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Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is
a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regu-
lated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3,
conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-
specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core sub-
units. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits
and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current
state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the de-
gree of conservation of the players and mechanisms operating from yeast to human. This article is part of a
Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
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1. More than 50 years of eukaryotic cytochrome c oxidase assembly

Mitochondrial cytochrome c oxidase (COX) is a multimeric copper-
heme A terminal oxidase that functions as an electron-driven proton
pump and plays fundamental roles in eukaryotic cell respiration and
aerobic energy production. COX catalyzes the transfer of electrons
from ferrocytochrome c to molecular oxygen via the four redox active
metal cofactors present in its catalytic core. Electrons enter COX through
amixed valence dinuclear copper center, the CuA site, located in subunit
2. Electrons are transferred from CuA to a low spin heme a located in
subunit 1 and are subsequently transferred intra-molecularly to the
active site where a high spin heme a3 and CuB form a binuclear center
for oxygen binding (reviewed in [1–3]). The electron transfer reac-
tion is coupled to the transfer of protons from thematrix to the inter-
membrane space [4, 5] thus contributing to the generation of the
proton gradient which is subsequently used by the F1F0 mitochon-
drial ATPase to drive ATP synthesis.

From a historical perspective [6], the identification of the subunit
and prosthetic group components as well as the investigation of
their assembly into a functional enzyme started early in the XX cen-
tury and remains the center of ongoing intensive studies nowadays
[7−12]. The metal content of COX was already known in the mid
1950s. However, the isolation of functionally intact COX, achieved
approximately 50 years ago [13], opened the way for detailed bio-
chemical and biophysical analyses of the enzyme. It was soon recog-
nized that COX was a protein complex and the number of component
polypeptides was subsequently settled [14]. The current knowledge of
the COX subunit composition and assembly of the functional enzyme
has its foundations in work performed in the yeast Saccharomyces
cerevisiae. In the late sixties and early 1970s, emphasis was placed
on studying the biosynthetic origin of COX. Yeast cytoplasmic and
mitochondrial protein synthesis was differentiated in vivowith anti-
biotics, thus providing the first clues that respiratory complexes,
including COX, are contributed by two independent protein synthesis
machineries [15]. It was then recognized that the three largest COX
subunit polypeptides are translated by mitochondrial ribosomes
[16] and that they have physical and chemical properties different
from the subunits synthesized in cytoplasmic ribosomes [17]. The
sequence of the corresponding yeast genes was soon disclosed [18,
19]. The later publication of the full sequence and organization of
the human mitochondrial genome with the location of the COXI, COXII
and COXIII genes confirmed that with a few exceptions in plants [20],
the three core subunits are indeed encoded in the mitochondrial
DNA. In fact, eukaryotic COX is formed by 11–13 subunits (11 in the
yeast Saccharomyces cerevisiae and 13 in mammals) of dual genetic
origin. The three-subunit core is surrounded by a set of nuclear-
encoded small subunits that are important for both the assembly
and function of the enzyme as well as its dimerization (reviewed in
[8, 9, 21]). These subunits also serve to modulate the catalytic
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Table 1
Homologue COX subunits and COX assembly factors in the yeast Saccharomyces cerevisiae and human.

Yeast Human Role

Gene Protein Gene Protein

Catalytic core (mtDNA encoded structural subunits)
COX1 Cox1 MTCOXI COX1

Catalytic core subunitsCOX2 Cox2 MTCOXII COX2
COX3 Cox3 MTCOXIII COX3

Core protective shield (nDNA encoded structural subunits)
COX4 Cox4 COXVb COX5b

Subunits required for COX assembly and function

COX5a Cox5a COXIV-1 COX4-1
COX5b Cox5b COXIV-2 COX4-2
COX6 Cox6 COXVa COX5a
COX7 Cox7 COXVIIa COX7a
COX8 Cox8 COXVIIc COX7c
COX9 Cox7a COXVIc COX6c
– – COXVIIb COX7b
– – COXVIII COX8
COX12 Cox9 COXVIb COX6b Non-essential subunits
COX13 Cox10 COXVIa COX6a

Expression of catalytic core subunits
MSS116 Mss116 – – Helicase involved in splicing of all COX1 and COB introns

Component of the RNA degradosome
SUV3 Suv3 – – Helicase involved in COX1 aI5β intron splicing

Stability of intron-containing COX1 and COB transcripts
Component of the RNA degradosome

MRS1 Mrs1 – – Required for COX1 aI5β intron splicing
Required for excision of the COB bI3 intron

MNE1 Mne1 – – Required for COX1 aI5β intron splicing
MSS18 Mss18 – – Required for COX1 aI5β intron splicing

Additional unidentified function
COX24 Cox24 – – Required for splicing of aI2 and aI3 COX1 introns

Required for COX1 mRNA translation
NAM2 Nam2 – – Required for COX1 aI4 intron splicing
CCM1 Ccm1 – – Required for COX1 aI4 intron splicing
PET309 Pet309 Yeast: translational activator of COX1 mRNA

LRPPRC LRPPRC Human: mitochondrial mRNA stability
MSS51 Mss51 – – Translational activator of COX1 mRNA

Cox1 chaperone required for its stability/ maturation/assembly
YGR021w Ygr021w Yeast: no role on COX biogenesis

TACO1 TACO1 Human: COX1 mRNA translational activator
PET111 Pet111 Translational activator of COX2 mRNA
PET54 Pet54 – – Translational activator of COX3 mRNA

Required for COX1 aI5β intron splicing and translation
PET122 Pet122 – – Translational activator of COX3 mRNA
PET494 Pet494 – – Translational activator of COX3 mRNA

Membrane insertion and processing of catalytic core subunits
OXA1 Oxa1 OXA1 OXA1 Membrane insertion of COX subunits, cytochrome b and ATPase proteolipid
COX20 Cox20 COX20 COX20 Cox2 chaperone. Presentation of Cox2-precursor to the IMP complex
COX18 Cox18 COX18 COX18 Export of the Cox2 C-terminus tail
MSS2 Mss2 – – Export of the Cox2 C-terminus tail
PNT1 Pnt1 – – Export of the Cox2 C-terminus tail
IMP1 Imp1 – – Responsible for the maturation of precursor Cox2
IMP2 Imp2 IMMP2L IMMP2L Required for the stability and activity of Imp1
SOM1 Som1 – – Third component of the yeast IMP complex. It could play a role in substrate recognition

Copper metabolism and insertion into catalytic core subunits
COX17 Cox17 COX17 COX17 Delivery of copper to Sco1 and Cox11
SCO1 Sco1 SCO1 SCO1 Transfer of copper to COX and/or reduction of cysteine residues in subunit 2

SCO2 SCO2
COX11 Cox11 COX11 COX11 Stable formation of the CuB and Mg centers
COX19 Cox19 COX19 COX19

CX9C proteins. They could play roles in redox control and copper trafficking in
the intermembrane space

COX23 Cox23 COX23 COX23
PET191 Pet191 PET191 PET191
CMC1 Cmc1 CMC1 CMC1
CMC2 Cmc1 CMC2 CMC2

Heme A biosynthesis
COX10 Cox10 COX10 COX10 Farnesylation of protoheme
COX15 Cox15 COX15 COX15 Conversion of heme o to heme a
YAH1 Yah1 FDX2 FDX2 Collaborates with Cox15 in heme o hydroxylation
ARH1 Arh1 ADR ADR Collaborates with Cox15 in heme o hydroxylation

Assembly/unknown
COX16 Cox16 COX16 COX16 Unknown function
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Table 1 (continued)

Yeast Human Role

Gene Protein Gene Protein

PET117 Pet117 – – Unknown function
PET100 Pet100 – – Formation of assembly intermediates containing Cox7, Cox8, and Cox9
SHY1 Shy1 SURF1 SURF1 Catalyzes an assembly step involving Cox1
COX14 Cox14 – – Binds Cox1 and is required for its stability/maturation/assembly
COA1 Coa1 – – Binds Cox1 and is required for its stability/maturation/assembly
COA2 Coa2 – – Required for Cox1 stability/maturation/assembly
COA3/ Coa3 – – Binds Cox1 and is required for its stability/maturation/assembly
COX25 Cox25
CMC3/ Cmc3 – – CX9C protein involved in late stages of COX assembly
COA4 Coa4
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activity of the enzyme and to protect the core from oxidative dam-
age. A list of COX homologue subunits in yeast and mammals is
shown in Table 1.

In another major breakthrough in eukaryotic COX research, the
structure of COX from bovine heart mitochondria, determined at
~2.8 Å resolution [22–24], was revealed in the late 1990s. This repre-
sented a major milestone in the history of oxidative phosphorylation
since COXwas the first respiratory chain complex to have its high reso-
lution crystal structure resolved. Structural studies on the simpler bac-
terial COX had given clues about the association of catalytic metal
centers with specific homologue core subunits [25, 26] that were then
confirmed for the mitochondrial enzyme. The structures allowed also
to precisely determine the interface contacts among all subunit compo-
nents and to answer questions concerning the coupling between elec-
tron transport and proton pumping at the atomic level. From these
studies it is also known that non-catalytic metals such as zinc, magne-
sium and sodium are bound to the enzyme, although despite recent
progress [27, 28] their roles remain largely unknown.

The process of COX assembly has been the subject of intense in-
vestigations over the last 50 years using different approaches and it
still actively investigated nowadays. COX biogenesis is thought to be
a linear process, with the different subunits and cofactors being
added in an ordered manner. The concept of an assembly pathway
characterized by the sequential incorporation of COX subunits was
developed in the early 1980s from data obtained from studies that
used rat liver mitochondria and followed the incorporation of radiola-
beled subunits into the COX holocomplex [29]. The model was later
confirmed by analyses of the human enzyme performed by Blue-Na-
tive electrophoresis. By analyzing the formation of assembly interme-
diates, it was concluded that assembly initiates around a seed formed
by subunit 1 and proceeds with the formation of several discrete as-
sembly intermediates probably representing rate-limiting steps in
the process [30]. The study of assembly intermediates in yeast has
been less productive since they do not seem to accumulate in detect-
able amounts in most COX defective strains [31], probably due to the
marked downregulation of Cox1 synthesis in the absence of fully as-
sembled COX [32]. However, subassemblies have been detected in
yeast cox2 [33] and pet100 mutants [34] and are similar to those ob-
served in mammalian cells. Adding to the concept of linear assembly,
it is known that the biogenesis of the membrane forms of at least the
two major catalytic core subunits 1 and 2 follow relatively indepen-
dent lines with the participation of subunit-specific chaperones
(Fig. 1 and reviewed in [8, 10]). Furthermore, it has been proposed
that COX subassemblies might interact with other respiratory chain
components at early stages in the process of supercomplex assembly
[35] and that newly imported nuclear DNA-encoded subunits can in-
tegrate not only into the COX holoenzyme by associating with pre-
existing subunits but also into supercomplex forms by associating
with intermediate assembly complexes [36].

COX assembly is a protein assisted process. The systematic analysis of
yeast mutants defective in COX assembly has been an invaluable strategy
to identify the non-structural ancillary factors involved in COX assembly
and subsequently attempt the reconstruction of the different steps of
the assembly pathway. Screens of nuclear respiratory deficient mu-
tants was an innovative strategy in the early 1970s [37, 38] and have
revealed the existence of a large number of nuclear genes coding for ac-
cessory factors that selectively affect COX expression in yeast [39, 40].
Their functions, required for all steps of the process and significantly
conserved from yeast to humans, are summarized in Table 1 and have
been previously reviewed [7–10, 41, 42].

Over the last 20 years, mutant screen strategies have been also
used in humans, since defective COX biogenesis results in devastating
human mitochondrial diseases frequently involving brain, skeletal
muscle and heart tissues (reviewed in [11, 21, 43–45]). To date, with
the double exception of an infantile encephalomyopathy caused by amu-
tation in the nuclear encoded subunit COX6B1 [46] and an exocrine pan-
creatic insufficiency caused by a mutation in the COX4I2 gene [47], all
Mendelian disorders presenting COX deficiency have been assigned to
mutations in ancillary factors. Specifically, mutations have been found in
SURF1, required for the formation of early assembly intermediates [48,
49], SCO1 and SCO2, required for COX copper metallation [50−54],
COX10 and COX15, essential for heme A biosynthesis [55-57], and finally
in LRPPRC [58] and TACO1 [59], required for the expression of COX sub-
units.Mutantfibroblast cell lines frompatients suffering from these disor-
ders have been used to study the accumulation of subassembly
intermediates in the absence of specific COX assembly factors and obtain
information concerning the assembly step either catalyzed or affected by
themutated factor [31, 60, 61]. These studies have also provided informa-
tion concerning mammalian specific COX biogenetic factors, such as
TACO1, an evolutionary conservedprotein although it functions as amito-
chondrial COX1 translational activator specifically in mammals [59].

Over the last 10 years, particular attention has been devoted to the
assembly of the COX catalytic core, which is the focus of this review.
New players and regulatory pathways have been identified disclosing
increasing levels of complexity. Our aim here is to summarize the cur-
rent understanding of the biogenesis and assembly of the eukaryotic
cytochrome c oxidase catalytic core in yeast and will include compar-
ative notes of the process as it occurs in human cells.

2. Expression of mitochondrial DNA encoded COX core subunits

2.1. Mitochondrial COX gene transcription and mRNA processing in
Saccharomyces cerevisiae

In S. cerevisiae, the COX2 and COX3 genes for subunits 2 and 3,
respectively, have no introns and the primary transcripts are indi-
vidually transcribed and matured by the general mitochondrial
transcription and 3′ processing machinery. General mitochondrial
transcription has been recently reviewed elsewhere [62].

In contrast, the COX1 gene is transcribed as a polycistronic pre-
cursor RNA that includes the genes COX1, ATP8, ATP6 and ENS2. This
transcript is processed between the COX1 and ATP8 cistrons to release
COX1 mRNA (reviewed in [63]). Additionally, the COX1 gene contains
multiple introns of two different types, groups I (introns aI3, aI4, aI5α,



Fig. 1. Simplified model for the process of COX assembly. General chaperones and RNA-specific translational activators (not depicted here but see explanation in the text) are
required for synthesis of the mtDNA-encoded subunits forming the core. Following their insertion into the inner membrane, Cox1 and Cox2 are matured by addition of metal
cofactors. At some point, substrate-specific chaperones bind Cox1 and Cox2 to maintain them in an assembly-competent state. A predicted Cox3 chaperone has not been yet
identified. Following Cox1 maturation, the nuclear DNA-encoded Cox5 and 6 subunits are added to Cox1 prior incorporation of the other core subunits and the rest of the acces-
sory subunits to form the holoenzyme.
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and aI5β) and II (introns aI1, aI2, and aI5γ) [18]. Maturation of the sub-
unit 1 pre-mRNA depends on proteins referred to asmaturases (related
to DNA endonucleases for group I introns and reverse transcriptases for
group II introns [64]) whose genes are located in the COX1 introns [65,
66]. In addition, an increasing number of nuclear gene products have
been described that are also essential for maturation of the mRNA
(see full list in Table 1). This includes the Mss116 RNA helicase [67],
which is a general mitochondrial splicing factor that acts in facilitating
the RNA folding reaction required for self-splicing [68, 69] and the
Suv3 RNA helicase, which is required for the processing of intron aI5β
by recycling the intron-splicing factor Mrs1 [70]. At least two proteins
are required for COX1 aI4 intron splicing, Ccm1 [71] and Nam2 [72].
Other proteins are involved, which specific functions in most cases re-
main to be fully understood such as the COX3mRNA translational acti-
vator Pet54 [73, 74], Mrs1 [75], Mne1 [76] andMss18 [73], four proteins
required for the processing of COX1 aI5β intron, and the recently iden-
tified Cox24, required for splicing of COX1 aI2 and aI3 introns [77]. Sev-
eral nuclear gene products implicated inmitochondrial splicing seem to
havemultiple functions as suggested by the fact that yeast strainswith a
null mutation in one of these genes and devoid ofmitochondrial introns
do not recover full respiratory competency. That is the case of Cox24
[77] and Pet54 [78], which also seem to be required for efficient Cox1
synthesis. Nam2 is the yeast mitochondrial leucyl-tRNA synthetase
and is additionally required for mitochondrial DNA maintenance [79].
Mss116 and Suv3 were found to be part of the degradosome, an enzy-
matic complex that takes part in turnover of mitochondrial RNAs [80].
Also Mss18 performs a second role which remains to be identified
[73]. In contrast, both Δmrs1 and Δmne1 yeast strains carrying intron-
less mtDNA recover respiratory competency indicating that Mrs1 and
Mne1 are only required for mitochondrial pre-mRNA splicing [76, 81].

As expected, defective COX1 mRNA processing and splicing result
in null or poor translation and a subsequent COX assembly defect.

2.2. Mitochondrial COX messenger-specific translational factors in
Saccharomyces cerevisiae

In S. cerevisiae, translation of each mitochondrial COX mRNA de-
pends on one or more nuclear encoded translational activators (for re-
view, see [82]). These mRNA-specific translational factors are either
integral or peripheral inner membrane proteins that recognize the
5′-untranslated region (UTR) of their target transcripts. At least
two proteins, Mss51 [83] and Pet309 [84], are required for synthesis
of Cox1; Pet111 is required for Cox2 synthesis [85, 86]; and three
gene products, Pet54, Pet122 and Pet494, govern the synthesis of
Cox3 [87−89].

Most of the understanding of the interaction of these transla-
tional activators with the RNA leaders has been elucidated by ge-
netic studies [87, 88, 90]. Although they show specificity for their
target RNA sequence, in most cases it remains to be explored whether
the interaction is physical and direct, or if they rather function through
interactions with the mitoribosome and/or unidentified proteins.
Current speculations suggest that translational activators play a role
in the spatial and temporal organization of mitochondrial protein
synthesis and thus may serve to couple translation to insertion of
the newly synthesized hydrophobic products into the membrane
near or at the site of their assembly into multisubunit complexes
[91, 92]. The expression and stoichiometry of these translational
activators is important to maintain a balanced accumulation of the
mitochondrial encoded COX subunits. With the exception of Mss51
(see below), these factors have been found to interact with each
other forming high molecular complexes [89, 91], suggesting some
level of co-regulation in the expression of the core-forming subunits
of COX [93]. The stability of these complexes and the function of the
different factors can be affected if the expression of one of the com-
ponents of the complex is altered [91], possibly by sequestering
other proteins in a nonfunctional state. For example, overexpression
of Pet111 attenuates Cox1 synthesis and COX assembly and limits
the respiratory growth of yeast, an effect that can be complemented
by concomitant overexpression of Mss51 and Pet309 [93]. Interac-
tions have also been noted between a mitochondrial transcription
factor, Nam1, and translational activators, including Pet111, Pet309,
and Pet494 [91, 94] raising the possibility that mitochondrial transcrip-
tion may be coupled to translation.

2.3. Mitochondrial COX gene expression in human

Most of the yeast genes specifically involved in the expression of the
threemtDNA encoded proteins forming the core of the enzyme seem to
be absent in humans. This can be explained by qualitative differences
between the two species in their mitochondrial DNA and mRNA. Splic-
ing factors are not required in humans because COX1, as any other gene
in the human mitochondrial genome lacks introns. Transcription is
polycistronic and the structural genes are flanked by tRNAs which
serve as marks for processing by specific RNAses to free the individ-
ual transcripts. In mammalian mitochondria, the mRNAs are subse-
quently polyadenylated. Detailed information about mammalian
mitochondrial transcription can be found in recent reviews [95, 96].

Concerning translation, the existence of mRNA-specific transla-
tional factors in mammalian mitochondria has long been a subject
of speculation. Mammalian mitochondrial mRNAs lack 5′-UTRs en-
tirely. Thus, a Shine/Dalgarno interaction between the mRNA and
the 12S rRNA is not used during mitochondrial translation. The yeast
mitochondrial mRNAs also lack a typical Shine/Dalgarno element. How-
ever, in yeast themRNA-specific translational activators could be involved
in the localization of the small ribosomal subunit near the translational
start codon [97]. Since most aspects of COX biogenesis are functionally
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conservedphylogenetically, it has been suggested that such factors, if they
exist inmammals, interact with the coding regions of mammalian mi-
tochondrial mRNAs. Unfortunately, these translation factors are
poorly conserved at the primary sequence level even among
fungi, making their orthologues difficult to be identified in mam-
malian genomes. A breakthrough in this area has recently been
made, showing that homologues with poorly conserve sequences
can still play related functions. This is the case of the yeast nuclear
gene PET309 [84] and its human homologue LRPPRC. Mutations in
LRPPRC are responsible for the Canadian form of Leigh syndrome
[58]. Although the sequence similarity between their products is
very weak (26%), the reciprocal BLAST best match of LRPPRC
found in yeast is PET309 [58]. LRPPRC plays roles in stabilizing
and handling all mRNAs, particularly those for the COX core sub-
units [98]. This protein also interacts with SLIRP, a stem-loop RNA
binding protein, in a high molecular weight complex that contains
mature mitochondrial mRNAs. However, it has been shown that
LRPPRC does not participate directly in translation [98].

TACO1, a specific translational activator of human COXI, was recently
identified by genome-wide linkage analysis in a patient affected by
Leigh syndrome associated with an isolated COX deficiency [59]. TACO1
is a soluble matrix protein which could act by securing an accurate
start of COXI mRNA translation or by stabilizing the elongating poly-
peptide and ensuring completion of its translation [59]. Deletion of
the yeast homologue, YGR021W, does not produce any respiratory
deficient phenotype and its role is unclear. The identification of
mammalian-specific mitochondrial COX gene translational activa-
tors and the characterization of their mechanism of action are
expected to provide crucial information concerning how translation
of mammalian mitochondrial mRNAs is activated.

3. Biogenesis and assembly of yeast COX subunit 1

3.1. Cox1 synthesis, membrane insertion and stability

3.1.1. Exclusive properties of COX1 mRNA-specific translational activators
The two translational activators identified to be essential for the trans-

lation of the COX1mRNA in S. cerevisiae, Pet309 and Mss51, have struc-
tural and functional properties worthy to be highlighted in this section.

Pet309 is the only mitochondrial translational activator identified
in S. cerevisiae that contains PPR motifs. Proteins that contain these
sequence repeats in other organisms are usually involved in specific
steps of RNA metabolism. They are implicated in precursor transcript
stability and processing, as well as translation [99−102]. The small
number of PPR proteins in S. cerevisiae contrasts with the number of
family members in S. pombe, in which nine PPR proteins were recent-
ly reported to regulate mitochondrial gene expression, among them
Ppr4, a putative homologue of Pet309, specifically affecting Cox1
translation [101]. S. cerevisiae Pet309 is predicted to contain at least
seven PPR motifs located in the central portion of the protein. Studies
involving these motifs showed that they are necessary for Pet309
translation of COX1 mRNA, but are not required for the stability of
the transcript [103]. Although Pet309 has been established as a spe-
cific Cox1 translational activator, also necessary for the stability of
the mRNA transcript, it remains to be explored whether Pet309 inter-
acts directly with the 5′-UTR of COX1 mRNA, and what the role of the
PPR motifs would be in this predicted interaction.

Mss51 is unique among the COX-related translational activators
because in addition of its requirement for the synthesis of Cox1, it
plays additional roles in the stability of the newly synthesized peptide
and its incorporation into early COX intermediates [32, 104]. Genetic
studies have shown an interaction of Mss51 with the 5′-UTR of COX1
mRNA [104]. However, when the 5′-UTR of COX1mRNAwas swapped
for the same region of the COX2mRNA, the translation of the chimeric
COX1 mRNA proceeded in the absence of Pet309, but not in cells that
lacked Mss51. These results suggested that Mss51 has a second role in
Cox1 biogenesis beyond its function in translational activation. Be-
sides its interaction with the COX1 message, Mss51 has been found
to interact with newly synthesized Cox1 [32, 104]. It has been pro-
posed that such an interaction could serve to facilitate Cox1 elonga-
tion during synthesis [104, 105]. We have shown that Mss51 acts to
stabilize Cox1 and maintain it in an assembly competent state before
it proceeds to downstream assembly steps [32, 104, 106]. The double
function of Mss51 provides the basis for a regulatory mechanism that
coordinates Cox1 synthesis with COX assembly as explained below.

Despite efforts in several labs to identify the precise role of Mss51
in Cox1 translation, several basic questions remain to be answered.
For example, it has not been directly established whether and how
a physical interaction of Mss51 with the 5′-UTR of COX1mRNA occurs
in vivo. So far, only yeast-three-hybrid system studies have provided
some evidence for a physical interaction between a hydrophilic re-
gion located in the N-terminal 177 residues of the mature Mss51 pro-
tein and a target in the 5′-UTR of COX1 mRNA within 245 nucleotides
upstream of the initiation codon [105].

Noticeably, we have reported evidence for aberrant translation of
COX1 mRNA species resulting in a polypeptide termed mp15, in the
absence of Mss51 but not in the absence of Pet309 [105]. Most prob-
ably, mp15 is a truncated translation product of a partially processed
COX1 mRNA [105]. These results suggest that binding of Mss51 to the
5′-UTR of COX1 mRNA could be necessary for optimal initiation of
translation by Pet309, whereas the interaction of Mss51 with newly
synthesized Cox1 may regulate elongation of the nascent polypeptide
[105] as previously proposed [104].

3.1.2. Translational regulation of Cox1 synthesis, Cox1 chaperones and
Cox1 pre-assembly complexes

COXassembly requires the accumulation of its constitutive subunits in
a defined stoichiometric ratio. Studies over the last decade have led to the
notion of twomechanisms responsible for the concerted accumulation of
COX subunits in yeast mitochondria. First, most unassembled COX subu-
nit 1 and the other highly hydrophobic core subunits 2 and 3 are very ef-
ficiently posttranslationally degraded by the ATP-dependent AAA
proteases of the inner mitochondrial membrane [107]. Additional prote-
ases have been recently found to specifically prevent the accumulation
of immature Cox1, including the conserved metallopeptidase Oma1
[108]. Active degradation will avoid the accumulation of unassembled
proteins that could have a tendency to aggregate and disturb membrane
homeostasis or to form pro-oxidant species as discussed below.

Second, Cox1 is subjected to assembly-controlled translational
auto-regulation [32, 78, 104−106, 109−111]. This kind of translational
regulation was initially found to operate in the assembly of photosyn-
thetic complexes in chloroplasts from the alga Chlamydomonas rein-
hardtii [112, 113] and in higher plants [114] and termed control by
epistasis of synthesis. A distinctive characteristic of these organellar
translational auto-regulatory systems is the involvement of ternary fac-
tors, mRNA-specific translational activators, whose availability would
be regulated by the specific gene products. In the case of yeast COX,
the ternary factor is Mss51 [32, 78, 104−106, 109, 110].

Mss51 dynamically interacts with Cox1 and several components
of the COX biogenetic process. During Cox1 synthesis on the mitori-
bosomes, Mss51 and newly synthesized Cox1 form a transient com-
plex [32, 104] that is stabilized by the COX assembly factors Cox14
[32] and Cox25 (also termed Coa3 [110, 111]) and additionally con-
tain the mitochondrial Hsp70 chaperone Ssc1, and its co-chaperone
Mdj1 [106]. Ssc1 and its co-chaperone Mdj1 were shown to form a
complex with nascent polypeptide chains on mitochondrial ribo-
somes probably to facilitate their proper folding during translation
[115]. The presence of all these proteins in a COX1 translational com-
plex points towards cooperation of general and specific chaperones in
the folding and stabilization of newly synthesized Cox1.

Cox1 is a highly hydrophobic protein and it spans 12 trans-membrane
domains in the inner mitochondrial membrane, connected by short
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hydrophilic loops that protrude either to the inter-membrane mito-
chondrial space or the matrix. As Cox1 is being synthesized, it is co-
translationally inserted into the inner mitochondrial membrane
with the aid of the Oxa1 machinery [116], which interacts with the
mitoribosome. Cox14 and Cox25/Coa3 are small single transmem-
brane proteins with a hydrophilic C terminus. While this region of
Cox14 resides in the intermembrane space and is glutamine rich,
the C terminus of Cox25 resides in the matrix milieu and contains a
positively charged lysine rich terminal domain [110]. The topologies
of Cox14 and Cox25 suggest these proteins could interact with Cox1
transmembrane domains and direct their insertion into the inner
membrane. Definitely, they serve to promote the stability of the
Cox1–Mss51–Ssc1 complex by interacting with Cox1 and holding the
complex from both the intermembrane space and the matrix sides of
the inner membrane. In fact, in the absence of either of these proteins,
newly synthesized Cox1 is rapidly degraded [32, 106, 111].

Following Cox1 synthesis and membrane insertion, a Ssc1–Mss51–
Cox1–Cox14–Cox25 pre-assembly complex remains stable until Cox1
proceeds to downstream assembly steps. This complex, abundant in
wild-type cells, could represent a Cox1-containing complex serving as
a reservoir of stable Cox1 ready to be matured and/or to progress in
the COX assembly process when required. We have postulated that
the Mss51 interactions within the translational and pre-assembly com-
plexes down-regulate Cox1 synthesis when COX assembly is impaired
by trapping Mss51 and limiting its availability for COX1mRNA transla-
tion [106, 110] (Fig. 2). The C-terminal residues of Cox1 have recently
been shown to be essential for Mss51 sequestration and to stabilize
the Ssc1–Mss51–Cox14–Cox25 interaction [78].

According to the translational regulation model (Fig. 2), the release
of Mss51–Ssc1 from the pre-assembly complex and Mss51 availability
for Cox1 synthesis [106] probably occur when Cox1 acquires its pros-
thetic groups or interacts with other COX subunits, a step possibly
catalyzed by Shy1 (SURF1 yeast homologue), a protein involved in
maturation and/or assembly of Cox1 [32, 35, 117]. Coa1, another
COX assembly factor, could also participate in Cox1 maturation
and stabilize the Cox1–Ssc1–Mss51–Cox14–Cox25 complex prior
to its interaction with Shy1. Once Mss51 is released from the Cox1
pre-assembly complex, Cox14 and Cox25 remain interacting with
increasingly matured COX assembly intermediates [35, 111, 118].
Coa1 and Shy1 are subsequently incorporated to interact with Cox1-
containing subassemblies downstream from the roles of Mss51 in
COX biogenesis. In the absence of Coa1, Cox1 synthesis proceeds
normally as in the case of cox14 or cox25 mutants. However, the
Cox1 pre-assembly complex is formed in the absence of Coa1 [106]
and it is now generally accepted that this protein is not part of
Mss51-containing complexes [106, 111, 119]. Coa1 could play roles
in Cox1 maturation perhaps in collaboration with Shy1 [35, 118], a
step that could be synchronized with the incorporation of nuclear
encoded subunits Cox5a and Cox6 into early Cox1 assembly inter-
mediates and coupled to the release of Mss51 from the Cox1 pre-
assembly complex [78, 117].

The presence of Ssc1 in the pre-assembly complex could serve
to facilitate the proper Cox1 folding during membrane insertion
as mentioned earlier or to present it to matrix-localized proteolytic
systems in the case of unproductive folding that would prevent
membrane insertion. Alternatively or additionally, it could play a
role in the coordination of the recycling of Mss51 from its post-
translational function to become available for COX1 mRNA translation
[106]. In fact, we have proposed that when Mss51 is released from the
pre-assembly complex, it forms a very stable heterodimeric complex
with Ssc1 [106]. In the absence of COX1 mRNA and/or Cox1, all Mss51
is bound to Ssc1 in this binary complex which seems to be the reservoir
of Mss51 when not engaged in its functions in Cox1 biogenesis. This
heterodimer may be the source of Mss51 that is competent for transla-
tion [106]. Supporting this possibility, overexpression of Mss51 or null
mutations in cox14 and cox25/coa3, results in wild-type levels of Cox1
synthesis, although the protein is rapidly degraded and Mss51 fully ac-
cumulates into the heterodimeric complex with Ssc1, thus preventing
the trap into higher molecular weight complexes, and is available for
subsequent rounds of translation [106, 110]. Among the many open
questions remaining, it seems important to know whether Mss51 is re-
leased from the pre-assembly complex bound to Ssc1, or a new Ssc1
molecule bindsMss51 following its release. Similarly, exploring wheth-
er Mss51 plays a role in COX1 mRNA translational activation alone or
complexed to Ssc1 requires further investigation.

Additionally, whether the COX1 translational regulatory system is
conserved in higher eukaryotes remains unknown. Cox1 synthesis
seems to proceed normally in cells from patients carrying mutations
that compromise COX assembly. It can be claimed that in these
cases, the mutant factors always retain some residual activity which
could prevent the activation of the regulatory mechanism. However,
Cox1 synthesis was not altered in mouse cells carrying a null allele
of cox10 [120].

3.2. Maturation of Cox1 by incorporation of its metal prosthetic groups

Cox1 contains two metal centers, heme a and the binuclear center
formed by CuB and the high spin heme a3, which are essential for the
catalytic activity of the enzyme. The incorporation of these prosthetic
groups is necessary for the maturation and correct folding of the Cox1
polypeptide. When and how the metal groups are incorporated into
Cox1 is of high interest in the field but remain to be fully understood.

3.2.1. Heme a biosynthesis, incorporation into Cox1 and coupling to COX
assembly

Heme a is a prosthetic group present in eukaryotic and some bac-
terial COX. Most bacterial oxidases contain heme b, a heme a precur-
sor species. COX is the only enzyme in mitochondria that requires
heme a as a cofactor. Heme a differs from protoheme (heme b) in
that the C2 vinyl side chain is replaced by a hydroxyfarnesyl and the
methyl group is oxidized into a formyl group [121]. Heme a biogenesis
from its ancestral heme b form is a stepwise process and has been
reviewed elsewhere [21, 122]. The first reaction is catalyzed by Cox10,
the heme A:farnesyltransferase, and involves the formation of a heme
o intermediate that carries a hydroxyfarnesyl group at the C-2 position.
The conversion of heme o to heme a requires the oxidation of themeth-
yl substituent in position C-8 to a formyl group which could occur in
two discrete monooxygenase steps [121]. Several models have been
proposed to explain the conversion of heme o to heme a. In a model,
the heme o methyl group is first hydroxylated by the oxygenase
Cox15, which acts in concert with ferredoxin Yah1 and the ferredoxin
reductase Arh1 [123], while the subsequent oxidation of the C-8metha-
nol to a formyl group would be catalyzed by an enzyme yet to be iden-
tified [123]. On another model, Cox15 may utilize two successive
monooxygenase reactions to generate a geminal diol (which could
then spontaneously dehydrate) [124]. On a third, perhaps less likely al-
ternative, a peroxidase-type mechanism can be invoked to generate an
aldehyde directly from amethyl group, or a peroxidase could oxidize an
alcohol intermediate [124]. Studies in Bacillus subtillis have provided
strong evidence supporting that Cox15 oxidizes heme o to heme a via
successive monooxygenase reactions [124]. On a functional note, it
has been proposed that the farnesylation of heme may be important
for Cox1 folding and packing [122], whichmay account for the necessity
to contain heme a over heme b.

While Cox1 hemylation is essential for COX assembly, little is
known about the players and mechanism of heme a insertion into
Cox1. Due to the reactive nature of the heme a moiety, it is likely
that a heme-binding protein assists the transfer of heme a from its
synthesis site to Cox1. Cox10 and Cox15 are both integral proteins
in the inner mitochondrial membrane [123, 125], which could possi-
bly give proximity of heme a synthesis to Cox1 insertion. Due to the
requirement of heme a incorporation into Cox1 for its stability and



Fig. 2. Coordination of Cox1 synthesis with COX assembly. The model depicts the roles of Mss51, Cox14, Cox25 and the mtHsp70 chaperone Ssc1 on translational regulation of COX
biogenesis (see explanation in the text).
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folding, it has been suggested that this event could occur either co-
translationally or during Cox1 insertion into the membrane. Howev-
er, it has been recently shown that the two heme a cofactor sites in
Cox1 form downstream of Mss51- and Coa1-containing Cox1 preas-
sembly and stabilization intermediates [119]. These Cox1 intermedi-
ates form normally in cells defective in heme a biosynthesis or in
cox1 mutant strains with heme a axial His mutations [119]. Addition-
ally, analyses of purified Mss51-containing Cox1 preassembly and
stabilization complex have failed to detect any traces of heme a
(our unpublished results), thus indicating that heme insertion clearly
occurs at a post-translational stage. In contrast, the Mss51-free, Shy1-
containing Cox1 assembly intermediate is perturbed in the absence of
heme a, thus suggesting that the incorporation of heme a into Cox1
occurs within this subassembly [119].

Shy1 is the yeast homolog of Surf1, a mammalian gene identified
in the COX deficiency leading to Leigh syndrome in humans. Shy1
has been proposed to be involved in either the formation or the stabi-
lization of the heme a3 site. This hypothesis was initially based on the
observation that in a Rhodobacter sphaeroides surf1 null mutant the
heme a3 site is not fully populated [126]. Noticeably, in this mutant
the heme a site was found to be formed. This result brings the ques-
tion of the possible existence of two heme a insertases. Although
there has not been any report of other candidate proteins involved
in heme delivery to Cox1, it is not likely that Shy1/Surf1 is the only
protein involved in this process due to the 10–15% residual COX activ-
ity detected in the yeast null mutant and mutant surf1 human cells.
Recent data on Paracoccus denitrificans Surf1 isoforms, have shown
that when co-expressed in Escherichia coli together with enzymes
for heme a synthesis, they have the ability to bind heme a in a 1:1
stoichiometry with Kd values in the submicromolar range [127].
Nonetheless, these findings have yet to be confirmed in vivo and in
eukaryotes. The bacterial study also identified a conserved histidine
as a residue crucial for heme binding [127]. COX10 is a weak multi-
copy suppressor of yeast Δshy1 cells, thus connecting Shy1 to heme
biosynthesis [117, 118]. However, mutations of either of the two con-
served His residues in yeast Shy1 did not significantly affect its func-
tion [128]. Alternatively, Shy1 function may enhance the stabilization
of the heme a3 site rather than playing a direct role in heme a deliv-
ery. A role of Shy1 in incorporation of additional COX subunits into
early Cox1 subassemblies has not been fully discarded. For example,
overexpression of Cox5a and Cox6 significantly suppresses the respi-
ratory defect of Δshy1 cells [117, 118]. Enhanced levels of these sub-
units may stabilize Cox1 in Δshy1 cells, enabling progression to later
stages of COX assembly. We could speculate that, for example, addi-
tion of Cox5a, which transmembrane helix is tightly packed against
Cox1 could contribute to the stabilization of the metal centers in
Cox1. However, studies of COX assembly intermediates in fibroblasts
from human patients carrying mutations in SURF1, have disclosed the
accumulation of Cox1 alone or in an early intermediate containing
human subunits IV and V (yeast subunits 5a and 6), which has sug-
gested that SURF1 could play a role in the incorporation of subunit
II into these nascent intermediates [129]. In any case, heme a inser-
tion into the binuclear center of Cox1 seems to occur prior to addition
of Cox2 as the farnesyl group of heme a3 is located at the interface be-
tween the two subunits [22].

Due to the high reactivity of the heme a moiety, it seems logical
that its synthesis would be coordinated to its incorporation into
Cox1. In fact, the biosynthesis of heme a has been shown to be
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regulated by downstream events in the COX assembly process [130].
In most yeast COX mutants there is a drastic reduction of steady-state
levels of heme a [130]. The overexpression of COX15, particularly
when co-overexpressed with the ferredoxin YAH1 acted as a suppres-
sor of the heme a accumulation defect in COX mutants including mu-
tants in which Cox1 was not synthesized. This observation suggested
that the absence of heme a in the mutants is not due to a rapid turn-
over of the cofactor in the absence of COX subunit 1, but rather to a
feedback regulation of the heme a synthesis when the COX assembly
process is blocked [130]. These results suggest that heme a synthesis
can proceed even in the absence of stable Cox1 peptide. In addition to
low heme a synthesis, COX mutants with the obvious exception of
cox10, also show an accumulation of heme o, indicating that this com-
pound is stable. Heme o levels were also very low in a cox15 null mu-
tant, a phenotype that was not rescued by the overexpression of
COX10. This observation suggested that the first step of the heme a
biosynthesis is also positively regulated in a Cox15 dependent man-
ner [130]. It remains to be tested whether increased heme a levels
by COX15 overexpression in the absence of COX assembly bypasses
Cox1 downregulation. In that event, it could be proposed a direct con-
nection between COX1 translation and heme a biosynthesis regula-
tions. However, in a cox14 null mutant, in which Cox1 synthesis is
not downregulated due to the instability of the Mss51:Cox1 early in-
termediate [32], heme a levels are low and there is a significant accu-
mulation of the heme o intermediate, compared to a wild type strain
[130], thus indicating that an increase in Cox1 synthesis does not
stimulate heme a biogenesis.

The identity of the COX assembly intermediate that could operate
in the regulation of heme a biosynthesis remains to be identified. Re-
cent studies in yeast have identified a new COX assembly gene, COA2,
essential for COX assembly, which absence impairs Cox1 maturation
and induces a rapid degradation of newly synthesized Cox1 [108].
Coa2 was shown to transiently interact with Shy1 [131]. Coa2 has
been connected to Cox1 hemylation because the respiratory deficien-
cy of coa2Δ cells is suppressed by the presence of a catalytically active
mutant allele of Cox10 (N196K). The suppressor activity of this Cox10
variant is actually dependent on its catalytic function and the pres-
ence of Cox15 [108]. Noticeably, Cox10 forms a high mass oligomeric
complex which stability, enhanced by the N196K mutation, seems to
depend on Coa2 [108]. Oligomerization of wild-type Cox10 appears to
be dependent on the Coa1-containing Cox1 complex, but the N196K
protein can oligomerize in the absence of Coa1. Consistently, the
Cox10 oligomer is not formed in Δcox14 cells where Cox1 is synthe-
sized but not assembled. However, it is unlikely that Cox10 oligomer-
ization is necessary for its function as a heme o synthase, since the
cox14 null mutant accumulates high levels of the heme o intermedi-
ate as mentioned earlier [130].

