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Two-party authenticated key agreement protocols using pairings have gained much
attention in the cryptographic community. Several protocols of this type where proposed in
the past of which many were found to be flawed. This resulted in attacks or the inability
to conform to security attributes. In this paper, we propose an efficient identity-based
authenticated key agreement protocol employing pairings which employs a variant of a
signature scheme and conforms to security attributes. Additionally, existing competitive
and the proposed protocol are compared regarding efficiency and security. The criteria for
efficiency are defined in this paper, whereas the criteria for security are defined by the
fulfilment of security attributes from literature.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Key establishment is a process with help of which two or more entities establish a session key. The key can be later used
to achieve a cryptographic goal, like confidentiality or integrity. A common division of key establishment protocols can be as
follows: in key transport protocols, one entity generates the key and transfers it to the other entity whereas in key agreement
protocols both entities contribute data to establish a session key. Further suppose two honest entities A and B establish
a common session key, namely participate in a key agreement protocol. We say that a key agreement protocol provides
implicit key authentication if entity A is assured that no other entity besides entity B can learn the value of a particular
secret key. Hence, a protocol providing implicit key authentication for all participating entities is called an authenticated key
agreement protocol [20].

Another property of key agreement protocols is key confirmation. A protocol is said to provide key confirmation if entity A
is assured that the other entity B is in possession of the secret key. If both implicit key authentication and key conformation
are provided for all participating entities, the protocol is said to provide explicit key authentication. Hence, a key agreement
protocol which provides explicit key authentication is referred to as authenticated key agreement protocol with key conformation
[20]. Further details regarding key agreement protocols can be found in [24]

In this paper we focus on the first group of protocols, namely authenticated key agreement protocols. The concept of key
agreement was first proposed by Diffie and Hellman [13]. However, their protocol is not secure against man-in-the-middle
attack. After that many key agreement protocols were proposed, but all of them need a public key infrastructure (PKI),
which requires high computational and storage efforts.
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In 1984, Shamir introduced the concept of identity-based cryptosystem [30] in which a user’s public key is an easily
calculated function of her/his identity (e.g. email address, phone numbers, office locations, etc.), while a user’s private key
can be calculated by a trusted authority, referred to as Private Key Generator (PKG). In the same paper, Shamir provided
the first identity-based key construction based on the RSA problem, and presented an identity-based signature scheme.
The identity-based public key cryptosystem simplifies the process of key management and thus can be an alternative to
certificate-based public key infrastructure (PKI).

Later, in 2000, Joux [19] firstly demonstrated the construction of a key agreement protocol employing pairings. The
first formally proven identity-based encryption scheme employing pairings was published by Boneh and Franklin [4]. Since
then many identity-based key agreement protocols employing pairings have been proposed. In this paper we focus on two-
party identity-based authenticated key agreement protocol employing pairing operations. Many protocols of this type were
proposed [34,31,23,8,37], analyzed and some broken [35,11,40,32,38].

In the paper we propose an improved identity-based authenticated key agreement protocol using pairings for the two-
party settings. The novel protocol is based on the signature scheme by Hess [18]. Furthermore, the proposed protocol is
discussed, analyzed and evaluated regarding security and efficiency, and compared to competitive protocols (in view of
efficiency and security).

The rest of the paper is organized as follows: Section 2 gives preliminary concepts, i.e. bilinear maps, the associated
computational problems, the security attributes and efficiency criteria. In Section 3 the proposed protocol together with the
corresponding efficiency and security analysis is described. Additionally, the efficiency and security of the proposed protocol
and competitive protocols is discusses in Section 4. A conclusion is drawn in Section 5.

2. Preliminaries

In this section, we briefly describe the preliminary concepts and properties needed later in the paper; i.e. bilinear maps,
computational problems, efficiency criteria and security attributes. All the concepts form the basis for identity-based public
key infrastructure employing pairings.

Traditional PKI (public key infrastructure) is expensive mainly because of the infrastructure needed to manage and au-
thenticate public keys, and the difficulty in managing multiple communities. It is not to be believed that identity-based
public key cryptography would replace the conventional PKIs, but rather offers an alternative solution.

In identity-based public key cryptography, one’s public key is predetermined by information that uniquely identifies
them, such as their email address. Originally the idea of this concept was applied to simplify certificate management in
e-mail systems. When A sends an e-mail to B , she simply encrypts the message using the public key string of B ’s e-mail
(e.g. bob@email.com). No public key certificate for B has to be obtained by A. When B receives the encrypted mail, she
contacts the Private Key Generator (PKG), authenticates herself and thus can obtain the private key from the PKG, which
enables her to decrypt the e-mail. In contrast to existing PKI, A is able to send encrypted mail to B even if B has not set-up
her public key certificate yet. A special case of identity-based public key cryptography (PKC) can be implemented using
pairings. Furthermore, the concept of identity-based cryptography and pairings can be used to construct authenticated key
agreement protocols.

2.1. Bilinear maps

We describe in a more general format the basic definition and properties of the pairing. More details can be found in
Joux [19] and Boneh and Franklin [4].

Let P denote a generator of G1, where G1 is an additive group of large order q and let G2 be a multiplicative group
with |G1| = |G2|. A pairing is a map ê : G1 × G1 → G2 which has the following properties:

1. Bilinearity:
Given Q , W , Z ∈ G1, we have ê(Q , W + Z) = ê(Q , W ) · ê(Q , Z) and ê(Q + W , Z) = ê(Q , Z) · ê(W , Z).
Therefore for any q,b ∈ Zq:

ê(aQ ,bW ) = ê(Q , W )ab = ê(abQ , W ) = ê(Q ,abW ) = ê(bQ , W )a.

2. Non-degenerative: ê(P , P ) �= 1, where 1 is the identity element of G2.
3. The map ê is efficiently computable.

In practice G1 is a subgroup of the group of points on an elliptic curve over a finite field, e.g. E(Fp). Then G2 is a subgroup
of a multiplicative group of a related finite field. Usually G1 has around 2160 elements and G2 is a subgroup of E(Fpr ),
where r is the embedding degree and pr has about 1024 bits.

The map ê can be derived by modifying the Weil pairing [14] (both inputs are of the same cyclic group) or the Tate
pairing [25] (related inputs are in the left-hand side of the pairing map) on a elliptic curve over Fp . The computational
effort of the Tate pairing is less than of the Weil pairing. However, both need to be modified since the pairing may always
output 1 ∈ G2 on the right side of the pairing.
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A more detailed explanations of topics regarding bilinear maps, the Weil and Tate pairings, the aspects implementation
and selection of suitable curves can be found in [4,5,15,16,19,25,36].

2.2. Computational problems

The security of the identity-based authenticated key agreement protocols discussed in this paper is based on the compu-
tation problem described bellow [4,8]. With the group described in Section 2.1, there are the following problems in elliptic
curve cryptography:

1. Discrete Logarithm (DL) problem
Given P , Q ∈ G1, find an integer n such that P = nQ whenever such integer exists.

2. Computational Diffie–Hellman (CDH) problem
Given a tuple (P ,aP ,bP ) ∈ G1 for a,b ∈ Z

∗
q , find the element abP .

3. Decision Diffie–Hellman (DDH) problem
Given a quadruple (P ,aP ,bP , c P ) ∈ G1 for a,b, c ∈ Z

∗
q , decide whether c = ab mod q or not [3].

4. Bilinear Diffie–Hellman (BDH) problem
Let P be a generator of G1. The BDH problem in 〈G1,G2, ê〉 is that given (P , xP , y P , zP ) ∈ G1 for some x, y, z chosen
at random from Z

∗
q , compute ê(P , P )xyz ∈ G2.

