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Many mechanisms for the emergence and maintenance of altruistic behavior in social dilemma

situations have been proposed. Indirect reciprocity is one such mechanism, where other-regarding

actions of a player are eventually rewarded by other players with whom the original player has not

interacted. The upstream reciprocity (also called generalized indirect reciprocity) is a type of indirect

reciprocity and represents the concept that those helped by somebody will help other unspecified

players. In spite of the evidence for the enhancement of helping behavior by upstream reciprocity in rats

and humans, theoretical support for this mechanism is not strong. In the present study, we numerically

investigate upstream reciprocity in heterogeneous contact networks, in which the players generally have

different number of neighbors. We show that heterogeneous networks considerably enhance

cooperation in a game of upstream reciprocity. In heterogeneous networks, the most generous strategy,

by which a player helps a neighbor on being helped and in addition initiates helping behavior, first

occupies hubs in a network and then disseminates to other players. The scenario to achieve enhanced

altruism resembles that seen in the case of the Prisoner’s Dilemma game in heterogeneous networks.

& 2010 Elsevier Ltd. Open access under CC BY-NC-ND license. 
1. Introduction

The mechanism for evolution and maintenance of altruism
when egoistic behavior is apparently more advantageous has been
a target of intensive studies. Among the many viable mechanisms
proposed, we focus on indirect reciprocity, which refers to the
concept that a cooperative player is helped by others with whom
she/he has not interacted. Cooperative behavior is indirectly
rewarded by way of chains of helping behavior of various players.
There are two types of indirect reciprocity: downstream recipro-
city and upstream reciprocity (Nowak and Sigmund, 2005). In
downstream reciprocity, a player witnesses the behavior of other
players as a third party. The observing player will assign a good
reputation to player X if player X helps others. When a situation
arises where this observer interacts with player X in the future, the
observer will probably help X if and only if X has a good reputation.
A player must establish a good reputation by helping others prior
to being helped by other anonymous players. The downstream
reciprocity is observed in behavioral experiments (Wedekind and
Milinski, 2000; Milinski et al., 2002) and is firmly based on the
theory of evolutionary games (Nowak and Sigmund, 1998a,
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1998b; Leimar and Hammerstein, 2001; Brandt and Sigmund,
2004; Ohtsuki and Iwasa, 2004, 2006).

In upstream reciprocity, the players first get help from other
players. If the recipient complies with upstream reciprocity, then
she/he helps another unspecified player. Theoretically, evolution
of cooperation based on upstream reciprocity is considered to be
difficult. In numerical simulations, cooperation is achieved only
when the size of the interaction group is small (Boyd and
Richerson, 1989; Pfeiffer et al., 2005). An analytical study showed
that upstream reciprocity enables evolution of cooperation only in
combination with another mechanism such as direct reciprocity
(i.e., repeated interaction between the same players) or spatial
reciprocity (i.e., interaction between players on a one-dimen-
sional lattice) (Nowak and Roch, 2007). However, upstream
reciprocity has been observed in behavioral experiments con-
ducted on humans. A player that has received a help from another
player has increased the propensity to help an anonymous partner
in variants of the trust game (Dufwenberg et al., 2001; Greiner
and Levati, 2005; Stanca, 2009). Those who are helped by
somebody in advance tend to help another partner filling in a
tedious survey in laboratory behavioral experiments (Bartlett and
DeSteno, 2006). Upstream reciprocity has also been observed in
rats. Rats trained to pull a stick to deliver food tend to pull the
stick to help another rat after receiving food via a help from a
conspecific (Rutte and Taborsky, 2007). Therefore, theoretically
assessing the conditions under which upstream reciprocity is
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feasible will help us gain a better understanding of the evolution
of cooperation in social dilemma situations.

In this study, we examine the effect of a property of contact
networks on upstream reciprocity. A fundamental characteristic
of many social networks is that the number of contacts of a node,
which we call the degree, has a right-skewed distribution. In
particular, scale-free networks, i.e., networks with power-law
degree distributions are widely found (e.g., Newman, 2003). In
social networks relevant to evolutionary games, scale-free
networks have been found in, for example, email social networks
(Ebel et al., 2002; Newman et al., 2002). Although other social
networks do not exhibit degree distributions that are as right
skewed as the power-law distribution, their degree distributions
are considerably heterogeneous (Eubank et al., 2004; Lusseau and
Newman, 2004; Kossinets and Watts, 2006; Onnela et al., 2007).
We investigate the effect of heterogeneous degree distributions
on the possible evolution of cooperation based on upstream
reciprocity.

We show that upstream reciprocity enhances altruistic
behavior of players that are placed in heterogeneous contact
networks such as scale-free networks. The mechanism found in
our study has resemblance to that for enhanced cooperation
shown in the Prisoner’s Dilemma in heterogeneous networks
(Durán and Mulet, 2005; Santos and Pacheco, 2005, 2006; Santos
et al., 2006), which we will discuss in Section 4.
2. Model

2.1. Networks

Consider a contact network with a population of N¼10 000
players. As a model of heterogeneous network, we use the scale-
free network generated by the Barabási–Albert (1999) algorithm
(Fig. 1A). To generate the scale-free network, we start with the
complete graph of 2m+1 nodes (i.e., each pair of nodes is
connected by an edge). Then, we add nodes with degree m one-
by-one according to the so-called linear preferential attachment;
the probability that an already existing node vi forms an edge
Fig. 1. Architecture of networks. (A) Scale-free network, (B) regular random graph,

(C) square lattice, (D) extended cycle, and (E) cycle.
with a newly introduced node is proportional to the degree ki.
Multiple edges (i.e., more than one edge connecting a pair of
nodes) are disallowed. In the generated network, the degree
follows the power-law distribution pðkÞpk�3 with a lower cutoff
at k¼m and the mean degree of /kS¼ 2m (Barabási and Albert,
1999). We use /kS¼ 8, i.e., m¼4, unless otherwise stated.

For comparison, we also use four other types of networks. One
is the regular random graph, which is constructed from the
configuration model (Newman, 2003) (Fig. 1B). To generate a
network, we attach /kS stubs, or half edges, to each node. Then,
we randomly select two nodes with the equal selection prob-
ability and connect them. These two nodes consume one stub
each. We repeat this procedure until all stubs are exhausted at all
nodes. If the generated network is disconnected or contains self-
loops or multiple edges, we discard the network and start the
entire procedure all over again. Although its mean degree is small,
the regular random graph represents a well-mixed population in
which cooperation is not easily enhanced by upstream reciprocity
(Boyd and Richerson, 1989; Nowak and Roch, 2007).

In the square lattice, N¼10 000 nodes are placed on the square
with a linear length of

ffiffiffiffi
N
p
¼ 100. Each node is connected to eight

nodes situated in a so-called Moore neighborhood (Fig. 1C). We
adopt the periodic boundary condition.

The extended cycle is a one-dimensional network, where the
nodes are placed on a ring. Each node is connected to /kS=2
nearest nodes on each side, as shown in Fig. 1D.

The scale-free network, the regular random graph, the square
lattice, and the extended cycle have /kS¼ 8 unless otherwise
stated. Therefore, we can compare the effects of different types of
networks without having to account for the possible influence of
/kS. We also set /kS¼ 6 and 14 in some of the following
numerical simulations to confirm the robustness of the results
with respect to /kS.

The final type of network used is the cycle in which each node
on a ring is connected to a single nearest node on each side such
that /kS¼ 2 (Fig. 1E). We use the cycle to compare our numerical
results with the previously reported theoretical results (Nowak
and Roch, 2007). In contrast to the well-mixed population, the
infinite one-dimensional chain network with /kS¼ 2 enables
upstream reciprocity because it exhibits spatial reciprocity. Spatial
reciprocity is a general mechanism for evolution of cooperation in
social dilemma games; cooperative players are clustered in a
network to help each other and resist the invasion by egoistic
players (Axelrod, 1984; Nowak and May, 1992). Such clustering is
possible when the size of the boundary of a cluster is small relative
to the number of players in the cluster. This situation is expected
the most in the cycle and to a certain extent in the extended cycle
and the square lattice; however, it is not expected in the Barabási–
Albert scale-free network and the regular random graph.
2.2. Game of upstream reciprocity: rule and payoff

A single game of upstream reciprocity (Nowak and Roch,
2007), which is motivated by experimental evidence and previous
theoretical work explained in Section 1, is described as follows.
First, a player vi ð1r irNÞ is selected. Player vi may initiate a
chain of helping behavior. If vi does so, vi bears the cost c and
selects one of its neighbors at an equal selection probability of
1/ki, where ki is the degree of vi. The selected neighbor, denoted by
vj, receives the payoff b. We assume b4c40 so that the game
represents a social dilemma; a single act of help increases the
average payoff of the entire population by (b�c)/N, while each
player is better off by not helping other players. Without loss of
generality, we set c¼1.



ARTICLE IN PRESS

A. Iwagami, N. Masuda / Journal of Theoretical Biology 265 (2010) 297–305 299
vj may not continue the chain of helping behavior. In such a
case, the chain of cooperation terminates, and the payoffs for vi, vj,
and vi0 ði

0a i,jÞ are equal to �c, b, and 0, respectively. However, if
vj does pass on the helping action, vj selects one of its neighbors at
a probability of 1/kj and bears the cost c. The selected neighbor
receives b. The chain of helping behavior continues until a
recipient of help terminates the chain. Note that a chain of
cooperation may traverse the same players more than once.

2.3. Strategies

On the basis of a previous study (Nowak and Roch, 2007), we
specify the strategy of each player vi ð1r irNÞ using two
parameters. The first parameter pi ð0rpir1Þ denotes the
probability that vi passes on the helping action to a randomly
selected neighbor after receiving it from a neighbor. The second
parameter qi ð0rqir1Þ denotes the probability that vi initiates
the helping action. A larger pi or qi implies that player vi is more
cooperative.

We consider the following four strategies that were introduced
by Nowak and Roch (2007):
�
 Classical defector (CD) is defined by pi¼0 and qi¼0. CD neither
initiates nor passes on the help. It is the most egoistic strategy.

�
 Classical cooperator (CC) is defined by pi¼0 and qi¼1. CC

spontaneously initiates the chain of helping behavior but does
not react to the cooperation that it receives from a neighbor.
CC does not contribute to upstream reciprocity, even though
CC is cooperative to some extent.

�
 Generous cooperator (GC) is defined by pi¼0.8 and qi¼1. GC

initiates the helping behavior and passes on the helping action
with a high probability. It is the most cooperative strategy. We
are concerned with the possibility that heterogeneous net-
works enhance the fraction of GCs in a population.

�
 Passer-on (PO) is defined by pi¼0.8 and qi¼0. PO does not

initiate the helping behavior but passes on the helping action
with a high probability. Although PO is less cooperative than
GC, it contributes to the upstream reciprocity.

In the case of GC and PO, we set pi¼0.8 instead of pi¼1. This is
to prevent a chain of helping behavior from continuing indefi-
nitely if the population consists of only GC and PO. This choice of
pi is arbitrary. To verify the robustness of our results with respect
to the value of pi, we will carry out some of the following
numerical simulations with pi¼0.7 and 0.9.

2.4. Update rule

We principally use the deterministic update rule, which is
described in the following. The numerical results do not
qualitatively change on using relatively realistic stochastic rules,
as shown in Sections 3.1 and 3.4.

We refer to time in the evolutionary dynamics as a round and
denote it by t (¼0, 1, 2,y). One round consists of N chains of
helping behavior, and one chain is initiated by each player. Note
that a chain is considered to be empty if the initial player does not
help a neighbor, which occurs for CD and PO. The one-round
payoff of player vi is defined as the sum of the payoffs gained by vi

in N chains of cooperation. The payoff that vi gains in a round is
equal to b� (the frequency at which the chains are brought to
vi)�c� (the frequency at which the chains are passed from vi

without being terminated).
At the end of each round, the strategies of Nu out of the

N¼10 000 players are updated synchronously. Unless otherwise
stated, we set Nu¼200. We also set Nu¼20 and 2000 in some of
the following numerical simulations to examine the robustness of
the results with respect to Nu. We randomly and independently
select Nu players from the population with equal probability. In
the deterministic update rule that we mostly use in this paper, for
each selected player vi, the neighbor with the largest payoff,
which is denoted by vj, is selected. If the payoff of vj is larger than
that of vi, vi will copy the strategy of vj. If there are more than one
neighbors with the same largest payoff, we select one of them
randomly with equal probability. After tentatively determining Nu

copying events, we replace the strategies of the selected nodes
simultaneously. We do not assume mutation. This marks the end
of one round.

