
doi: 10.1016/j.procs.2016.05.470

Source Transformation of C++ Codes for Compatibility

with Operator Overloading

Alexander Hück1, Jean Utke2, and Christian Bischof1

1 Institute of Scientific Computing, Technische Universität Darmstadt, Germany
{alexander.hueck, christian.bischof}@sc.tu-darmstadt.de

2 Quantitative Research & Analytics, Allstate Insurance Company, USA
jutke@allstate.com

Abstract
In C++, new features and semantics can be added to an existing software package without
sweeping code changes by introducing a user-defined type using operator overloading. This
approach is used, for example, to add capabilities such as algorithmic differentiation. However,
the introduction of operator overloading can cause a multitude of compilation errors. In a
previous paper, we identified code constructs that cause a violation of the C++ language
standard after a type change, and a tool called OO-Lint based on the Clang compiler that
identifies these code constructs with lint-like messages. In this paper, we present an extension
of this work that automatically transforms such problematic code constructs in order to make an
existing code base compatible with a semantic augmentation through operator overloading. We
applied our tool to the CFD software OpenFOAM and detected and transformed 23 instances of
problematic code constructs in 160,000 lines of code. A significant amount of these root causes
are included up to 425 times in other files causing a tremendous compiler error amplification.
In addition, we show the significance of our work with a case study of the evolution of the ice
flow modeling software ISSM, comparing a recent version which was manually type changed
with a legacy version. The recent version shows no signs of problematic code constructs. In
contrast, our tool detected and transformed a remarkable amount of issues in the legacy version
that previously had to be manually located and fixed.

Keywords: C++, Type Change, Static Analysis, Source Transformation, Operator Overloading, Algo-

rithmic Differentiation

1 Introduction

Scientific simulation codes and their underlying mathematical models are steadily evolving with
respect to new insights and requirements. At the same time, these models need to be verified
and analyzed regarding their modeling fidelity. Consequently, the ability of the software to
provide derivatives is necessary for many approaches such as stability and sensitivity analysis

Procedia Computer Science

Volume 80, 2016, Pages 1485–1496

ICCS 2016. The International Conference on Computational
Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

1485

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82478936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.470&domain=pdf

[3] or providing accuracy information of the numerics of the simulation [21]. Here, algorithmic
differentiation (AD) [8] can deliver derivatives accurate up to machine precision at a lower
computational cost compared to black-box methods. In the context of C++, this kind of semantic
augmentation can be achieved by using operator overloading. To that end, a new user-defined
type ˜T replaces the original type T (e.g., double) for the computations. ˜T is a class that provides
the same set of operations as the original type, e.g., arithmetic operators and functions. We
deal with new types that use complete encapsulation [6], i.e., T is associated with ˜T which
encapsulates the old value in some way. In a similar fashion, capabilities such as interval
arithmetic [1] can be inserted.

Modern simulation software can be written with these extensions in mind as the C++ lan-
guage provides the necessary features to do so [23]. Often, legacy software was not written with
these extensions taken in mind. Then, an extensional feature addition can be considered as
adaptive software maintenance [10]. Examples for the addition of new semantics using operator
overloading is the aforementioned ability to compute derivatives for complex and mature CFD
software [27, 31]. However, operator overloading does not always work without refactoring the
target source code in order to make it compatible with the user-defined type [25].

In a previous paper [9], we showed how the introduction of a user-defined type can break the
code when using operator overloading. This is due to the difference between the treatment of
built-in and user-defined types in the C++ language standard [11]. Our experience is based on
type changes that were applied to large scientific code bases such as the CFD software package
OpenFOAM (OpenField Operation and Manipulation, [12]) and ISSM (Ice Sheet System Model,
[16]). Here, a plethora of errors is caused by the type change which necessitates refactoring of
code at multiple locations.

We developed a tool providing automatic source to source transformation to support devel-
opers of legacy software during the maintenance process. It takes the source files of the scientific
code as input, finds problematic code constructs that can cause errors when a user-defined type
is introduced, and automatically resolves them.

This paper is structured as follows: In Section 2 we discuss related work in the context
of static source code analysis and transformations. In Section 3, we discuss problematic code
constructs, that, after a type change has been applied, cause a violation of the C++ standard.
Here, we also consider a new issue, the problems caused by potentially ambiguous name lookup.
In Section 4, we describe how we identify these problematic code construct using Clang’s match-
ing abilities, and describe how we take care of them. The next two sections present empirical
studies of OpenFOAM and ISSM, respectively. As it turns out, showing that the problematic
code constructs do in fact appear with regularity.

2 Related Work

The idea of flagging problematic code constructs (including coding guidelines and style) and
potential bugs started early for the programming language C [13]. Since then, the term “lint-
like” became synonymous for statics code analysis tools that report potential problems to the
users and might suggest a fix-it hint. These lint-like tools exist for most major programming
languages, e.g., C++ [4, 19, 30], sometimes integrated in an IDE [7].

Static code analysis tools are often combined with source transformation features. This can
be done to automatically fix potential bugs, style errors or rejuvate legacy codes by replacing
deprecated language features [15]. As an example, the tool Clang-tidy [4] supports the trans-
formation of certain C++ statements to modern C++11 features, e.g., introducing the keyword
auto or transforming raw pointers to smart pointers.

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1486

struct IOstream {

 struct version {

 version(scalar vn);

 bool operator==(const version& other);

 };

};

 if(is.version() == 2.0) { … }

struct adouble { adouble(double a); };

typedef adouble scalar; 4.

struct IOstream {

 struct version {

 version(scalar vn);

 bool operator==(const version& other);

 };

};

 if(is.version() == 2.0) { … }

1. 2.

3.

typedef double scalar;typedef double scalar;

(a) Example code (b) Implicit conversion

struct IOstream {

 struct version {

 version(scalar vn);

 bool operator==(const version& other);

 };

};

 if(is.version() == 2.0) { … }

1. 2.

3.

(c) User-defined type: scalar

Figure 1: (a) Pseudo C++ example code using the alias scalar. (b) A conversion (2.0 to a
version object) is implicitly introduced by the compiler due to the comparison operation. (c)

The introduction of a new type ˜T ≡ adouble breaks the code as there are two user-defined
conversions (2.0 to an adouble object to a version object) which is illegal according to the
C++ standard ([11], §12.3-4).

There are many frameworks and tools supporting the structured rewriting and transfor-
mation of source code. ROSE [24] is a popular compiler framework supporting the source to
source transformation of C/C++. Tools based on ROSE modify the abstract syntax tree (AST)
nodes directly, which subsequently can be unparsed, thus resulting in transformed code. One
application is a tool for AD that augments codes with derivative statements [22]. Similarly, the
Clang compiler framework [18] supports user-defined analyses on the AST, but unlike ROSE,
its AST is considered to be immutable. Thus, source transformation operations are modifying
the source text directly. Clang is used for the loop vectorization of C codes [14], transformation
from CUDA to OpenCL source codes [20] and several static source analysis and transformation
tools, e.g., [19, 29].

3 Caveats of Operator Overloading

The typical situation is that, with built-in types T , the code will compile but the introduction of
a user-defined type ˜T is causing compile time errors with certain code constructs. An example
of this scenario is shown in Figure 1. The following issues were discussed in detail in [9]:

Implicit Conversion is a conversion from type T to another type U without an explicit
conversion statement in the code (cf. Figure 1a). These conversions are automatically

added by the compiler. For ˜T , the standard restricts [11] §12.3-4: “At most one user-
defined conversion [...] is implicitly applied to a single value.”

Implicit Boolean Conversion is a subset of implicit conversions. Here a type T is trans-
formed to a Boolean type, e.g., in an if-condition if(a). The compiler may transform
many built-in types, e.g., floating-point and integral types. ˜T needs to implement a bool
conversion function to support this ([11], §12.3.2). However, this conversion function and
operator overloading should not be mixed due to undesired side-effects as stated in [26].

Explicit Conversion is a conversion from type T to another type U with an explicit statement
in the code ([11], §5.4). Here, the encapsulated value T needs to be exposed for the

conversion of ˜T to work.

Unions are a type of class where members of the union share the same memory region. ˜T
“with a non-trivial constructor, [...] non-trivial copy assignment operator cannot be a

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1487

member of a union” ([11], §9.5). The C++11 standard relaxes this restriction but forces
the developer to explicitly provide the set of non-trivial functions of a member for the
union by deleting these functions [26].

Conditional Assignment is used to set a value of some variable based on a condition. In
C++, this can be achieved by the conditional operator expression ?: ([11], §5.16) or an
equivalent if-else statement. For some AD tools based on operator overloading, the
internal bookkeeping may require replacing these structures.

Scope Resolution Operator and Friend Functions: Friend functions are used to access
private members of a class but they are themselves not members (not invoked on an
object) and are not in the scope of the class. The scope resolution operator can be
used for a qualified lookup, specifying the scope of a declaration. Qualified lookups (e.g.,
::sqrt(...)) disable argument dependent lookup (ADL, [11] §3.4.2) which is used by
the compiler to find friend functions that lack declarations in the scope of the respective
class. Thus, a compile time error is caused. This, however, pertains mostly to the design
of ˜T .

Name Lookup is a newly discovered cause of errors and pertains to finding the corresponding
declaration of a name (e.g., a function call encountered by the compiler) ([11], §3.4). The
lookup can be unqualified or qualified using the scope resolution operator.

For maximal compatibility with a code base, the user-defined type has to provide over-
loaded operators as well as overloaded functions, e.g., sqrt. To that end, the class and
corresponding overloaded (mathematical and arithmetical) functions may reside in the

global namespace. Thus, calls and operations w.r.t. ˜T behave as if it were a plain
floating-point type.

If a software defines its own implementations of, say, a mathematical function in its own
namespace, a lookup might become ambiguous if ˜T provides a corresponding overload.
The compiler can not decide which declaration to choose, as exemplified in Listing 1.

1 ˜T sqrt(const ˜T & a);
2 namespace ns {
3 typedef ˜T scalar;
4 scalar sqrt(scalar v);
5 scalar a;
6 ::sqrt(a); // OK: ˜T sqrt(const ˜T & a)
7 ns::sqrt(a); // OK: sqrt(scalar v), same as ::ns:: sqrt(a)
8 sqrt(a); // Error: Ambiguous call
9 }

Listing 1: Example of potential calls in a code to a function (sqrt). If the user-defined
type provides an overload, the last call is ambiguous as the compiler finds two matching
declarations.

This ambiguity can be resolved in multiple ways depending on several factors. In the fol-
lowing, we present two possibilities and discuss their implications regarding non-templated
code. We refer to any function that is overloaded by the type ˜T as well as present in the
inner namespace ns as ϕ. It takes as argument types either T or ˜T .

One solution is the removal of all definitions of ϕ in ns::. Consequently, the qualified
lookups (ns:: or ::ns::) must be dealt with accordingly. Thus, all these function
invocations have to be transformed to unqualified lookups, e.g., ns::sqrt to sqrt. This
will cause the compiler to chose the overloaded function in the global namespace. A caveat

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1488

of this solution are calls to ϕ from within a method declaration which belongs to a class
that also defines a method with the same name as ϕ. Thus, for every instance of a call
to ϕ inside a method of such a class, the call has to be changed to a qualified lookup in
the global namespace, i.e., ::ϕ, where the overloaded function resides.

Another approach is the full qualification for each call to ϕ. It is preferable as it avoids
the ambiguity described above. The full qualification requires precise knowledge about
the location of the callee, i.e. in which namespace the name resides. Here, the callee has
to be (made) compatible with ˜T .

Automatically resolving this issue is in general not possible without knowing more about
the design principles underlying these namespace qualifications.

4 Transforming C++ Source Codes

Our focus is to prepare programs for semantic augmentation. Here, we limit ourself to code
constructs that are generally problematic for user-defined types using operator overloading. As
such, we exclude conditional assignments and scope resolution operator/friend function usage
as they are dependent on the design of the user-defined types.

Our transformations target source codes before the semantic augmentation is applied. The
goal is to change as little of the syntax of the original code as possible, i.e., apply the least code
changes with the least possible side-effects to enable operator overloading compatible with all
relevant C++ standards. For refactoring or code renovation this is often a requirement [28]. To
that end, we analyze the AST of the respective translation unit, i.e., a (.cpp) file of the project
from which an object file is generated. We employ the Clang compiler framework [18] for this
task as it is a production level C++ compiler, providing an infrastructure to write tools that work
on syntactic and semantic information of a program. Specifically, we employ the libTooling1

library which handles the creation of the AST, including semantic nodes that are necessary
for a meaningful static analysis. Additionally, Clang offers techniques for sophisticated pattern
matching on the AST structure as well as facilities to apply source transformations.

4.1 Utilizing the Clang Compiler Framework

We are mostly concerned with two main phases of Clang’s AST creation: The preprocessor
phase where includes are handled and the final, semantically annotated AST which contains
the expanded macros. We utilize the callbacks of the preprocessor to determine the correct
locations of #include statements that are added during certain transformations. The final
AST is used for the static analysis and source transformation operations. Figure 2 shows
the principle behind searching the AST and subsequent transformations of nodes in the AST.
In the sequel, we describe some properties of the AST and pattern matching for the static
analysis before describing the application of source transformations. Generally, template code
and transformation of macro definitions are excluded as Clang does not retain alias information
for template instantiations and the transformation of macro definitions may have side effects.

4.1.1 AST and Pattern Matching

The Clang AST carries all necessary information, including implicit expressions that are added
as dedicated nodes during the semantic analysis together with typedef information. Hence,

1http://clang.llvm.org/docs/LibTooling.html

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1489

Figure 2: Node matching: A match
is found with AST matcher expres-
sions. A callback for each node is in-
voked. Replacements describe the tex-
tual changes that need to be applied
to a source code file.

MatchFinder Callback

AST Matcher

1..n

*
match

Lint-like

Message

AST

Replacement

libTooling

for an expression it is possible to detect if a specific typedef alias is present. We exploit this
additional information to make our analysis more accurate. Instead of searching for all implicit
conversions, explicit casts etc. with a plain double data type, we limit our search to nodes with
the respective typedef alias. As an example, Figure 3a represents the slightly simplified AST
for the if statement of our example code in Figure 1a.

IfStmt
 CXXOperatorCallExpr '_Bool'

 ...

 MaterializeTemporaryExpr 'Field::version'

 CXXConstructExpr 'Field::version' 'void (scalar)'

 FloatingLiteral 'double' 2.000000e+00

(a) Simplified Clang AST

StatementMatcher impl_conversion =
materializeTemporaryExpr(

hasTemporary(ignoringImpCasts(
 constructExpr(

hasImplicitConversion(type_s),
unless(temporaryObjectExpr())

).bind("conversion")

(b) AST Matcher for type s, e.g., “scalar”

Figure 3: (a) Simplified Clang AST focusing on the right hand side expressions of the comparison
(==) operator call shown in Figure 1. A temporary object is created by passing the literal to
the version class constructor. (b) The AST matcher finds such instances.

We employ so-called AST matchers which are a query language for AST nodes. Expres-
sions can be assembled in order to find relevant nodes. Figure 3b shows a matcher expres-
sion to find nodes that represent implicit conversions. To that end, we match the node
MaterializeTemporaryExpr which binds a temporary (ignoring all implicit casts) and has
the child node CXXConstructExpr which represents a call to a constructor. We only search for
objects that are created from a single explicit argument (not counting default arguments of a
constructor [11], §8.3.6) with a mismatching argument and class constructor type. In the AST
we have shown that a temporary version object from a literal is created. The struct version in
Figure 1a expects a scalar type, which represents a mismatch with the literal and causes a sub-
sequent compilation error after a type change. We check for this by employing our own matcher
extension hasImplicitConversion. We ignore nodes of the subtype TemporaryObjectExpr as
they represent explicit functional casts instead of implicit constructor calls.

4.1.2 Source Transformation

The source transformation in Clang is based on string manipulations as the AST is immutable.
To that end, there is a tight coupling between the AST nodes to the actual textual representa-
tion of the source code. The location of implicit nodes points to the respective target expression.
Source transformation operations are by Replacement objects, containing positional informa-
tion and the replacement string. As such, the transformed source code file is unchanged except
for the Replacement target strings. We do not yet handle transformations on macro code. It is
not safe to transform them as potentially unrelated code sections also make use of said macro
and could, thus, be affected. In the following, we briefly describe our source transformations

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1490

for each of the relevant cases. We give an example of a problematic code construct on the left
and the transformation result on the right. Here, the variable a stands for type scalar ≡ ˜T .

Implicit Conversions (cf. Figure 1) are handled by adding a functional cast to the expression
causing it, thus, removing one implicit conversion step.

1 if(is.version () == 2.0) { } if(is.version () == scalar (2.0)) { }

Implicit Bool Conversions are resolved by adding an explicit comparison operation.

1 if(a) { } if(a != scalar (0.0)) { }

Explicit Conversions are replaced by a template function reCast that was proposed in a
previous paper [9]. Alternatively, the C++11 standard allows for the definition of con-
version operators which have to be explicitly invoked using the keyword explicit [26].
Thus, for every explicit conversion in the code, the compiler will use such a user-defined
conversion operator. However, this is an option only if the user-defined type supports
this feature and the target code of the type change supports the compilation with C++11
features. The proposed reCast function can be specialized for the type ˜T and, thus,
can be employed to support a wide range of user-defined types independent of a C++11
explicit conversion operator implementation.

1
2 int b = static_cast <int >(a);

#include <recast.h>
int b = reCast <int , scalar >(a);

Unions can be named or anonymous. A named union is transformed to a struct. An anony-
mous union is simply removed, retaining its members in the same namespace as the union.
In both cases, this retains the access pattern. However, the inherent memory overlay is
lost and the memory consumption will rise by a fixed amount relative to the previous
consumption of the union. Furthermore, the initialization of a union is handled differ-
ently compared to a struct, plus the assignment to one of the transformed members does
not influence the other members as would be the case for a union. If such assumption
regarding the access were made, our transformation will break the code.

1 union X { scalar a; int b; } // named
2 union { scalar c; int d; }

struct X { scalar a; int b; }
scalar c; int d;

4.2 Overhead of the Static Analysis Tool

We briefly compare the overhead of the static analysis compared to the standard compilation
process. We report on the wall clock time of the compilation and analysis of part of the
OpenFOAM code base, consisting of 431 translation units (cf. Section 5). The measurements
were taken on a Linux-based single socket workstation, equipped with an Intel Xeon E3-1245 v3
(Haswell) with four physical cores, a Samsung 840 Pro solid state drive and 16 GB DDR3 RAM.
The Clang compiler framework in version 3.5 is employed.

Similarly to a build system spawning multiple jobs to compile in parallel, our tool works on
each translation unit separately and, thus, allows for a parallel analysis of the target software.
In [29], the authors also exploit this to allow for static analysis and source transformation across
many computers.

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1491

The static analysis tool takes 263.76 s using four concurrent processes. In contrast, the
compilation process takes 77.14 s with four active jobs. This represents an induced overhead
of about 3.4. At the file level, we picked a translation unit that was one of the slowest to
analyze at approximately 6.31 s. In comparison, the Clang compiler took 1.33 s to produce the
respective object file.

5 Empirical Study of OpenFOAM

We analyzed the CFD software package OpenFOAM 2.4.X. It has a large C++ source code base
with more than 700,000 lines of code (LOC).2 It makes heavy use of templates, preprocessor
macro definitions and other object oriented techniques throughout the whole code base. As
such, it is a challenging target for a type change. In the sequel, we present our results of
applying our analysis and transformation tool on the src/OpenFOAM source folder which totals
more than 160,000 LOC. It represents the core of the project, defining the data structures and
other fundamental features used by the provided solvers.

In total, we analyzed 431 C++ files. Our analysis is focused on resolving generally applicable
problems with user-defined types. To that end, we have created a user-defined class with
the goal to be maximally compatible with operations pertaining to the built-in double type.
It overloads all necessary arithmetic, comparison and assignment operators as well as many
mathematical and arithmetic functions. Using this simple user-defined type, we can abstract
away any problem arising from the design of any specific user-defined type and concentrate on
the inherent problems. The type change is done by changing the type of the OpenFOAM specific
typedef alias doubleScalar. It is used to define the alias scalar which is used throughout the
OpenFOAM code base as the fundamental data type.

5.1 Results

In total, we searched for the four different code constructs that were previously described in
Section 3 and automatically fixed them in the source code. Table 1 shows the result of our
findings. The first column identifies the file where the problematic code construct was identified
in. The # Includes indicate how many times the file was included elsewhere, a count of one
refers to the file itself. The results include a search for the scalar and doubleScalar alias.

Applied Module

File # Includes Count Implicit
Conversion

Boolean
Conversion

Explicit
Conversion

Union

IOstream.H 425 3 3

token.H× 421 1 1

Field.C 303 1 1

indexedOctree.C 7 3 3

dynamicIndexedOctree.C 2 1 1

SVD.C 1 1 1

TimeIO.C 1 4 4

Time.C 1 7 7

outputFilterOutputControl.C 1 2 2

× Detected searching for the alias doubleScalar instead of scalar

Table 1: Unique source of all statically resolved problems in OpenFOAM 2.4.

2Measured with cloc [5] on the project root src folder

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1492

After the source transformation, all errors pertaining to our identified code constructs dis-
appeared. However, more errors are revealed, unrelated to the five transformed problematic
code constructs. The source of errors are ambiguous name lookups as described in Section 3.
OpenFOAMs implementation of these functions is trivial, simply calling the function in the
global namespace. An example is shown in Listing 2.

1 namespace Foam {
2 scalar sqrt(scalar v) { return ::sqrt(v); }
3 }

Listing 2: Mathematical function definition in the Foam namespace.

We wrote a prototypical matcher to find function calls involving the scalar type related
to this problem. Our preliminary analysis of the OpenFOAM folder identified more than 150
distinct calls that either are (fully) qualified w.r.t. the Foam namespace, thus making it impos-
sible to remove the OpenFOAM function definition, or unqualified calls leading to the observed
ambiguous invocations. Despite these remaining challenges, we have successfully applied our
source transformation tool and automatically fixed several problematic source code locations
that caused errors with user-defined types. These code modifications are valid with either a
built-in or user-defined type.

6 Empirical Study of ISSM

A second use case is presented for the Ice Sheet System Model (ISSM). It is an ice flow modeling
software developed by NASA/JPL and UC Irvine and used by cryosphere scientists to project
the future evolution of polar ice caps such as Greenland or Antarctica. Given the application
area, the main goal, unsurprisingly, is the computation of large scale gradients for sensitivity
studies, data assimilation, and other related uses. ISSM is implemented as a relatively large
scale C++ code, however, with data (pre- and post-) processing done in Matlab. Noteworthy
characteristics of the implementation are a modularization partially achieved by build-time and
partially by run-time configuration, parallelization based on MPI (Message Passing Interface),
the use of external solver libraries, and integration of contributions from a large and diverse de-
veloper base. The adaptation of the ISSM code base toward gradient computation by employing
operator overloading through a user-defined type predates the existence of the tool discussed
in this paper. It took place over an extended period of time during which additional features
were added to ISSM’s core capabilities, significant software technical improvements were made,
and lastly the gradient computation specific adaptations were introduced, included complicated
code refactoring currently far beyond the scope of the tool. Among the latter are:

• Templatization of certain container classes.

• Separation of passive and active floating point variables w.r.t. differentiation using alias
definitions [2].

• Introduction of a thin MPI wrapper layer to refactor and encapsulate the logic for optional
serial plain model, and serial or parallel gradient computation.

• The treatment of calls to (direct) linear solvers with special wrappers for the most efficient
gradient computation.

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1493

6.1 Results

To give an idea of the potential impact of the tool, we compare its application to a version of
ISSM that predates all these transformations (late 2011) with the version (mid 2014) of the
code base when all major parts of the gradient computation were functional [17]. One could
argue that a comparison crossing such a significant evolution of the code base is not terribly
meaningful and that is certainly true for quantifying the output at a file level detail. However,
it still gives a good idea for the overall time savings that could have been achieved had the tool
been available four years ago to aid the adaptation. Table 2 shows the result of our analysis.
We refer to a fix as a successfully applied source transformation. A match is a reported code
occurrence which includes both the fixes and unchanged code. Thus for matches, the number
of files reflect the usage context because of the specific file attribution given by Clang, e.g., for
the use of macros.

Metric Late 2011 Mid 2014

Files 912 857

LOC 66,573 80,044

Translation Units 298 254

#Explicit Conversion fix in #files 170 in 42 0

#Implicit Bool Conversion fix in #files 41 in 8 0

#Explicit Conversion match in #files 192 in 46 0

#Implicit Bool Conversion match in #files 44 in 10 0

#Conditional Assign match in #files 1,768 in 275 0

#If-Else Assign match in #files 98 in 9 0

Table 2: ISSM evolution w.r.t. problematic code constructs.

The drop in the number of C++ source files over time is mainly due to the templatization
and other consolidations of the source code. These changes also reduced the number of non
comment/blank LOC but that decrease is more than compensated by the addition of new
features (e.g., implementing new approximations of the ice sheet physics), leading to growth
in the LOC. Commensurate with the consolidation though is the drop in number of compile
steps used here in a simple build time configuration, i.e. a configuration that leaves out certain
portions of the total of 912 or 857 respectively C++ source and header files.

Most importantly, the remarkable amount of potential issues and actual transformations
combined with their wide spread over distinct source files for the late 2011 version indicates
the large amount of work that was necessary to manually locate and fix these problematic
constructs. When one contrasts this result with the zero issues and transformation flagged
in the mid 2014 versions, it becomes clear that almost all of the issues flagged represented
legitimate problems that needed to be addressed in the 2011 code base in order to achieve
functioning operator overloading for the ISSM code.

7 Conclusion and Future Work

Software maintenance is an ongoing process during the life cycle of a software package. In that
context, adaptive maintenance can be a costly and time consuming task especially if major fea-
tures need to be added. This makes non-trivial project-wide refactoring a necessity. Although
semantic augmentation through operator overloading promises extensional features with min-
imal code changes, this type change may lead to compilation errors. In a previous paper, we
identified problematic code constructs. Here, we identified further problematic constructs re-

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1494

lated to namespace resolution, and developed a Clang based tool that automatically identifies
and fixes most of these issues. We described the design of this tool, taking advantage of Clangs
matching capabilities and suggesting minimalistic code changes that ensure adherence of the
resulting code to the C++ standard, also after a type transformation has been applied.

Applying this tool to the CFD software OpenFOAM, we were able to automatically remove
several problematic code constructs that had been included in several hundred files thereby
causing a great deal of error output. We also applied this tool to two versions of the ice flow
modeling software ISSM, comparing a 2011 version of the code, with one that was manually
refactored and prepared for automatic differentiation. In the 2011 version, we identified in total
over 2000 occurrences of problematic code constructs. Had our tool been available then, the
developers of ISSM would have been able to apply AD to their code base with significantly less
effort, saving several month of coding drudgery. Consequently, this represents in our view an
excellent argument for the utility of our tool.

In the future, we will explore solutions for ambiguous name resolution which are introduced
by overloaded functions provided by user-defined types. In that context, we will also contact
the OpenFOAM developers to discuss the reasoning behind the design of the scalar data type
as well as potential alternative designs for compatibility with operator overloading. We will also
work on exploring generic programming strategies, especially templates but also macro usage
as we are still limited by missing alias information for the instantiation type in the Clang AST.

References

[1] Hervé Brönnimann, Guillaume Melquiond, Sylvain Pion, et al. The Boost Interval Arithmetic
Library. In Real Numbers and Computers, pages 65–80, 2003.

[2] A. Mauer C. Bischof, A. Carle and P. Khademi. The ADIFOR 2.0 System for the Automatic
Differentiation of Fortran 77 Programs. IEEE Journal on Computational Science and Engineering,
3:18–32, 1996.

[3] Gregory R Carmichael, Adrian Sandu, et al. Sensitivity Analysis For Atmospheric Chemistry
Models Via Automatic Differentiation. Atmospheric Environment, 31(3):475–489, 1997.

[4] Clang. Clang-Tidy, 2015. http://clang.llvm.org/extra/clang-tidy/, last accessed: 04-2016.

[5] Al Danial. cloc, 2016. https://github.com/AlDanial/cloc/, last accessed: 04-2016.

[6] Michael Fagan, Laurent Hascoët, and Jean Utke. Data Representation Alternatives In Semantically
Augmented Numerical Models. In Sixth IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM), volume 6, pages 85–94, 2006.

[7] Makarand Gawade, K Ravikanth, and Sanjeev Aggarwal. Constantine: configurable static analysis
tool in Eclipse. Software: Practice and Experience, 44(5):537–563, 2014.

[8] A. Griewank and A. Walther. Evaluating Derivatives. Society for Industrial and Applied Mathe-
matics (SIAM), second edition, 2008.

[9] Alexander Hück, Christian Bischof, and Jean Utke. Checking C++ Codes for Compatibility with
Operator Overloading. In 15th IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM), volume 15, pages 91–100, September 2015.

[10] International Standards Organisation: ISO/IEC 14764:2006. Software Engineering - Software Life
Cycle Processes - