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INTRODUCTION 

If ZM is an M-dimensional Hilbert space with inner product (* , *) over 
the complex numbers C, then A J&, the P-dimensional Grassmann algebra 
generated by .Y&, can also be made into a Hilbert space. In fact, we define 
the inner product between decomposable vectors xi A x2 A a** A xlc , and 

Yl * Y2 * ...“yle~A\k~~,xi,yi~~~,by 

(Xl A x2 A --- hXk~Y1AY2h *** A Yk>k = det(<x, , Yj>), (0.1) 

the determinant of the K x K matrix whose ijth entry is the scalar (xi , yj). 
Since A XM is the direct sum of the spaces 

c, Al 2& = sf& ,..., A” d$f ,..., AM sf& , 

we extend the inner product (0.1) to all of A %M by setting these direct 
summand spaces AL *M, K = 0, l,..., M, orthogonal to each other. 

Since, for 1 < n < M, Aa Z& is a Hilbert space, by virtue of (O.l), we may 
consider the Grassmann algebra fi (An @&) generated by it, and give it an 
inner product ((* , *>I, in like fashion to (0.1). That is, for vectors 
x 12 , x ,..., x k 1 2 , y , y ,..., yk E An yt”M , we define the inner product ((* , .>>k by 

((x1 x x2 ii -*- x xk, y1 x y2 ii --* x yk))k = det((xi, yi),). (0.1)’ 

Note that the symbol K is used for the product in the Grassmann algebra 
K (An &&) generated by Hilbert space An ZM in contrast to the symbol A 
which denotes the product in the Grassmann algebra A #M generated by 
Hilbert space XM. To underscore the distinction between A defined for 
A #m and r\ defined for A (A” PM), consider the following example: Let 
e,,e2,e,,e,bevectorsof~~,M~4.Thenx=elhe2andy=e,~e, 

1 This work was partially supported by NSF GP 5262. 
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are vectors in A2 XM . Now x A y is a decomposable vector of degree 4 in 
A4 flM, while x X y is a decomposable vector of degree 2 in A8 (A2 ZM). In 
fact, if {e, , es , es} is orthonormal in SM , and e, = es , we have that 
x A y = (e, A es) A (es A e,) = 0 in A4tiM, whereas (from (0.1)‘) 
x ii y = (e, A e,) x (e, A e,) is a unit vector of ii2 (A2 J&). 

It is the purpose of this paper to relate properties of the inner products 
(* , *)k , (* , .)K+l defined on Ak ZM and Ak+l SM+i , respectively (Theorem 
1.2). A similar comparison is made for ii (An &$), the Grassmann algebra 
generated by (:)-dimensional Hilbert space A” XM, (Theorem 2.1). The 
inner products (* , a) and ((* , a>> on the Grassmann algebras generated by 
.%$, and An XM , respectively, are tied together in Corollary 2.4. Finally, 
applications of these results to determinantal inequalities on positive definite 
matrices, are obtained. 

We shall use the symbol QM,k to denote the (y)-element set of order- 
preserving functions D sending the set { 1, 2 ,..., K} into the set { 1,2 ,..., k ,..., M}. 
That is, u E QM,k ifandonlyifl <o(l)<u(2)<**~<a(K)<M.Thus,if 

6% 9 xa ,..., xM) is a basis for XM , the (y) decomposable vectors 

%w A %(z) A mm* A x0(*) , a eQMSlc , form a basis for the subspace, denoted 
by Ak Y&. For convenience, we use the abbreviation 

Xo = X,(l) A X,(2) A “’ A X,(k) . 

If T is a linear operator on SM, then C,(T), the lath compound of T, is a 
linear operator on A k NM defined by 

G(T) xl A x2 A -*’ A xk = Txl A TX, A *** A TX, 

for all xi , xa ,..., xk: E SM . We are ready to present our results. 