One run lasts until a quasistationary state is attained or the
unanimity of one strategy is almost achieved. Specifically, we set
the number of rounds to 20 000 in the case of the scale-free
network, the regular random graph, and the square lattice. In the
case of the extended cycle and the cycle, the number of rounds is
equal to 140 000.
3. Results

3.1. GC versus CD

When a player passes on the received help to a neighbor, a
neighbor is randomly selected as recipient with equal probability.
A chain of helping behavior is equivalent to a simple random walk
with random termination. If pi¼1 ð1r irNÞ, the random walk
may continue forever. In this hypothetical situation, the payoff
that player i receives is proportional to the stationary density of
the random walk. In any undirected network, the stationary
density of the simple random walk is proportional to the degree
(e.g., Noh and Rieger, 2004). This relation roughly holds true for
uncorrelated networks even in the presence of some absorbing
nodes at which the random walk terminates (Noh and Rieger,
2004). Therefore, we expect that the number of times that the
chain of helping behavior reaches a given node is roughly
proportional to the degree. Because a single passage of chain
contributes to the payoff b�c40, the payoff per round for each
player is roughly proportional to the degree.

To verify this prediction, we carry out Monte Carlo simulations
of the game of upstream reciprocity on the scale-free network
with a random mixture of GCs and CDs. We set b¼1.5. The
probability that each player is initially GC or CD is 0.5. Fig. 2A
shows the dependence of the payoff per round on the degree of
the player, just before the first update (i.e., t¼0). Each data point
corresponds to the payoff per round averaged over all players
having the same degree and same strategy. For each strategy, the
payoff per round is roughly proportional to the degree. CDs
generally gain larger payoffs than GCs, because CDs exploit GCs in
the neighborhood.

However, from Fig. 2A, it cannot be concluded that CD takes
over GC in the evolutionary time course. The same statistics are
plotted at t¼200 in Fig. 2B. As in the case of Fig. 2A, CD gains more
than GC at the same degree. At this stage, however, most hubs are
occupied by GCs for the following reason. There are usually some
GCs in the neighborhood of a GC hub, which is also the case under
random initial condition. Then, the GC hub tends to gain a large
payoff because GC neighbors help the GC hub. As a result of
evolution, GC will spread from the hub to the neighbors, which
further increases the payoff of the GC hub. Suppose a situation
where CDs invade neighbors of the GC hub and exploit it. Because
the degrees of these CDs are generally not large, the CDs cannot be
helped by many players even if the neighborhood is occupied by
GCs. Therefore, the CDs would not gain the payoff per round as
large as that of the GC hub. Accordingly, GC tends to be stabilized
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at the hub. In contrast, if CD spreads from the hub to the
neighbors, the CD hub will obtain a small payoff. Then, a GC in
the neighborhood of the CD hub may take over the hub; CDs
occupying hubs are not stabilized. GCs gradually spread from
hubs to players having small degrees (Fig. 2C), and the entire
network is eventually occupied by GCs after sufficient rounds
(Fig. 2D).

The time courses of the mean degree of GCs and that of CDs
corresponding to the run shown in Fig. 2A–D are plotted in Fig. 2E.
First, the mean degree of GCs grows until most hubs are occupied
by the GCs. It then relaxes to /kS¼ 8. The mean degree of the CDs
is considerably smaller than /kS¼ 8 throughout the run.

The time courses of the average payoff per round of GCs and
that of CDs, corresponding to the same run as above, are shown in
Fig. 2F. Initially, the two average payoffs decrease because CDs
replace GCs. Then, GCs are stabilized at hubs, and the GCs begin to
disseminate to increase the average payoff of both GCs and CDs.
At any t, CDs earn more than GCs on an average. However, this
does not imply that CD invades GC macroscopically. As shown in
Fig. 2B and C, the players with the largest payoffs are GC hubs
rather than CDs. A player is chosen as a potential parent to be
mimicked by other players with the probability proportional to its
degree (Newman, 2003; Noh and Rieger, 2004). In the scale-free
network, a neighbor of an arbitrary player tends to be a hub, and
then GC hubs are imitated by relatively many players. Therefore,
while the average payoff of CDs is maintained at a larger value
than that of GCs, the fraction of CDs gradually decreases until the
CD becomes extinct. The relative strength of a strategy in
reproduction is determined not by the average payoff of the
players using that strategy but by the degree-weighted average
payoff of these players.