The pathways involved in heme a biosynthesis are highly conserved
from yeast to human. The conservation of Cox10 and Cox15 along evo-
lution is underlined by human COX10 and COX15 heterologous comple-
mentation, albeit poor in the former case, of yeast cox10 and cox15 null
mutants, respectively [125, 132]. Mutations in human COX10 and
COX15 genes have been associated with severe infantile cardiomyopa-
thy and Leigh syndrome in human [55–57]. The analysis of COX assem-
bly intermediates suggests that heme a is incorporated into COX1 at a
very early stage of COX assembly, prior to the formation of the COX1–
COX4–COX5a complex, that fail to accumulate in patient fibroblasts
[56, 57, 60]. The heme a regulatory system could be different in mam-
malian cells. Analyses of mitochondrial heme content in COX15 defi-
cient fibroblasts from a human patient suffering from hypertrophic
cardiomyopathy showed levels of heme o significantly higher than in
control fibroblasts [57].

3.2.2. Copper metabolism and insertion into Cox1
Despite being essential for life [133], the high redox activity of

copper means that it can be extremely toxic and promote the
formation of reactive oxygen species. Therefore, a network of trans-
porters strictly controls the movement of copper in living systems.
Most components of the copper homeostatic machinery and their
mechanisms of action were elucidated in S. cerevisiae and have been
extensively reviewed elsewhere [134]. In mitochondria, two en-
zymes, COX and mt-Sod1 receive copper within the IMS [12, 135].
This requires a specific copper transport pathway to this organelle.
The mitochondrial matrix contains a pool of copper bound by a not
yet fully characterized nonproteinaceous ligand [136]. This pool is
the copper source for metallation of COX and mt-Sod1 [137]. The li-
gand has also been found in the cytoplasm and it has been suggested
that it may recruit copper to mitochondria in place of a copper chap-
erone [137]. Exactly how copper makes its way from plasma mem-
brane copper transporters to the mitochondrial matrix and IMS is of
great interest to the field and remains to be understood.

COX copper metallation involves the IMSmetallochaperone Cox17
[138], a small hydrophilic protein that contains a CCxC copper bind-
ing motif [139]. The last cysteine in the motif is the first in an overlap-
ping twin Cx9C structural motif [140]. Once copper reaches Cox17
within the IMS, it is accepted that this protein transfers copper ions
to two chaperones [141], Sco1 [142] and Cox11 [143, 144] that
facilitate copper insertion into the Cox2–CuA and Cox1–CuB sites,
respectively. How copper reaches Cox17 in the mitochondrial IMS is
still an open question. In addition to Cox17, the IMS houses additional
conserved Cx9C proteins which absence produce heterogeneous effects
in COX assembly and function [145]. Several pieces of information
obtained in S. cerevisiae suggest that at least some of these proteins
could be part of a copper transfer pathway towards COX [135]. These
proteins include Cox19 [146], Cox23 [147], Pet191 [148], Cmc1 [149]
and Cmc2 [150]. We have hypothesized that copper could be trans-
ferred from the matrix pool across the inner membrane by an
uncharacterized transporter to the membrane-bound Cmc1/2 pro-
teins [135]. In a daisy chain transfer mechanism, copper would be
successively transferred to the soluble Cox19, Cox23 and ultimately
to Cox17 for final delivery to Cox11 and Sco1. This mechanism
would be expected to involve transfer of both reducing potential
and Cu(I) to generate reduced Cu(I)-bound proteins. Such a mech-
anism could be useful to accumulate a small copper pool in the IMS
available for regulated transfer to Cox17 [135]. Alternatively, the
small CX9C proteins could play a role in copper transfer towards
Cox17 by modulating the local redox environment within the IMS.
Interestingly, Cmc1 and Cmc2 are not only required for full expres-
sion of COX but indirectly modulate copper delivery to mt-Sod1,
thus suggesting a connection between the two pathways [149,
150]. These aspects of mitochondrial copper metabolism remain
speculative and have been extensively reviewed recently [135,
151].

Focusing on copper metallation of Cox1, the CuB site is formed by
one copper ion coordinated by three histidine ligands and present in
close proximity to the heme a3 moiety. The Cox11 metallochaperone
is formed by a transmembrane domain and a copper binding globular
domain facing the intermembrane space where copper transfer oc-
curs [143, 144]. The soluble C-terminal domain of Cox11 forms a
dimer that coordinates one Cu(I) per monomer. The two Cu(I) ions
in the dimer exist in a binuclear cluster and appear to be coordinated
by three conserved cysteine residues [144]. The mechanism by which
Cox11 transfers copper to the CuB site remains to be elucidated.

Cox1 copper metallation was initially envisioned to occur co-
translationally due to the positioning of the CuB site, deeply buried
below the inner mitochondrial membrane. Such a hypothesis was
supported by studies that show a small portion of Cox11 can interact
with mitochondrial ribosomes [152]. However, functional analysis of
the domains of yeast Cox11 suggests that the weak interaction with
the ribosomes must be mediated by another protein, as the Cox11
matrix domain is non-essential [12, 153]. On the other hand, in Schi-
zosaccharomyces pombe Cox11 exists as a fusion protein with Rsm22,
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a component of the small subunit of mitochondrial ribosomes [153]
and in S. cerevisiae, the synthetic non-cleavable fusion of Cox11
with Rsm22 is fully functional [153]. It is tempting to speculate that
the transient interaction with the ribosomes could serve to recruit
Cox11 to the place of Cox1 synthesis to regulate its copper metalla-
tion once Cox1 has been membrane inserted and stabilized by bind-
ing to the Mss51, Cox14 and Cox25 chaperones.

In fact, more recent investigations have established that the CuB
site formation does not actually occur while newly synthesized
Cox1 is interacting with Mss51, but near or at the Shy1-containing
Cox1 assembly intermediate [119], perhaps simultaneously to the in-
corporation of the heme a3 moiety into the heterobimetallic center.
This conclusion was supported by the detection of a transient interac-
tion between Cox11 and Shy1 and by the marked attenuation of the
Shy1-containing Cox1 in Δcox11 which was partially restored with a
nonfunctional Cox11 mutant [119].

It remains unclear in what specific order the CuB-heme a3 center is
metallated. Studies in a Rhodobacter sphaeroides cox11 null mutant
have shown that the heme a3 moiety can be delivered to this site in
the absence of copper [143]. Studies in yeast have revealed that null
cox11mutants, as well as sco1mutants, show higher sensitivity to hy-
drogen peroxide than a wild type strain, which was attributed to the
presence of a highly reactive Cox1-heme a3 intermediate [154]. It has
been proposed that independently of its copper binding function,
Cox11 may bind and stabilize Cox1 through transient interactions in
a conformer of Cox1 that has less solvent accessibility to the heme
a3. However, a direct Cox11–Cox1 interaction has not been detected.
Additionally, the amount of the Shy1-containing Cox1 intermediate
was found markedly attenuated in Δcox11 as mentioned earlier
[119], an observation that would suggest its accumulation could pro-
duce deleterious effects but at the same time makes intriguing the
small threshold concentration of this putative intermediate that
seems to be necessary to produce such an effect.

Human mitochondrial copper metabolism involves conserved ele-
ments. Homologue of the yeast genes COX11, COX17, SCO1, COX19,
COX23, PET191, CMC1 and CMC2 have been identified but in most
cases their functions remains poorly characterized [155]. The human
COX17 homologue shares 48% sequence identity with its yeast
counterpart. However depletion of COX17 by siRNA in HeLa cells
causes the accumulation of a COX1-containing COX assembly inter-
mediates devoid of COX2, suggesting that the role for human COX17
in the metallation of COX2 could be more essential than for COX1
[156]. However, themetal content of the stable COX1was not reported.
On another respect, a homozygous mutation in C2orf64, the human ho-
mologue of yeast PET191 gene, has been recently identified in two sib-
lings affected by fatal neonatal cardiomyopathy associated with
severe COX deficiency [157]. Accumulation of a small COX assembly in-
termediate containing COX1, but not COX2, COX4 or COX5b in patient
fibroblasts suggests that PET191 is involved in an early step of COX as-
sembly [157].