2.3. Security attributes

There are a number of ways in which an attacker can attempt to break a key agreement protocol, and when constructing
a key agreement protocol, the designer must consider what types of attack the protocol must resist. Such analysis has led to
the development of various desirable security attributes for key agreement protocols. In order to get a sound key agreement
protocol, we need to define properties, which are described in detail in [1,2,8,26]. Here we assume A and B are two honest
entities. It is desired for authenticated key agreement protocols to possess the following security attributes:

• Known-key security. In each round of a key agreement protocol, a unique session key should be generated. Each key
generated in one protocol round is independent and should not be exposed if other session keys are compromised, i.e.
the compromise of one session key should not compromise other session keys.

• Forward secrecy. If the long-term private key of one or more entities are compromised, the secrecy of previously es-
tablished session keys should not be affected. We say that a protocols features partial forward secrecy if some but not
all of the entities’ long-term keys can be corrupted without compromising previously established session keys, and we
say that a protocols features perfect forward secrecy if the long-term keys of all the entities may be corrupted without
compromising any session key previously established by these entities.

• Key-compromise impersonation. Suppose that the long-term secret key of one participating entity is disclosed (e.g. A).
Obviously, an adversary who knows this secret key can impersonate the entity to other participating entities (e.g. A to
B). However, it is desired that this disclosure does not allow the adversary to impersonate other entities (e.g. B) to the
entity whose long-term secret key was disclosed (e.g. A).

• Unknown key-share resilience. After the protocol run, one entity (e.g. A) believes she shares a key with the other par-
ticipating entity (e.g. B), while the other entity (e.g. B) mistakenly believes that the key is instead shared with an
adversary. Therefore, a sound authenticated key agreement protocol should prevent the unknown key-share situation.

• Key control. The key should be determined jointly by both participating entities (e.g. A and B). None of the participating
entities (e.g. A or B) can control the key alone.

2.4. Efficiency properties

Since an efficiency analysis and a comparison of the proposed protocols and competitive protocol are given, criteria used
to evaluate efficiency must be defined. Additionally, the criteria are used to evaluate and compare efficiency of identity-
based authenticated key agreement protocols.

There are two main groups of efficiency criteria: criteria for evaluating computational effort and criteria for evaluating
communicational effort. The criteria for evaluating computational effort is defined as the number of computations conducted
in every protocol run per participating entity. These computations include:

• pairing operations,
• scalar multiplications,
• exponentiations,
• additions, and
• hash operations.
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Additionally, pre-computations of pairing operations in protocols are included. They can be computed in an off-line man-
ner and thus reduce the computational effort. The computations can be divided into two classes dependent on the effort
required.

• Less expensive operations include additions and hash operations.
• More expensive operations include pairing operations, scalar multiplications and exponentiations.

Note that according to [5], the effort to evaluate one pairing operation is approximately equal to the effort of computing
three scalar multiplications.

When evaluating and comparing the protocols from the communicational point of view, number of passes per protocol
participant and number of rounds per protocol participant are considered (used as criteria). When designing protocols we
want to achieve minimal number of both.

3. Proposed two-party identity-based authenticated key agreement protocol using pairings

In 2003, Hess [18] proposed an identity-based signature scheme using pairing operations. We will show that his signature
scheme can be employed to construct an identity-based authenticated key agreement protocol

The proposed improved two-party identity-based authenticated key agreement protocol similarly to other identity-based
authenticated key agreement protocols, requires a private key generator (PKG) and consists of three phases: system
setup, private key extraction, and key agreement phase.

System setup. In this phase the Private Key Generator (PKG) constructs two groups G1 and G2 and a map
ê : G1 × G1 → G2. Next it computes a cryptographic hash function H : Z

∗
q → G1, a generator (primitive root) P ∈ G1, a ran-

dom integer s ∈ Z
∗
q as PKG’s private key and PKG’s public key as P P K G = sP . All elements are of order q. Finally, parameters

〈G1,G2, ê, P , PPKG, H〉 are published, whereas the PKG’s secret key s is kept secret.

Private key extraction. For a user with identity I Di the public key is derived as Q i = H(I Di) and the private
key as Si = sQ i . Both parameters are computed by the PKG and afterwards Si is issued to the entity via a secure channel.