1. THE ALGEBRA A XM AS HILBERT SPACE 

PROPOSITION 1.1. Let PA denote the orthogonal projection onto 4, where 
AY is the subspace of XM, with orthonormal basis {ul , u2 ,..., ur}. Then C,(P,,) 
is the orthogonal projection onto the (L)-dimensional subspace of A* XM spanned 
by the orthonormul set 

Proof. The result follows directly from the definition of C,, . A more 
general statement concerning partial isometries on ZM is to be found in 
([2], Lemma 3.1). 
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THEOREM 1.2. Consider the kn-element ordered set of linearly independent 

vectors 

{x11, x21,. ..) xnl, x12, x2 ,...) x,2,. . . , X,k, X2k )...) x,“} 

in HM, and denote by M, the subspace of ~6’~ spanned by these vectors. If 
x 12 , x ,..., xk are the decomposable vectors in An .%& defined by 

xz = x1% A x2$ A *** A x,i, i = 1, 2 ,... , k, 

then for all y, z E An L%?~, we have 

(xl A *‘* hXkhy,xlA”‘AXkI\Z)(k+l), 

= (xl A . . . * x7c 
, 

x1 h . . . 
h Xk)kn <c,(p,,) y, z>, , (1.1) 

where .A’I is the orthogonal complement of the s&pace & in G%$ spanned by 
{xl : i = 1, 2 ,..., k, j = 1, 2 ,..., n>. 

Proof. We first observe that the equality remains valid if we multiply the 
vectors xj2, i = 1, 2 ,..., k, j = 1, 2 ,..., n, by various scalars. Hence, we may, 
if necessary, multiply the +‘s by the desired scalars which will force the 
Gram-Schmidt orthogonalization procedure to yield unit vectors 

ell, e21,..., e ,1,..., el , 2 ,..., e, , k ek k 

which form an orthonormal basis for A. Next, extend this basis to the 
orthonormal basis 

{elf, e21 ,..., en1 ,..., elk, e2k ,..., eak, u1 , u2 ,..., u9}, kn + p = M, (1.2) 

for the whole space ZM. Thus, the subspace .&I has for a basis, either of the 
sets {xl1 ,..., x,l,..., xIk ,..., x,~} or {erl,..., e,‘,..., elk ,..., e,k}, while ML, its 
orthogonal complement, has for a basis, the orthonormal set 

&l 3 212 ,***9 4. 

Since each el is equal to xj” plus a certain linear combination of the preceding 
vectors xsc, it is immediate, then, that 

Xl 
1 = ell 

xl1 pI x2' = ell A eel 
. 

. 

x1 = xl1 A xzl A -** A xnl = ell A e2’ A --- A en1 = e’ 
. . 
. 
. 

x1 A x2 = e1 h e2 

. 

xl A ~2 A --- f, xk = & i e2 A **- A ek. 
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In a natural fashion, we have used the symbol ei, i = 1, 2,..., k, to represent 
the decomposable (unit) vector eii A ezi A .a- A eni. Thus, 

X1 A X2 A --* A Xk A y 

= (el h e2 A a-nek)/\ &y,f,),f,, N= y, 
( 1 (1*3) 

i=l 

where {fi , fi ,..., fN> is the orthonormal basis of decomposable vectors 
(of degree n) for An A?‘, formed from the orthonormal basis (1.2) for ZM . 
That is, a typical vector fi is of the form 

fi = ej; A -‘* A t?? A U 
$1 

A **’ A Ut , r+s=n. 
I 

But the non-zero terms of (1.3) occur only when fi is a decomposable vector 
of the form 

fi = Udl) A Uoh) A *‘* A *o(n) 9 
where 

1 < a(1) < u(2) < *-* <u(n) <M--h =p. 