4. Biogenesis and assembly of COX subunit 2

4.1. Cox2 synthesis, membrane insertion and stability

Cox2 synthesis requires the action of Pet111, a membrane bound
COX2 mRNA-specific translational activator [85, 86]. Pet111 interacts
with the 5′-UTR of COX2 to promote translation [85, 86] and is pre-
sent in the mitochondrial membranes at a low concentration thus
limiting the synthesis of Cox2. On a different type of regulation,
translation of COX2 mRNA is known to be controlled by intrinsic an-
tagonistic signals. The mRNA sequence of the first 14 COX2 codons,
which specify the precursor Cox2 (pCox2) N-terminal leader pep-
tide discussed below, contain a positively acting element required
for downstream translation of COX2 mRNA [158]. Three additional
sequences located in the Cox2 N-terminal region of the mature
protein have been described to play an inhibitory role in the ab-
sence of the positive element [159]. Interplay among these signals
during translation has been hypothesized it may ensure the coordi-
nation of Cox2 synthesis and subsequent assembly into COX.

Cox2 is an integral membrane protein containing two transmem-
brane domains and presents an N-out C-out topology (both termini
protruding into the IMS). Cox2 is synthesized as a precursor protein
(pCox2) with a cleavable amino terminal extension (Fig. 3). Prior to
the cleavage, pCox2 interacts with the Oxa1 machinery which facili-
tates membrane insertion of the first pCox2 transmembrane domain
and concomitant export of its N-terminal domain across the inner
membrane [160, 161]. This step is required for the export of the
pCox2 C-terminal tail [162]. Oxa1 belongs to a conserved protein
family known as YidC/Alb3/Oxa1 family, the bacterial, mitochon-
drial and plastid members of which assist the membrane insertion
of proteins [163]. Oxa1 is an integral inner membrane protein that
contains five transmembrane domains and presents N out–C in ori-
entation. The C-terminus of Oxa1 interacts with the large ribosom-
al subunit within close proximity to the polypeptide exit tunnel,
thus facilitating the co-translational insertion of the nascent hydro-
phobic peptides into the mitochondrial inner membrane [164,
165]. Oxa1 cooperates with the membrane protein Mba1 which
acts as a ribosome receptor to recruit ribosomes to the inner mem-
brane and helps Oxa1 in the orientation of the ribosome exit site
towards the inner membrane insertion machinery [116, 166]. How-
ever, both ribosomal subunits remain bound to the inner membrane
in the absence of Oxa1 and Mba1, indicating that other factors col-
laborate to the tethering of ribosomes to the membrane [166]. The
function of Oxa1 is not limited to Cox2 insertion, but extends to
the insertion of other polytopic proteins such as the mitochondrially
encoded Cox1 and Cox3 proteins [116, 161] as mentioned earlier. In-
dependently of the lack of cleavable N-terminus in mammalian
Cox2, the human homolog of Oxa1 (OXA1L) is able to functionally
replace the yeast protein leading to a correct COX assembly, sug-
gesting that both proteins play a similar role [167].

The export of the S. cerevisiae Cox2 C-terminus depends on the inner
membrane potential, while export of the N-tail does not [160], which
suggests that although the two processes depend on Oxa1, they involve
distinct mechanisms [160, 162]. Downstream the role of Oxa1, the
product of COX18 [168] in conjunctionwith two other inner membrane
proteins, Mss2 and Pnt1, has been proposed to subsequently promote
the insertion of the second, C-proximal, pCox2 transmembrane domain
[160, 168–170]. Cox18 resembles some Oxa1 family members but its
role is specific for the translocation of Cox2 [169]. However, a direct in-
teraction between Cox2 and Cox18 has not yet been shown [169].
Cox18 physically interacts with Mss2 and Pnt1, suggesting that they
form a translocon complex although the detailed molecular mecha-
nisms involved in the export of the Cox2 C-terminal tail remains to be
elucidated [169]. Interestingly, copper binding to Cox2 is not a require-
ment for C-tail translocation since missense substitutions of two of
copper-binding residues in Cox2 did not prevent its export [171].
Despite the similarities between Oxa1 and Cox18,OXA1 overexpression
is not able to suppress the respiratory deficiency of Δcox18 cells [172].
However, it does promote some translocation of the Cox2 C-terminal
domain across the inner membrane and increased accumulation of
Cox2, which remains unassembled. This observation has suggested
that in addition to its role in C-tail translocation, Cox18 is required to
deliver Cox2 to a state competent for COX assembly [172]. Interestingly,
Δcox18 cells overexpressing Oxa1 recover respiratory competency after
acquiring recessive mutations in Mgr1 and Mgr3, which products are
known to be subunits of the inner membrane AAA protease supercom-
plex, where they associate with Yme1 and participate in membrane
protein degradation [172]. However, the absence of Mgr1/3 does not
act by stabilizing Cox2 and it has been proposed that Yme1 could prob-
ably chaperone the folding and/or assembly of Oxa1-exported Cox2
under these conditions [172].



Fig. 3. Biogenesis of Cox2. The scheme depicts the several steps and proteins involved of synthesis, topogenesis, maturation and assembly of Cox2 (see explanation in the text).
IMM, inner mitochondrial membrane; IMS, intermembrane space.
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Following export, pCox2 interacts with the Cox2-specific chaper-
one Cox20 [173] which presents the precursor protein to the three-
subunit inner membrane peptidase (IMP)-complex [174, 175] that
catalyzes the proteolytic removal of the pCox2 amino-terminal se-
quence. The Cox20–Cox2 interaction most probably occurs after export
of the Cox2 N-tail domain and prior to the action of Cox18 because the
leader sequence of pCox2 is cleaved in Δcox18 cells [176]. The IMP-
complex is formed by three subunits; Imp1 and Imp2 have catalytic
functions with different substrate specificities [177, 178] and Som1
stabilizes the complex [174]. Imp1 is responsible for the proteolytic
cleavage of pCox2, but its function requires the stabilizing presence
of the other two subunits [174, 177]. Based on sequence similarity, a
putative human homolog of IMP2 has been reported [179], although
considering the absence of experimental data about its function, it
remains uncertain whether it is a true ortholog. In any case, it is
unlikely that it could be related to Cox2 biogenesis considering
that mammalian Cox2 lacks any cleavable amino terminal extension.

Once the pCox2 leader sequence is cleaved, Cox20 probably remains
bound tomature Cox2, stabilizes the protein and facilitates its assembly
into COX assembly intermediates [173]. The essential role of Cox20 as a
Cox2 chaperone is supported by its conservation through evolution. A
human homologue was recently identified by BLAST sequence analyses
[10]. Although the protein localizes to mitochondria in HeLa cells (our
unpublished results), its function as a Cox2 chaperone remains to be
fully characterized.

4.2. Maturation of Cox2 by insertion of its copper prosthetic group

The CuA binuclear center in Cox2 is coordinated by a CxExCGx2-
Hx2M motif [22, 25] and exists as a [Cu2+/Cu1+] complex as revealed
by EPR spectroscopy [180–182]. The metallochaperone for the forma-
tion of the CuA center of Cox2 is the product of SCO1 [142].

Sco1 is anchored to the mitochondrial inner membrane through a
transmembrane α-helix and exposes the copper binding site in the
intermembrane space where copper transfer occurs [139, 153]. In vitro
experiments have shown that a soluble truncated form of Sco1 is able
to bind copper donated from Cox17 [153, 183]. However, it remains
unclear how the transfer of copper occurs because a physical interaction
between Cox17 and Sco1 has not yet been detected probably due to its
transient nature in vivo. Sco1 has a metal binding Cx3C motif analogous
to the copper binding motif of Cox2, and this motif is essential for its
function, as demonstrated by site-direct mutagenesis [184]. SCO1 was
originally identified as a multicopy suppressor of a cox17 null mutant
[138] and has been shown to directly interact with Cox2 [185]. In addi-
tion, since the CuA center is formed by a Cu(I) ion and a Cu(II) ion, it re-
mains to be elucidated if Sco1 mediates the transfer of both different
valent ions or, alternatively if two Cu(I) are inserted in Cox2 by Sco1
and the active site is successively oxidized. Sco1 is able to bind both
Cu(I) and Cu(II) [186] and NMR studies have suggested that Cox17
transfers reducing potential and Cu(I) to enable Sco1 metallation [187].
Besides the role of Sco1 in copper insertion, its structural similarity
with disulfide reductases has suggested that it could be involved in the
reduction of cysteines in the Cox2 copper binding site thus facilitating
copper incorporation [187−190]. Sco1 can form homodimeric com-
plexes [185] which could facilitate the performance of both functions
by the collaborative action of each monomer.