The scenario of evolution of helping behavior described above
requires heterogeneous degree distribution. To compare different
networks, at a given value of b, we generate five realizations of the
network and carry out 10 runs on each network for the scale-free
network and the regular random graph, which are generated from
stochastic algorithms. For the other three deterministic networks,
we carry out 50 runs on the network. The average of the final
fraction of GC, obtained from the 50 runs, is plotted against b in
Fig. 3. In all the networks, except the regular random graph, the
fraction of GC increases with b. In fact, the fraction jumps from
unanimity of CD to that of GC at a threshold value of b. The threshold
value of b above which GCs survive is considerably smaller in the
scale-free network than in the other networks. Heterogeneous
networks promote the evolution of helping behavior. Among the
other networks, the threshold value of b is the smallest in the cycle.
The next smallest value is the extended cycle and then the square
lattice. The threshold value of b in the random graph is greater
than the upper limit shown in Fig. 3 (i.e., b¼10). Unlike the
Barabási–Albert scale-free network and the regular random graph,
the other three networks, i.e., the cycle, the extended cycle, and the
square lattice, are capable of spatial reciprocity. This fact explains
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why these three networks accommodate more GCs as compared to
the regular random graph. However, the effect of spatial reciprocity
is smaller than the effect of the scale-free networks, at least under
the present parameter regime.

We confirm that the results are qualitatively the same for some
variations of the model. First, we change the mean degree to /kS¼ 6
(Fig. 4A) and /kS¼ 14 (Fig. 4B). The results are qualitatively the
same as those for /kS¼ 8. Quantitatively, GC survives more easily
for a smaller /kS, which coincides with the results for the Prisoner’s
Dilemma on regular random graph (Ohtsuki et al., 2006). Second, we
change pi for GC and PO to 0.7 (Fig. 5A) and 0.9 (Fig. 5B). The results
are qualitatively the same as those for pi¼0.8. Quantitatively, a larger
value of pi yields a larger fraction of GC. Third, we change the number
of players updated in one round to Nu¼20 (Fig. 6A) and Nu¼2000
(Fig. 6B). The results are qualitatively the same as those for Nu¼200.
Fourth, we show the effect of different stochastic update rules. In the
imitation rule (Ohtsuki et al., 2006), at the end of each round,
potentially updated player vi selects a potential parent out of the ki+1
players, i.e., vi and the ki neighbors of vi. The probability that a node is
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/kS¼ 14. (C, D) Final fractions of four strategies when players initially adopt either G
selected as the parent is proportional to the payoff. When the payoff
is negative, we set this probability to zero. In the Fermi rule (e.g.,
Szabó and T+oke, 1998; Traulsen et al., 2006), vi selects a potential
parent vj out of the ki neighbors with equal probability and copies the
strategy of vj with probability ½1þexpðbððpayoff of player viÞ�

ðpayoff of player vjÞÞÞ�
�1. Otherwise, vj copies the stragegy of vi.

The results for the imitation rule and those for the Fermi rule with
b¼ 0:2 are shown in Fig. 7A and B, respectively. The results resemble
those for the deterministic update rule. Although the one-
dimensional chain allows for GC at small values of b, as comparable
or even smaller than the values for the scale-free network, our main
result that heterogeneous networks enhances generous cooperators
as compared to homogeneous networks is not violated.

In the case of the cycle, the threshold value of b above which
the GC survives the invasion by CD has been obtained for a
different update rule in the limit of weak selection (Nowak and
Roch, 2007). The survival of the GC is possible when b=c4 f ðpÞ,
where f ðpÞ ¼ ½8þ2pþ8

ffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
�=½3þ4pþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
�. Because we set

c¼1 and p¼0.8, the theoretical threshold in this case is equal to
f(0.8)¼2.12. Fig. 3 indicates that the GC survives when b is larger
than approximately 2.6 in the numerical simulations; this value is
not too far from the theoretical value. The discrepancy between
the theoretical and numerical results is probably attributed to the
use of different update rules (stochastic versus deterministic), the
difference in selection pressure (weak selection versus strong
selection), and/or the difference in the boundary condition of the
network (open end versus periodic boundary condition).
3.2. GC versus CC