In other words, we may rewrite (1.3) as follows: 

X1 A ... A Xk A J’ = c (y, ll,), e1 A **- A ek A U, , (1.4a) 
OEQp.n 

where p = M - kn, and u, = u@(i) A q2) A -** A q,(%) for each u in the 
(:)-element set QB,% . Similarly, for z E An ZM, 

XIA”‘hXkAZ= 1 (z,u,),el)\---hekhu,. (1.4b) 
-Qp.?l 

The equalities (1.4a) and (1.4b) lead us to 

(X1 A *** A Xk A y, X1 A “’ A Xk A Z)(k+l)a 

= ~ 7z (Y, %>?z (2, UJn 

- ?J.n 

* (e’ A ‘.- A ek A U, , e1 A *‘* A ek A U,)(k+l)n . U-5) 

Now since the (k + 1)n vectors 

W, ezl,..., esk, wl) ,.--, wd 

form an orthonormal set in J& , for each u E Qp,* , their exterior products 

(e’ A -** A ek A u, 

= ell A ezl A .*- A e,’ A U,(,) A *** A U,(,) : 0 E Qm> 
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form an orthonormal set in A(k+l)n 3M . This fact allows us to set (T = T in 
(1.5), since 

(el h a*- A ek A u, , e1 A **- A ek A u,) 

equals zero when u # 7. In continuing (1.5), then, we have 

(X1 A *-* A Xk A y, X1 A **- A Xk A Z)(k+l)n 

= ,,g (Y, WA (2, UJn 

P.72 

* (e’ A --- A ek A u D, e1 * **’ A ek A %)(k+l)n 

ll 

(y, u,), (2, uJn (e’ A .-- A ekcl A **- A ejeh, 

= 1 

= cc; (J.‘, U,>, (2, U,>, (X’ A ‘-* A X’, X1 A -** A Xk)kn 
L --.r- / 

8.72 Lzz 1 

= .,; (x1 A *.. A Xk, X1 A ‘*. A Xkjkn 

* P.72 

* ((Y, WA uo > <z, UA UJn U-6) 

since (u,,u,)~ =0 when ufr 

= 1 when u = 7. 

= (X’ A *‘* A Xk, X1 A *** A Xk)kn (p(s) y, z), 

where P(S) is the orthogonal projection onto the subspace S of A” ZM, 
with orthonormal basis (u, : (T E $&}. Proposition 1.1 now tells us that 

P(S) = C,(P,,), where J@‘-, spanned by the orthonormal set {ui , u2 ,..., up}, 
is the orthogonal complement of the space .,4? in &‘& . Recall that &Y has for 
a basis, the set (xil, xZ1 ,..., x,r ,..., x1” ,..., xnk} (see (1.2)). Substituting C,(P,,,) 
for P(S) in (1.6) yields the final equation 

(xl A *-* A Xk A y, X1 A -** A Xk A Z)(k+l)n 

= (xl A . . . A Xk xl /\ . . . A x’)kn (c,(p,L) y, z), . 

In multiplying the vectors xji, i = 1, 2 ,..., k,j = 1, 2 ,..., II, by arbitrary 
scalars, we leave this equation intact; at the same time, we remove the 
restriction that the Gram-Schmidt orthogonalizing vectors from the set 
(#> are each of Iength one. That ends the proof of the theorem. 



490 DE PILLIS 

2. THE ALGEBRA fi (An) .?‘& AS HILBERT SPACE 

We turn our attention to ii (A” XM), the Grassmann algebra generated by 
the (:)-dimensional Hilbert space AnXM , whose inner product (* , *), is 
defined in (0.1). For the exterior product of (not necessarily decomposable) 
vectors x1, x2 ,..., xk E A* yIM , we write 

x1 x x2 x . . . x Xk (2-l) 

employing the wedge symbol X to distinguish this product in the algebra 

A (An XM) from the exterior product A in the algebra A SM . The linear span 
of all decomposable vectors of the form (2.1) is denoted by A” (An ZM). 
Analogous to (0.1) Ak (A XM) is given a Hilbert space structure, by defining 
the inner product of the decomposable vector x1 K x2 71 *** X xk against 
y” 7i y2 x *.* X yk as follows: 