Key agreement. Since signatures are used to authenticate the participating entities, a message is generated that
is later used to derive the session key. The message is signed by the sender (entity A) and both the message itself and
the signature are sent to the other participating entity – the receiver (entity B). In the same manner entity B generates
a messages sings it and send it to A. Then both can verify the signature and compute the session key.

1. A: a ∈ Z
∗
q ,

B: b ∈ Z
∗
q ,

2. A → B:T A = aP , rA = ê(S A, P )a , V A = H(T A, rA), U A = V A S A + aS A ,
B → A: T B = bP , rB = ê(S B , P )b , V B = H(T B , rB), U B = V B S B + bS B ,

3. A: r′
B = ê(U B , P ) · ê(Q B ,−P P K G )V B ,

V B =? H(T B , r′
B),

K AB = aT B = abP ,
4. B: r′

A = ê(U A, P ) · ê(Q A,−P P K G)V A ,
V A =? H(T A, r′

A),
K B A = bT A = abP ,

5. A, B: K = abP .

Observe that the verification holds because r′
A = ê(U A, P ) · ê(Q A,−P P K G)V A = ê(V A S A + aS A, P ) · ê(Q A,−sP )V A =

ê(V A S A + aS A, P ) · ê(S A,−P )V A = ê(S A, P )a = rA .

3.0.1. Protocol properties
Analyzing the computational efficiency of the protocol the following can be observed:

• For message exchange, each participant has to compute 2 scalar multiplications, 1 multiplication, 1 pairing operation,
1 exponentiation, 1 hash operation and 1 addition.

• To compute the session key 2 pairing operations, 1 scalar multiplication, 1 exponentiation and 2 hash operations are
required.

The signature operation can be optimized by pre-computing rA = ê(S A, P )a for the specific S A . Additionally, one additional
pairing operation can be eliminated in the key computation phase, if a large number of verifications are to be performed;
i.e. pre-computing ê(Q A,−P P K G ).

If summed up each participant has to compute 3 pairing operations (2 can be precomputed), 3 scalar multiplications,
1 multiplication, 1 addition, 2 exponentiations and 3 hash operations.
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In the proposed protocol the ephemeral keys a and b determine the sessions key K = abP . The security of the protocol
is also based on the discrete logarithm problem and the bilinear Diffie–Hellman problem which are described in Section 2.2.
If an adversary tries to derive the session key from the transferred messages {T A, U A, V A} or {T B , U B , V B}, she would have
to compute i from Ti = i P or V i = V i Si + i Si which would be equivalent to solving the discrete logarithm problem. From
message Ui = H(Ti, ri) she is unable to derive any valuable information since only the hash value is transfered. If a secure
hash functions is used, an adversary is prevented from deriving the original data that has been hashed [24]. Since two
honest entities A and B have to know either S A or S B to complete the verification steps successfully and no other entity
can derive the session key, the protocol provides implicit key authentication.

Let us further discuss the fulfilment of the other security attributes.

• Known key security. Suppose that the adversary learned a session key K1 = a1b1 P of a previous protocol run. In each
protocol run unique session keys are computed, which depend upon the ephemeral private keys a and b. Therefore the
knowledge of previous keys does not enable the adversary to derive other (future) session keys and does not give the
adversary any information which she could use to derive other session keys.

• Forward secrecy. When discussing (perfect) forward secrecy of the propose protocol, we have to consider that the session
key is not linked to the long-term private keys of the users. Past session keys can only be computed using the ephemeral
private keys, since the key is computed as K = abP . Additionally, past transfered messages do not help the adversary in
obtaining past session keys.
Even if an adversary would obtain both long-term private keys S A and S B , she would not be able to acquire one of
the ephemeral private keys, e.g. a. Observe that it is not possible to derive a from the transfered messages T A = aP ,
V A = H(T A, rA), U A = V A S A + aS A since this would be equal to solving the discrete logarithm problem. The same is
valid for messages sent by B . Hence the proposed protocol provides perfect forward secrecy.