Next, we examine the case in which GCs and CCs are initially
present. Although GC and CC are both cooperative in a classical
sense, the GC is more cooperative than the CC in a game of
upstream reciprocity. Similar to the case considered in
Section 3.1, we start each Monte Carlo simulation using an equal
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fraction of GCs and CCs. In contrast to a population composed
of GCs and CDs, in this case, the unanimity of GC or that of
CC, instead of a mixture of GC and CC, is reached very often
in the final round of runs in the scale-free network and the
square lattice. This unanimity is attained even if the number of
rounds is set to a small value. If all runs end up at unanimity,
the fraction of GC is equal to the fraction of runs in
which unanimity of the GC is reached. This quantity is discretized
by the number of runs. Therefore, we carry out 100 runs
in the scale-free network and the square lattice to overcome
the discretization effect. In the other networks, we carry out
50 runs as in the previous case.

The final fraction of the GC in different networks is shown in
Fig. 8. The scale-free network enhances the evolution of the GC to
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a greater extent than the other networks, except at large values of
b. This result and the ordering of the five networks according to
the threshold value of b above which the GC evolves are
consistent with those obtained in the case of the population of
GCs and CDs (Section 3.1). The threshold value of b in the random
graph is greater than the upper limit shown in Fig. 8 (i.e., b¼10).

In the case of the cycle, it has been theoretically shown for the
original model that the GC survives the invasion by CC when
b=c4 f ð0:8Þ ¼ 2:12 (Nowak and Roch, 2007). In Fig. 8, the GC
survives in the cycle when b=cZ3:0, which is of the same order as
the theoretically predicted value for the original model.

3.3. GC versus PO

In this section, we investigate the population composed of
GCs and POs. Recall that, even though PO is cooperative in
that it passes on helping behavior to a neighbor, the GC is more
cooperative in comparison because it initiates a chain of helping
behavior and PO does not.
The final fractions of the GC obtained from 50 runs in different
networks are compared in Fig. 9. Similar to the results reported in
Sections 3.1 and 3.2, the scale-free network yields the largest
fraction of the GC. The ordering of the five networks according to
the threshold value b is also consistent with those obtained in the
population of GCs and CDs (Section 3.1) and that of GCs and CCs
(Section 3.2).

Theoretically, GC survives for the original model in the cycle
when b=c4gðpÞ, where gðpÞ ¼ ½pð3þ3pþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1�p2

p
Þ�=½ð1þ2pÞð1þp�ffiffiffiffiffiffiffiffiffiffiffiffi

1�p2
p

Þ� (Nowak and Roch, 2007). In our simulations, the
threshold is estimated to be g(0.8) ¼ 1.54. Fig. 9 suggests that
the threshold is about 1.5, which is close to the theoretical value
for the original model.
3.4. Populations comprising four strategies

We examine the dynamics of a population in which all four
strategies are initially present. Each player is assumed to adopt
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Fig. 10. Final fractions of four strategies when players initially adopt either GC, CD, CC, or PO in (A) scale-free network, (B) regular random graph, (C) square lattice,

(D) extended cycle, and (E) cycle. We set /kS¼ 8, pi¼0.8, and Nu¼200.
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either strategy independently with probability 1/4. Similar to the
case of the population of GCs and CCs, most runs end up at
unanimity of one strategy in the scale-free network and the
extended cycle. Therefore, we carry out 100 runs for these two
networks to enhance the precision in the computed fraction of
different strategies. For the other networks, we carry out 50 runs.

The final fraction of each strategy in the five networks is
shown in Fig. 10. In the scale-free network (Fig. 10A), CD and PO
do not survive for any value of b. The fraction of GC increases with
the value of b. In the regular random graph, the GC does not
survive, and the network is almost entirely inhabited by the least
cooperative players, i.e., CDs (Fig. 10B). For GC to survive, the
value of b larger than 10, which is the upper limit of b examined in
Fig. 10B, is required. In the square lattice (Fig. 10C), the extended
cycle (Fig. 10D), and the cycle (Fig. 10E), GC takes over CD
at a sufficiently large value of b. The lowest to highest threshold
value of b above which the GC survives follows the order of the
scale-free network, the cycle, the extended cycle, the square
lattice, and the regular random graph.