the determinant of the k x k matrix whose ijth entry is the scalar (xi, yi), , 
where each xz, yz E Am s&, 1 = 1, 2,..., k. The direct sum of the Hilbert 
spaces 

c, xl (An sM) = A” SM, fi2 (A” i&) ,..., h” (A- 3&) ,..., A(:’ (An %4), 

denoted A(AnSM), is the Grassmann (Hilbert) algebra generated by the 

space A=&& . 
Our next result flows from Theorem 1.2. 

THEOREM 2.1. Let (xl, x2 ,..,, xk> be a linearly independent set of (not 
necessarily decomposable) vectors in A* ZM . Then for any vectors y and 
ZEA~XT, wehave 

((xl ii a-* Li Xk x y, xl x *** ii Xk 71 Z>k+l 

= (<xl x 1.. 7; =k, xl x 
+-- x Xk>r, ((p(sl) y, 2% , (2.3) 

where S is the k-dimensional subspace of A” XM spanned by the set {xl, x2,..,, xk}, 
and P(F) is the orthogonal projection onto S, the orthogonal complement of S. 

Proof. Note that the statement of Theorem 1.2 has it that 

(xl A *** A Xk A y, xl A -** A Xk A Z)(k+l)n 

= (xl A *-* A Xk, X1 A *** A Xk)kn (c,,(P’,) y, Z), (2.4) 

for decomposable vectors xi = xri A *** A xnk in A* &$, and for arbitrary 
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vectors y, 2 in An J&f , where PJ~ is the orthogonal projection onto the 
subspace J?~ of XM and J&Y is spanned by the kn vectors 

Xl 
1 

,**a, % 1 , Xl2 )...) x," ,...) Xnk. 

Now set 1z = 1 and replace Y& by the Hilbert space Ap XM . Theorem 1.2 
and (2.4) then read: For any linearly independent set of vectors, xl,..., xk, in 
AP-%4, and for any y, z E: Ap ZM, we have 

((xl 71 a** 71 Xk x y, x1 ii ‘** ii xk ii Z))k+l 

= ((x1 71 .a. X xk xl 71 -** x X”>>k <P”&Y, 01 (2.5) 

where &I is the orthogonal complement in A* ZM to the subspace J? 
spanned by the vectors x1, x2,..., xk. (Note that C,(P,,) in (2.4) becomes 
P&J. when n = 1). We modify (2.5) by replacing the symbol p with n, and 
by setting .M = S to obtain the desired form. So ends the proof. 

In Theorems 1.2 and 2.1, it was not assumed that the integer n, which 
appeared in each, was the same. The following proposition says, in effect, 
that if we make this assumption, then the hypotheses of Theorem 1.2 force 
the hypotheses of Theorem 2.1 to obtain. 

PROPOSITION 2.2. Consider the kn-element set of linearly independent 

vectors 

{x11 ,..., x,1, x12 )..., x,2 ,..., x1” )..., X,k} c 2fyM . 

Let xi = xri A *** A xni, i = 1,2 ,..., k. Then the set 

{xl, x2,..., x”} c A” PM 

is necessarily linearly independent. 

Proof. Extend the set {xii : i = 1,2 ,..., k, j = I,2 ,..., n} to the 
M-element basis 

{x11 ,..., x,1 ,..., xlk ,..., X,k, u1 ) u2 )..., up} 

for J& . Then the wedge products of these vectors, taken n at a time, com- 
prise a basis for An 3?,& . Among these basis vectors are the k vectors 
xi = Xii A x 2i A *a* A xni, i = 1, 2,..., k, which are therefore linearly 
independent. 

We come to the theorem which compares the orthogonal projections 
Cn(PA~), and P(P) which arise in Theorems 1.2, and Theorem 2.1, respec- 
tively. 

