then g'=g—1. Proposition 2.9,
together with the fact that a,( 7,S) is generated by BP maps of maximal genus, imply

Corollary 2.10. For g =2, the matrix (3 ;) is in the image of m\(T,S) under ® if and
only if ve ((2g-2)2)*.

Recall that @, denotes @ with matrix entries taken in Z,. Then Corollary 2.10
shows that m,(T,S) c ker &, for n|2g—2. Hence the &, induce representations P,
of .# for n|2g —2. The representations &, of # were discovered by Sipe, and are
the topic of the next section.

One final remark is in order. If .4, is the mapping class group of a once-punctured
surface, then there is the exact sequence

1-Z->M->M, -1, (2.17)

where the kemel is the infinite cyclic subgroup generated by a Dehn twist about
the boundary of S. Since the representation ® is trivial on BSCC maps, it follows
that @ induces a representation of #,, also denoted by ®. All the results of this
section carry over to the case of the mapping class group of a once-punctured surface.

3. The represeatations &, and the groups G, .

The context in which Sipe discovered the representations @, is described in this
section, and her characterization of im &, is mentioned (for details see [8]). This
characterization extends to one of §ﬁm with the appropriate choice of vector field
X, (recall that Sp, depends on the choice of vector field). The results of Section 2
are then applied to gain further insight into the structure of the groups G, .

Sipe discovered the representations @, while calculating the action of # on nth
roots of the canonical bundle of the surface £ Some of the results found in [7, 8],
are reviewed here. First, by a Chern class argument, the canonical bundle admits
nth roots if and only if n|2g —2; therefore, it will be assumed that n|2g —2, where
g is the genus of S. Sipe shows that there is a one-to-one correspondence between
nth roots of the canonical bundle and the set

‘I’n ={§E Hl(Tlg; Z,,)If(Z) = _1}-

This topologic—al description of nth roots is used in what follows. In order to calculate
the action of .4 on nth roots, then, it suffices to know the action of .# on H,(T,S; Z,,).
Sipe was able to calculate this action, obtaining the representations @,. Recall that
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@, denotes the representation @ of .# with matrix entries tak:

for n|2g—2, the representation @, induces a representation of .

representation coincides with @, since both give the action of .ll on H.(T.S Z,.)
Thus Sipe’s results give information about @,,, and it is natural to ask which results
carry over to the representation ®. Sipe’s characterization of im &,, for example,
immediately carries over to the integer-valued case.

With respect to the basis {z, @, +z, b;+z} for H,, the following characterization
of the image of @, was given:

Theorem 3.1 (Sipe). The matrix (¢ p) is contained in the image of ®, if and only if

anf DEArF ~ taw ‘20

Diag(B'NB)—-ve(2Z,)%,

where BeSp(2g;Z,) and N=( ).

Here Diag(A) is the 2g vector whose ith component is a; and B' is the transpose
of B.

Let X, be the vector field such that w.(a;) = -1, w,(8;) = —1 for all i. Then, by
Theorem 2.2, @, calculates the action of # on H; with respect to the basis
{z, @+ 2z b;+z}.

Corollary 3.2. The matrix (} 3) is in Sp,, if and only if
Diag(B'NB)—ve (2Z)*.

Proof. This is an immediate consequence of Theorem 2.2 and a direct generalization
of Sipe’s arguments in [8] to the integer-valued case. [J

Note that Proposition 2.8 is the equivalent of Lemma 1 in [8], and that the results
of Section 2 reveal more of the geometric structure of @|,. Although Sipe’s arguments
regarding im @, immediately generalize to the integer-valued case, her discussion
of ker @, = G,,, does not.

Let N,,<Sp(2g,Z) be the congruence subgroup of level ». Sipe shows that
#(G,,)=N,,, where j is the sympiectic representtion of %, This result does not
apply to the integer-valued case since ker @< $. In fact, the results of Section 2
can be used to further describe the structure of G,,. The fact that §(G,,) =N,
characterizes the symplectic part of G,,, while the results in Section 2 can be used
to characterize G, , N 4. Recall the exact sequence (1.1) and Definition 2.6 of the
groups €, .

Definition 3.3. Let €, be the image of €, in ., and let € be the image of the
Chillingworth subgroup in .

An immediate consequence of the definitions is the following

Proposition 34. G,,N$ = €,,; hence the following sequence is exact:

15> %,,> Gy SN, > 1. o)
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Proof. Definition 3.3, Corollary 2.5, and the fact that &, induces &,. O

The characterization of G,,N ¥ is virtually a direct consequence of properties
of P|, discussed in Section 2. With a little work, however, even more of the structure
of G, is revealed.