• Key-compromise impersonation resilience. Suppose that A’s long-time private key S A is disclosed to an adversary who
wants to impersonate B to A. However, the adversary can only replay since she does not know S B and hence cannot
generate a valid signature for B which would pass the verification process (i.e. V B =? H(T B , r′

B)).
• Unknown key-share resilience. To implement such an attack on the proposed protocol, the adversary is required to learn

the private key of some entity. In the protocol only the entity who knows both the ephemeral secret key a and the
long-term private key S A can generate valid U A and V A . Thus our protocol offers unknown key-share resilience.

• Key control. Since the session key is determined by both entities, a single entity can not influence the outcome of the
session key and thus enforce its session key.

4. Comparison with competitive protocols

In this section we preform a comparison of efficiency and security of the reviewed protocols. The following protocols
are included: Smart’s protocols with and without escrow [34] , Yi’s protocol [42], Chen–Kudla’s protocols with and with-
out escrow [8], Scott’s protocol [29], Shim protocol [31], Ryu–Yoon–Yoo’s protocol [28], McCullagh–Barreto’s escrow and
escrowless protocols [23], Xie’s protocols with and without escrow [40], Boyd–Mao–Peterson’s protocol [6], Yuan–Li’ proto-
col [43], Choie–Jeong–Lee’s protocol I and II [10], Wang’s protocol [37], Li–Yuan–Li’s protocol I and II [21], Oh–Yoon–Yoo’s
protocol [27], Lim–Lee–Lee’s protocol [22], Wang–Cao–Cheng–Coo’s protocol [39], Huang–Cao’s protocol [17], Chow–Choo’s
protocols [9] and the proposed protocol.

4.1. Efficiency comparison

The efficiency criteria for comparing the protocols is combined from two parts: computational and communicational
effort (see Tables 1 and 2). Firstly the comparison of the protocols regarding computational effort is made. The criteria to
evaluate and compare the proposed protocol and competitive protocols are discussed in Section 2.4.

Observe that only operations which are expensive from the computational point of view are evaluated. Additionally, the
pre-computations of pairings are taken into consideration as they can reduce the computational demands of a protocol.

The proposed protocol requires a higher number of pairing operations as a result of the signature scheme used. However,
the number of pairing can be lowered due to pre-computations. However, only few scalar multiplications are required which
consequentially lowers the computational demands. As to [5] 3 scalar multiplication are equally expensive than 1 pairing
operation. Regardless that some competitive protocols are more efficient, they do not conform to all the security attributes
and/or lack in security because of known attacks. It is desirable for identity-based authenticated key agreement protocol to
be secure and efficient at the same time.

Next the comparison regarding communicational efficiency is made for which the criteria is also discussed in Section 2.4.
Since all included protocols require 1 round, we do no list the data in Table 2.

When the communicational effort of the protocols is compared, we can observe that the majority of protocols require
1 pass with exception of Boyd–Mao–Peterson’s, Choie–Jeong–Lee I, Chow–Choo without escrow and the proposed protocol.
The proposed protocol requires the transfer of 3 messages and hence is three-pass. However, communicational demands
have less impact on the efficiency of the protocols than computational demands as the most communication channels are
broadband.
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Table 1
Computation effort per user.

Protocol PairOp ScMul Exp Add Hash

Smart with escrow† 2 2 0 0 1
Smart without escrow 2 2 0 0 1
Yi 1 2 0 2 0
Chen–Kudla with escrow† 1 3 0 1 1
Chen–Kudla without escrow 1 3 0 1 1
Scott† 1 0 2 1 0
Shim* 1 2 0 2 1
Ryu–Yoon–Yoo 1 2 0 0 1
McCullagh–Barreto without escrow† 1 1 1 0 0
McCullagh–Barreto with escrow† 1 2 2 0 0
Xie with escrow** 1 3 1 0 0
Xie without escrow** 1 3 1 0 0
Boyd–Mao–Peterson† 1 2 0 0 2
Yuan–Li 1 3 0 2 1
Choie–Jeong–Lee I*** 2 4 0 0 1
Choie–Jeong–Lee II 2 4 0 0 2
Wang 1 3 0 3 3
Li–Yuan–Li I 1 2 2 0 0
Li–Yuan–Li II 1 2 2 1 0
Oh–Yoon–Yoo† 1 3 0 0 2
Lim–Lee–Lee 1 3 0 0 2
Wang–Cao–Cheng–Coo 1 1 1 0 1
Huang–Cao 2 3 3 2 1
Chow–Choo with escrow† 1 3 0 2 1
Chow–Choo without escrow 1 4 0 2 1
proposed protocol‡ 1(3) 3 2 1 3