THEOREM 2.3. Let A’ be the kn-dimensional subspace of ZM , with ordered 
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basis (x11 ,..., xnl, x12 ,..., x,2 )..., x1” ,..., xnk}. Let S be the k-dimensional subspace 
of A” sM which is spanned by the linearly independent vectors {xl, x2,..., xk} 

(see Proposition 2.2), where for each i = 1, 2 ,..., k, xi = xii A xei A **. A x,i. 
Then C,(P,,) < g(S) in the sense that the range of theprojection C,(P,,) is 
a proper subspace of &‘I, the range of the projection B(S). 

Proof. Let &?I, the orthogonal complement of A, have the set 

h 1 u2 ,a.-, uQ}, p + kn = M, as an orthonormal basis. According to Proposi- 
tion 1 .l, the range C,(P,,) is spanned by the orthonormal set 

{u, = u,,(,) A ... A u,(,) : u EQ,,,} of Afi ZM. 

On the other hand, every such vector u, is orthogonal to every decompo- 
sable vector xi = xri A xsi A *** A x,{. That (xi, u,), = ((xi, u,>>, = 0 can 
be seen directly from the definition of the inner product, since each u,,(?) is 
orthogonal to each xji by definition. That is, the range of the orthongonal 

projection C,(P,,) with basis {u D : (T EQ,,,} is a subspace of S, the ortho- 
gonal complement to the subspace S with basis {xl, x2,..., x”>. In other words, 

C,(P,L) < B(SL). 
A simple dimension argument would establish that the inclusion of sub- 

spaces is proper, but it will suffice to exhibit a vector y  in the range of 9’(F) 
which is not in the range of C,(P,l)(not in the span of the set) 

Consider, for example, the decomposable vector with “mixed” factors, 

y = Xl1 A U1 A U2 A “- A UkTl . 

It is a straight forward application of the definition (0.1) to show that 
(xi, y>, = 0, so that y  E S. Yet, y  cannot be expressed as a linear combina- 
tion of the vectors 

{u, : (J ~Q,,nl- 

In fact, since xl1 is orthogonal to each and every u,ci) , i = 1, 2,...,p, we 
have 

(y, u,)~ = 0 for all D E&~,~ . 

The proof of our theorem is complete. 
Our next corollary pulls together the ideas of this section and sets the stage 

for applications to determinantal inequalities on positive definite matrices. 

COROLLARY 2.4. Let {xl1 ,..., x,l, xl2 ,..., xn2 ,..., xlL ,..., x,lc} be a basis for 
the kn-dimensional subspace A? of X&. If  for each i = 1, 2,..., k, we set 
Xi = Xii A X2$ /\ -.- A Xni, then we denote by S, the k-dimensional subspace of 
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An eM spanned by the (necessarily) linearly independent set {xl, x2,..., x”}. Then 
for any y  E A” XM, but not in S, 

(2.7) 

where equality between thejirst pair of quotients obtains zf, and only if, y  belongs 
to the range of C,(PA,) + S, i.e., if, and only if, 

y  = f  a,xi + C b,u, , 
i=l ~eQIL?l 

ai , b, complex, 

is a linear combination of the “pure” decomposable vectors xi, i = 1,2,..., k, and 

where {ul , u2 ,..., u,> is an o.n. basis for ~2’~. 

Proof. In combining Theorems 1.2 and 2. I, we have 

(X’ A *** A Xk A y, X1 A *** A Xk A Y)(k+l), 
((xl ii *** Yi Xk x y, xl ii ‘-* ?i xk ii y))k+l 

(X’ A --- A Xk, X1 A *-' A Xk)kn . <Cn(P%) Y, Yh 
= ((x17( ."XXk,Xl/\ "'XXQk ((qsqy,y>l 

where the range of .P(Si) is the orthogonal complement in A” &$, of the 
subspace S with basis {xl, x2,..., ~“1. Now W:(W Y, y>>l = P”(W Y> Y>, 
(see (2.2)). We see, now, that the quotient 