Yeast SCO1 has a highly conserved homologue, SCO2 [191]. Although
its absence does not affect COX assembly [142], Sco2 overexpression
partially rescues the respiratory defect of sco1 point mutant cells [142]
as well as the defect of cox17 mutants when the growth media
is supplemented with copper [142]. However, its precise function
remains to be disclosed.

The CuA active site is located above the innermembrane surface, in a
domain of Cox2 folded in a β-barrel and protruding into the mitochon-
drial intermembrane space. The Sco1-mediated insertion of copper into
Cox2 probably takes place after the extrusion of the Cox2 copper bind-
ing domain in the intermembrane space and before the incorporation of
this subunit to a COX assembly intermediate [136].

4.3. Roles of mammalian Cox2-specific copper insertion chaperones

Similar to yeast, humans have two Sco1 proteins, although both are
homologues of yeast Sco1. Theywere also termed SCO1 and SCO2 [192].
Both are essential for COX assembly and mutations in SCO1 [50] and
SCO2 [51−53] result in severe mitochondrial disorders. The functional
differences among the two yeast and human isoforms is explained by
the fact that the two genes probably originated from a duplication
that occurred separately in the two organisms [51].

In contrasts to the yeast Sco proteins, human SCO1 and SCO2 have
been shown to perform independent, cooperative functions in COX
assembly [193, 194]. Sco proteins contain a CX3C copper-binding
motif, shown to be essential for their function in COX2 biogenesis
[186, 194]. Furthermore both SCO1 and SCO2 proteins have an affinity
for copper higher than COX17 (Banci et al., 2010), which allow
for the quantitative transfer of Cu(I) from COX17 to SCO1 and SCO2
[195, 196]. SCO1 protein exists as a mixed population of oxidized and
reduced thiols, the proportion of which depends upon the presence of
a functional SCO2 protein [194]. These data, together with the observa-
tion that Sco proteins contain a highly conserved thioredoxin domain
[190], has brought Leary and co-authors to suggest a thiol-disulphide
oxidoreductase function for SCO2protein [194]. Following the proposed
model, after COX2 metallation by SCO2 and SCO1-dependent simulta-
neous or sequential copper insertion, SCO2 re-oxidizes SCO1 cysteines,
a reaction that allows to reset both proteins for further rounds of COX2
biogenesis [194].While both Sco proteins are required for copper trans-
fer to COX2, SCO2 is additionally necessary for COX2 synthesis, since
SCO2 depletion decreases the accumulation of newly synthesized
COX2 in culture cells [194]. These stage-specific functions of each Sco
protein during Cox2 synthesis and formation of the CuA site probably
serve to coordinate both processes during COX assembly.

image of Fig.�3
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Finally, in a process independent of COX biogenesis, both SCO1
and SCO2 play additional roles in the maintenance of cellular copper
homeostasis cooperating to regulate copper efflux under conditions
of excessive cellular copper [197].

5. Biogenesis and assembly of COX subunit 3

5.1. Cox3 synthesis, membrane insertion and stability

Cox3, the thirdmitochondrial DNA encoded COX subunit, completes
the COX catalytic core. Similar to Cox1 and Cox2, Cox3 is a highly hydro-
phobic protein with 7 transmembrane helixes embedded in the inner
mitochondrial membrane. In contrast, Cox3 does not contain prosthetic
groups and its function remains unclear. It has been proposed that Cox3
could be involved in the assembly and/or stability of subunits 1 and 2 or
in the modulation of oxygen access to the binuclear center [198]. How-
ever, studies performed on bacterial COX, formed exclusively of the
three core subunits, have suggested that Cox3 could play a role in mod-
ulating proton transfer through subunits 1 and 2 [199, 200].

In S. cerevisiae, Cox3 synthesis requires the activity of three
nuclear encoded translational activators: Pet54, Pet122 and Pet494 [87,
201]. Deletion of any of these proteins severely reduces Cox3 synthesis,
thus underlying their essential non-redundant role in Cox3 biogenesis
[89]. The COX3 mRNA translational activators interact among them
to form a COX3 specific activator complex [89], which, through Pet54,
directly binds the 5′-UTR of COX3 mRNA to promote translation [74,
88, 90]. Pet54 plays multiple roles in COX biogenesis. It does not only
act as a COX3 mRNA translational activator but it is also necessary for
the splicing of the aI5β group I intron in the COX1 pre-mRNA [202]. In
particular, it has been shown that the COX3 5′-UTR mRNA and the
aI5β group I intron bind to the same or overlapping surface on Pet54.
Moreover, the Pet54 binding sites in the COX3 5′-UTR mRNA and in
the aI5β group I intron present 56% sequence similarity. Ultimately,
the COX3 5′-UTR mRNA and the aI5β group I intron can compete for
Pet54 binding [74]. Recently, based on the observation that Pet54 is
required for Cox1 synthesis even in a yeast strain carrying intronless
mtDNA, it has been proposed an additional yet undefined role of
Pet54 in Cox1 biogenesis [78]. Taken together, these data suggest a
further level of co-regulation of Cox1 and Cox3 expression.

Pet122 and Pet494 are integral inner membrane proteins, while
Pet54 is a peripheral protein associated to the inner mitochondrial
membrane [203, 204]. It is believed that, similarly to Cox1 and Cox2
biogenesis, the tethering of the translational apparatus to the inner
mitochondrial membrane by these translational activators could facil-
itate the Oxa1-dependent co-translational membrane insertion of the
newly synthesized highly hydrophobic Cox3 subunit.

In yeast, unassembled Cox3 is subjected to a rapid proteolytic
turnover. Cox3, similar to the other core subunits, is a substrate of
the matrix–AAA protease complex [107] that it is likely to recognize
the Cox3 N-terminus protruding into the mitochondrial matrix.

5.2. Assembly of Cox3

Little is known about the addition of Cox3 into COX assembly
intermediates. Although it is expected to be a protein assisted pro-
cess, the identity of the putative Cox3-specific chaperone remains
to be disclosed. It is believed, however, that Cox3 assembly occurs
once the Cox1–Cox5a–Cox6 complex has been formed and Cox2 has
been already incorporated. The addition of Cox3 stabilizes the core
because in the absence of this subunit, Cox1 and Cox2 fail to accumu-
late in the mitochondrial membranes [32].

In human, a few mutations have been described in COX3-associated
COX deficiency [43]. The brief list includes a 15-bp microdeletion
in a patient with recurrent myoglobinuria [205], a mutation that
also prevented COX assembly when introduced in yeast [206]. In
both cases, Cox1 and Cox2 are rapidly degraded in the absence of
Cox3. Also in Chlamydomonas, where Cox3 is encoded by a nuclear gene
and presents a lower hydrophobicity than other Cox3 mitochondria-
encoded proteins [20], the lack of this subunit leads to the absence of
COX [207]. These results show that, independently of its genetic origin,
the essential role of Cox3 in the assembly or stability of the catalytic
core of COX is conserved through evolution.

6. Concluding remarks and open questions

Despite continuous efforts to fully understand the biogenesis and
assembly of mitochondrial COX catalytic core subunits in several
laboratories and the recent advances made in our understanding of
the mechanisms involved, sorting out its complexity and how COX
biogenesis is regulated remains a remarkable challenge. Whereas
the number of COX ancillary factors identified continues increasing;
the specific functions of most of them are only partially character-
ized. Specific functions such as the protein-assisted assembly of Cox3,
the dehydrogenase activity required for the last step of heme a biosyn-
thesis, or the Cox1 heme insertion chaperone, amongmany others, wait
to have a protein performer identified and/or assigned. Regulatory
pathways coordinatingCOX core subunit synthesis, cofactor availability,
maturation and assembly also remain to be fully characterized. A final
challenge will involve the identification of COX assembly factors and
regulatory pathways conserved from yeast to human and those that
evolved to adapt to the tissue-specific requirements of multicellular
organisms. This has a great biomedical relevance since lesions affect-
ing the expression and assembly of COX catalytic core subunits result
in severe human mitochondrial encephalomyopathies.
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