Note that €,,,_.< G, for all n|2g—2. In other words, €,,,, is the subgroup
of F which acts trivially on nth roots of the canonical bundle for all n|2g-2. It
will be shown that, for n even, the group G,/ €2, is a semidirect product. The
remainder of the discussion, then, will be restricted to the case where n is even and
n|2g —2. The strategy will be to obtain a semidirect product structure on quotients
of certain subgroups in 4 using results from Section 2, and then show that these
quotients are isomorphicto G, ./ €,2,-_»-. If 4., < 4 denotes ker ®,, then pr{¥,,.) =
G, . where pr is as in sequence (1.1). Moreover, as a result of sequences (1.1), (1.2),
and Sipe’s characterization of p(G,..), it follows that p(¥,,) = N; .. Definition 2.6
and Corollary 2.5 imply that €,,= 9%, .N$, giving rise to the exact sequence

1+€,,> %, >N, > 1. (3.2)
Since €< €, for all n, and €< ¥, the sequence (3.2) modulo € becomes

1+ €,./€>%,,/€>N,,>1. (33)

Recall that € =ker &; thenefore, the groups €,,/ %, %,./%€ can be thought of as
subgroups of the matrix group Sp,o Explicit use of Corollary 3.2, the choice of
vector field X, and the fact that n is even, gives the following descriptions of the
groups €.,/ €, ¢, ./€:

Cen/ € =D (€,,.)= {((l, 1:)

ve(n2Z)’® }, (3.4)

and

Gon/ €=D,(6,,)= { ((l) ;) ve(nZ)’8 Be N&,,}. (3.5)

Note that since n is even, Be N, , implies B= (Id) mod 2, and
Diag(B'NB) = Diag((Id)'N(Id))=(0, ..., 0) mod 2. (3.6)

Hence, if (3 p) satisfies conditions (3.5), then it satisfies the conditions of Corollary
3.2. This remark also implies that the matrix (§ 3) is in @, (%,.,) for n even and all
Be N, ,. Thus any matrix ({, 8) € D, (%,,) can be written uniquely as a product
(@ B (6 12), where both (3 $), (1 %) are in D, (Y,.,)- In other words, there is a
semidirect product structure on %..n/ €. Under the obvious identification of €,/ %
with (nZ)?® the previous dlscussmn gives the isomorophism

Yon/ €=(nZ)* xN,,,. 3.7)
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Now that the desired semidirect product structure has been obtained on quotients
of subgroups of ., it remains to see how this structure projects to subgroups in .
Recall that the representation @ induces representations of .# when matrix entries
are taken medulo 2g —2. Moreover, €,,,_»/ €< %,,/%€ for n|2g—2. Using the
identification of €,/ € with (nZ)?, it is clear that

(G5! €)Y/ (€25-2/ €)= (n2)** /(2 -2)Z)** = (Z,)*", (3.8)

where k =(2g —2)/n. Now consider sequence (3.3) modulo the subgoup €,.,-./ %,
obtaining

1-»> ((gg,n/ (g)/ ( (gg.!g-zl ‘g)" gg,n/ @&23—2" Ng,n -> 1, (3-9)
which becomes, after the appropriate identifications,
15(Z,)*% > G,/ €525-2-> Nyu > 1. (3.10)

Consider ¥, ./ € to be the semidirect product (nZ)*® x N, ,, and note that modmg
out by ((2g —2)Z)** only affects the (nZ)*® factor. Hence %,/ €, ,,-2 is a semidi
product as well. More explicitly,

gg.n/ (63.23—2 = (Zk )Zg b Ng,n- (3.1 l)

This semidirect product structure on subgroups in 4 actually projects to a semidirect
product structure on subgroups in ..

Proposition 3.5. For n even and n|2g-2, G,,/%,;,.=(Z,)**xN,, where k=
(2g-2)/n.

Proof. By equation (3.11), all that needs to be shown is that
G,/ G 2= n/ Ce25-2- (3.12)

Since ker(pr) = m(T,S) < %,.2¢ -2, the proposition is a consequence of the definitions
of §,, and €,,,,. Explicitly,

gg,n/ (gg.Zg-zE(gg,n/"rl(Tls-))/((gg,zg-2/7rl(Tls.)) = Gg,u/ %g.Zg—Z' D
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