The results are robust against various changes of the model,
such as the value of /kS (Fig. 4C and D), the value of pi (Fig. 5C
and D), the value of Nu (Fig. 6C and D), and the update rule (Fig. 7C
and D). The results in this section including the robustness results
are consistent with those obtained for the populations that
comprise two strategies (Sections 3.1–3.3).
4. Discussion

We have shown that heterogeneous networks enhance coopera-
tive behavior in a game of upstream reciprocity. Based on the
property of the simple random walk on networks, chains of helping
behavior traverse hub players more often than players having small
degrees. Then, hubs tend to gain a larger payoff. The most cooperative
strategy (i.e., GC) is stable once it inhabits hubs, from where it spreads
to the entire network. From a quantitative point of view, the impact of
heterogeneous networks on enhancing altruism can be much more
than that of spatial reciprocity in most cases. Our results are robust
against variation in some parameters of the model (/kS, pi, and Nu)
and variation in update rules.

The route to altruism in the game of upstream reciprocity
proposed in this study is similar to that in the Prisoner’s Dilemma
on heterogeneous networks (Santos and Pacheco, 2005, 2006;
Durán and Mulet, 2005; Santos et al., 2006). In this framework,
each player is assumed to either cooperate with or defect against
all neighbors in a round. Once a cooperator occupies a hub and
some surrounding nodes, the hub gains a large payoff and is likely
to disseminate its offspring (i.e., cooperators) to the neighbors.
This event further increases the payoff of the hub, and the
cooperation on the hub is stabilized. In contrast, defection on a
hub is not stable because the hub does not gain a large payoff if
the defector hub disseminates its offspring to the neighbors.
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Cooperators are propagated from hubs to the entire network. In
the game of upstream reciprocity in networks, suppose that a GC
hub disseminates its offspring to the neighbors. This hub will gain
a larger payoff in the subsequent rounds because the neighbors
will tend to pass on the chains of helping behavior. Then, the GC
hub will receive helping behavior more often than typical players
such that its payoff increases, and the GC is stabilized on the hub.
This positive feedback is weaker in the case of the PO and absent
in the case of the CD and CC.

When player X with a small degree copies the strategy of a
successful hub neighbor Y, X may not gain a large payoff because X

is not a hub. In the Prisoner’s Dilemma on networks, many
previous studies assumed that selection is based on the summed
payoff; in this, each player sums up the payoff obtained by
playing against all neighbors to determine the payoff per round
(Santos and Pacheco, 2005, 2006; Durán and Mulet, 2005; Santos
et al., 2006). However, it may be advantageous for X not to copy
the strategy of Y, because X is not as connected as Y. It may be
more profitable for X to copy the strategy of a neighbor that earns
a larger payoff per edge. This update rule corresponds to the
selection based on the average payoff, i.e., the summed payoff
divided by the degree. The average payoff scheme does not
enhance cooperation in the Prisoner’s Dilemma on heterogeneous
networks (Santos and Pacheco, 2006; Tomassini et al., 2007). This
argument is also applicable to the game of upstream reciprocity in
scale-free networks. The evolution of helping behavior is likely to
be hampered if the selection is based on average payoff. This is a
major limitation of the present study. The update rule that we
have adopted, as well as the rule based on additive payoff used in
the Prisoner’s Dilemma, may represent a situation in which
players are unaware of the degree of their neighbors.

In the game of upstream reciprocity, hubs gain relatively large
payoffs because a simple random walker visits hubs relatively
often. This is true for an eternally lasting random walk on arbitrary
undirected networks (Noh and Rieger, 2004). However, in our
model, the random walk terminates in finite time. Then, the
random walker may visit specific non-hub nodes more frequently
than it visits hubs, as in the case of the random walk in networks
with an absorbing boundary (Noh and Rieger, 2004; Newman,
2005). For heterogeneous networks in which populations are not
well mixed, perhaps with degree correlation between adjacent
nodes or global structure of networks, our results may be
modified. The GC may spread from specific non-hub players. In
directed networks, the frequency of visit of the random walker to
nodes can also deviate from the predicted value based on the
degree (Donato et al., 2004; Masuda and Ohtsuki, 2009). Roughly
speaking, however, the random walk tends to visit more connected
players under all discussed cases. Therefore, we expect that our
results qualitatively hold true for general heterogeneous networks.
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