WV 

since, as we have seen (Theorem 2.3), S, the range of 9’(SL), properly 
contains the range of C,(P,,), which is spanned by the vectors 

Uo = %(I) A ‘*- A U,(n) , where u,(,.) E.A?~. Now to say that equality obtains 
in (2.8) for some y  E An ZM, is to say that y  lies in the kernel of the orthogonal 
projection 

qsq - C,(P,L). 
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That is, (P(P) - C,(P,.L) y, y), = 0 

S y  E range[l - (B(P) - C,(P,,))] 

7t y  E range[P(S-L)L + C,(P,L)] 

* y  E range[P(S) + G(Pd~)] 

+ y  is a linear combination of the “pure” vectors 
x2 =xli” ..‘hXnd, i= 1,2 K ,-.*, , and u, = u,(r) A **a A u,(,) , 
where each u,tj) E AL. 

This ends our proof. 
The following result describes conditions under which 

((xl il . . . x xk,xlx . . . ii XkBk = (X1 A --* A Xk, X1 A **. A Xk)kn 

for decomposable vectors xl,..., xk E An Y& . 

COROLLARY 2.5. For decomposable vectors 

Xi = X1” A Xsi A **- A X,aiEAnsM, 

i = 1, 2 ,..., k, we have 

((xl /\ xa 7i . . . x Xk, x1 x x2 x -** x XQk 

= (X1 A X2 Ak *** A Xk, X1 A X2 A “* A Xk&, (2.9) 

if and only if each xDi is orthogonal to each xd for i f j. In the case of equality 
for (2.9) we have both sides equal to 

(xl, xl), (x2, x2), -*a (x”x”), . 

Proof. From Corollary 2.4, we may write 

(X1 A *** A Xk-l A Xk 
, 

x1 A . . . A Xk-’ A X’)kn 

<(xl x . . . x Xk-l x Xk x1 X . . . x xk--l i; xk>>k 

where equality obtains (in the first case above) if and only if the decomposable 
vector xk = xIk A x2k A *** A xnk is of the form (see (2.7)) 

k-l 

xk = c aixi + c b,,u, , 
d-l ‘IEQ%J.n 

ai , b, complex, (2.10) 
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where the subspace ~6,’ is spanned in this case by the (k - 1) n vectors 
{xi1 ,..., x,l,..., ~1”~‘,..., xi-l} and {ui , us ,..., u,} is an orthonormal basis for 
AL. Now an interesting result of Klaus Vala ([7], Lemma 3, page 15) says 
that a sum of decomposable vectors (e.g., the right-hand side of (2.10) may 
be written with fewer terms if, and only if, the set of all the factors 
{x11,. . .) xi-l, u1 , . . .) up} is linearly dependent in yiM . In our case, our set of 
factors is linearly independent (in fact, a basis) in XM, so the number of 
terms in (2.10) cannot be reduced. Yet the left-hand side of (2.10) tells us 
that the sum is a single decomposable vector xK which forces the sum 

k-l 

1F; a& + 1 bii, 
* 

to be only a one-term sum. Clearly, then, each complex ai , i = 1,2,..., k - 1 
in (2.10) must equal zero, so that 

Xk=Xk lh --- A xmk = b,(u,(,) A -es A u,(,)) 

for some {pi) ,..., u,(,)) in .M1. The equality of the two decomposable 
vectors above tells us that {xik,..., x,~} and (ZQ) ,..., uocn)} span the same 
subspace of SM. Since by definition each uoti) is orthogonal to each vector 
in A?, where 4 is spanned by {x11,..., xk’}, it follows that each xlk is ortho- 
gonal to each xjz in A?. We repeat this argument successively to conclude: 
Equality in (2.9) obtains if, and only if, each xpi is orthogonal to each x,j for 
i #.i,P, 4 = 1, L, n. This proves part of our corollary. 

To see that 

((xl il -*a /\ Xk, -$ x . . . x Xk>k = (X1 A --* A Xk, X1 A **- A Xkjkn 

= (xl, xl), (x2, x2), ‘.. (Xk, Xk), 

holds for the case of equality, it suffices to apply the definition (0.1) to show 
that xi I xi for i f j (since x,4 J- x,j), and then to use (0.1)’ for 
((xl x . . . x xk 

> 
x1 h . . . X xkBk. This ends the proof. 

3. APPLICATIONS TO MATRICES 

Let 

A = 
t 

Jjll 42) 

21 A22 

be a 2n x 2n positive definitive matrix, where each Aij , i, j = 1,2, is an 
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n x n matrix. It has been shown by W. N. Everitt [3] and in a more general 
context, by C. Davis ([I], Lemma l), that 

(3.1) 

For a generalization of this result where A,, and A,, need not be square, see 
F. T. Metcalf ([2], Th eorem IO). R. C. Thompson proved [d], that (3.1) 
could be extended to 

deft1 k2 f fj <de(f;;f :::I _I: f,;;~)c321 
. 

whenever the mn x mn matrix A = (Aid) is positive definite. A generalization 
of Thompson’s result was achieved by M. Marcus ([4], Theorem 3) which, in 
turn, is a special case of our Corollary 2.4. 

We describe the result of Marcus. 
Let A(,) = (Aif) be the mn x ma positive definite matrix, partitioned 

into m2 matrices Aii , i, j = 1,2 ,..., m, where each Aii is an n x n matrix. 
Similarly, for 1 < k < m, Ack) = (Aij) is the kn x kn submatrix of A(,, , 
where i, j = 1,2,..., k. The symbol A’(&) = (det(Aij)) shall denote the 
“reduced” K x k matrix whose ijth entry is the scalar det(Aij). With this 

notation, Thompson’s result (3.2) reads 

det(A(,)) < det(&)). 

The generalization by Marcus reads 

W4d G . . . d WA(~+d G W&d G . . . G det(Ad = 1, 

det(&d W&+d W&d W&d 

(3.3) 

for all k = 1, 2 ,..., m - 1. 
Incidentally, we can be sure that det(Ao)) is positive since At,, (hence, 

A(,)) is a positive-definite matrix. The author [2] has shown that, conse- 
quently, the k x R matrix 

E&h) 

i : 

0.. -UAuJ 

E*(&J : 1 a** -3i%,, 

is positive definite, where E, is the qth elementary symmetric function. Hence, 
for q = n(E, = det), we are assured that det(&) is also positive. 

We show how the Marcus-Thompson result follows from Corollary 2.4. 
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THEOREM 3.1. (Marcus, Thompson) Let A = (Aij), 

i,j= 1,2 >-**, m, 

be a positive de$nite mn x mn matrix, where each Aii is an II x n matrix. 
Then for all k = 1,2 ,..., m - 1, 

det A,, 

i . 

*em det A,, 

det ’ 
det A,, **a det A,,, 

det A,+, 1 --- det A,+,,, det Ak+l,k+l 

Moreover, equality holds ;f, and on& if, A(,+,) = Ack) @ Ak+,,,+l, i.e., ;f, 
andonlyif,foreachi=1,2 ,..., k, 

A k+l.i = Ai.k+l = the zero n x n matrix. 

Proof. We note that a square M x M matrix A is positive definitive if 
and only if the rsth entry of A is the scalar (x, , zr) for some basis 

{Xl > z2 ,..,, zM} of the underlying Hilbert space ZM. In fact, for each 
i = 1, 2,..., M, xi = Pie, , where P is the positive definite operator on G%!‘~, 
and A is the M x M matrix of P relative to the basis {e, , ea ,..., eM}. Since 
transposes of positive definite matrices are positive definite, we suppose the 
rsth entry of A to be the scalar (z, , z,). 

Therefore, we may set A = (Aij) to be the positive definite mn x mn 
matrix whose pqth entry of the n x n matrix Aij is the scalar (xsi, x,j), 
where 

(x2 )... , X%1, x12, . . . , x,2,. . . , x1” ,... , x,m} 
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is a basis for the underlying Hilbert space z?~, . This tells us that for all 
k = 1, 2 ,..., m, 

det(A(,,) = det i i 
.A,, -.. A%k 1 

= <Xl1 A a-* A x,’ A -a- A Xlk A --- A xnk, 

Xl1 A *** A X,’ A ‘*- A Xlk A -** A X,,k)kn 

= (X’ A X2 A *-* A Xk, X1 A X2 A -** A Xk)kn, (3.4) 

where xi denotes the decomposable vector xl6 A x21 A -** A x,I, i = 1,2,..., k. 
Since thepqth entry of then x n block matrix Aif is just the scalar (xa, x,j), 

we see immediately from (0.1) that 

det(A,J = (xii A xgi A -a* A xni, xj A x2 A *-- A x,~)~ 

= (xi, xj), . 

Thus, 

det A,, *** det Ark 
det(&.j) = det i 

det A,, : 1 -*a det’Akk 

= ((xl x x2 x . . . x xk, x1 7( x2 x . . . x Xk>>k (3.5) 

[see (2.2)]. We now combine (3.4) and (3.5) to obtain 

(3.6) 

for all K = 1, 2 ,..., m. 
Let us now rewrite the statement (2.7) of Corollary 2.4 for the special 

case where y  is the decomposable vector y  = xk+l = xF+’ A xt+l A -*- A xt+l. 
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This leads us to 

det(qk,) 
(($1 x . . . x Xk, x1 x *** ii xk>>k 

from (3.6) 

-‘* h xk h xk+l, x1 h ‘*’ h xk h Xk+‘)(k+l)n 
. . . x Xk x Xk+l, x1 x . . . x Xk x xk+l>k+l 

from Corollary 2.4, 

= det(A(k+ld 

det(&+d 

from (3.4) and (3.5). 

1 = det(Ad > . . . > det(A(k)) > det(A(k+l,) 

det&) det(&,> det(&+d 

> *** > 
W&d 

WAd ’ 
(3.7) 

According to Corollary 2.4, equality can obtain in (3.7) if, and only if, 
xk+l E C,(P,,), i.e., if, and only if, xk+l is a linear combination of decom- 
posable vectors 

where each u,,(,.) is orthogonal to each of the Kn vectors xrr ,..., x,i ,..., xlk ,..., xnk. 
But under these circumstances we have, from (O.l), that (xk+r, xi), = 0, for 
each i = 1,2,..., k. Since xk+l = x:+l A xz+l A a** A xE+l, where each XT is 
not in the span of the kn vectors xl1 ,..., x,l,..., xlk ,..., xnk, this can only mean 
each xy is itself orthogonal to each xji, i = 1, 2 ,..., k, j = 1, 2 ,..., 71, i.e. 
c$+l, Xji) = 0. 

In other words, equality for (3.7) obtains only when 

The converse statement, that Atk+r) given in the form (3.8) above, yields 
equality for (3.7), is trivial. This completes our proof. 

As a final observation, we note that 

= (xl A *** A xk, xl A *** A Xk)kr ) 
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and 

det A,, 
det(At,)) = det : = ((xl A --* A Xk, xl A **- A Xk))fi . 

det A,, 

By reading Corollary 2.5 in this setting, we establish 

COROLLARY 3.2. For positive de$nite matrix A(,) = (Aif), each Aii is an 
n x n matrix, i, j = 1, 2 ,..., k, 

W%)) = det@‘d 

if and only ;f  Ack) is block diagonal, i.e., if and only ;f  

det(A(,,) = det(&,) = det(A,,) det(A,,) *-a det(A,,). 
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