* Broken due to the Man-in-the-Middle attack by Sun and Hsieh [35].
** Broken due to Li–Yuan–Li’s man-in-middle attack [21], Li–Yuan–Li’s and Shim’s key compromise impersonation attack [21,32,33].

*** Broken due to the Shim’s signature forgery attack [33].
† Does not fulfill all desirable security properties.
‡ 1 pairing operation required by the protocol if the pre-computation are taken into consideration:

PairOp – pairing operations,
Mul – scalar multiplications,
Exp – exponentiation in G2,
Add – point additions in G1,
Hash – map-to-point hash operation.

Table 2
Communicational effort per user.

Protocol No. of passes

Smart with escrow 1
Smart without escrow 1
Yi 1
Chen–Kudla with escrow 1
Chen–Kudla without escrow 2
Scott 1
Shim 1
Ryu–Yoon–Yoo 1
McCullagh–Barreto without escrow 1
McCullagh–Barreto with escrow 1
Xie with escrow 1
Xie without escrow 1
Boyd–Mao–Peterson 2
Yuan–Li 1
Choie–Jeong–Lee I 2
Choie–Jeong–Lee II 1
Wang 1
Li–Yuan–Li I 1
Li–Yuan–Li II 1
Oh–Yoon–Yoo 1
Lim–Lee–Lee 1
Wang–Cao–Cheng–Coo 1
Huang–Cao 1
Chow–Choo with escrow 1
Chow–Choo without escrow 2
Proposed protocol 3



148 M. Hölbl et al. / Journal of Computer and System Sciences 78 (2012) 142–150
Table 3
Security attributes fulfilment.

Protocol KKS PeFS PaFS KCI UKS

Smart with escrow + − −a + +
Smart without escrow + + + + +
Yi + + + + +
Chen–Kudla with escrow + − + + +
Chen–Kudla without escrow + + + + +
Scott + + + −b +
Shim* + + + + +
Ryu–Yoon–Yoo + + + − +
McCullagh–Barreto with escrow + + + −c +
McCullagh–Barreto without escrow + − + + +
Xie with escrow** + + + + +
Xie without escrow** + + + + +
Boyd–Mao–Peterson + + + − +
Yuan–Li + + + + +
Choie–Jeong–Lee I*** + + + + +
Choie–Jeong–Lee II + + + + +
Wang + + + + +
Li–Yuan–Li I + + + + +
Li–Yuan–Li II + + + + +
Oh–Yoon–Yoo + + + −d +
Lim–Lee–Lee + + + + +
Wang–Cao–Cheng–Coo + + + + +
Huang–Cao + + + + +
Chow–Choo with escrow + − + + +
Chow–Choo without escrow + + + + +
proposed protocol + + + + +
* Broken due to the Man-in-the-Middle attack by Sun and Hsieh [35].

** Broken due to Li–Yuan–Li’s man-in-middle attack [21], Li–Yuan–Li’s and Shim’s key compromise impersonation attack [21,32,33].
*** Broken due to the Shim’s signature forgery attack [33].

a Due to the attack by Shim [32].
b Due to the attack by Shim [7].
c Due to the key-compromise impersonation attack by Xie [40].
d Due to the attack by Lim, Lee and Lim [22].

KKS – Known-key secrecy,
PeFS – Perfect forward secrecy,
PaFS – Partial forward secrecy,
KCI – Key-compromise impersonation,
UKS – Unknown key-share,
KC – Key control.

4.2. Security comparison

Security attributes are the most important ones when dealing with key agreement protocols. We sum up the security
attributes in Table 3. Details about the security attributes are described in Section 2.3. We do not list the property of key
control, as all the protocols discussed in this paper conform to this property. Later we give published attacks or weaknesses
for each protocol. Nevertheless if a protocols fulfils particular security attributes it can not be used, if a weakness or attack
was published. Often a known attack leads to the fact that a protocol does not fulfil a specific security attribute.

Most protocols conform to the above security attributes (see Table 3). Protocols by Shim, Xie and Choie–Jeong–Lee proto-
col I have been broken due to attacks. Protocol which do not fulfil all the security attributes include: Smart’s protocol [34],
Chen–Kudla with escrow [8], Scott’s protocol [29], McCullagh–Barreto’s protocol [23], Boyd–Mao–Peterson’s protocol [6], Oh–
Yoon–Yoo’s protocol [27] and Chow–Choo protocol with escrow [9]. It can be observed that the proposed protocol features
all the security attributes.

4.3. Known attacks

Some of the reviewed protocols have been shown to have serious security flaws, which were exploited for attacks (see
Table 4). For some of the presented protocols no attacks have been published so far: Boyd–Mao–Peterson’s protocols [6],
Yuan–Li’s protocol [43], Choie–Jeong–Lee’s protocol II [10], Wang protocol’s [37] and Li–Yuan–Li’s protocols [21]. An attack
was presented on Shim’s protocol [31] and McCullagh–Barreto’s protocol [23]. Two attacks were published for Smart’s [34]
protocol. The worst case regarding published attacks applied to protocol of Ryu–Yoon–Yoo [28] and Xie’s Protocol [41].
Some of the protocols were security patches of existing protocols and nevertheless they were shown to be flawed (i.e.
Ryu–Yoon–Yoo’s protocol [28]).
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Table 4
Known attacks.

Protocol Attacks

Smart with escrow – Shim’s attack (forward secrecy) [31]
– Cheng et al.’s attack [12]

Smart without escrow \
Yi \
Chen–Kudla with escrow – Cheng et al.’s attack [12]
Chen–Kudla without escrow \
Scott \
Shim – Sun–Hsieh’s man-in-the-middle attack [35]
Ryu–Yoon–Yoo – Wang et al.’s key-compromise impersonation attack [37]

– Yuan–Li’s reveal attack [43]
– Yuan–Li’s key compromise impersonation attack [43]

McCullagh–Barreto with escrow – Choo’s attack [11]
McCullagh–Barreto without escrow \
Xie – both protocols – Li–Yuan–Li’s man-in-middle attack [21]

– Li–Yuan–Li’s key compromise impersonation attack [21]
– Shim’s key compromise impersonation attack [32,33]

Boyd–Mao–Peterson \
Yuan–Li \
Choie–Jeong–Lee I – Shim’s signature forgery attack [33]
Choie–Jeong–Lee II \
Wang \
Li–Yuan–Li I \
Li–Yuan–Li II \
Oh–Yoon–Yoo – Lim–Lee–Lee’s Basic impersonation attack [22]

– Lim–Lee–Lee’s key compromise impersonation attack [22]
Lim–Lee–Lee \
Wang–Cao–Cheng–Coo \
Huang–Cao \
Chow–Choo with escrow \
Chow–Choo without escrow \
Proposed protocol \

When a protocol suffers from attacks, its use is questionable. Additionally, an attack causes the unattainability of specific
security attributes.

5. Conclusion

In this paper we proposed an improved identity-based authenticated key agreement protocol employing pairing for
the two-party setting. It employs signatures to authenticate the participating entities and verify the transfered messages.
Moreover we discussed the efficiency and security of the proposed protocol and showed that it conforms to all desirable
security attributes. Finally, we compared the proposed protocol and existing competitive protocols regarding efficiency and
security and showed that the proposed protocol conforms to all security attributes and is at the same time efficient.
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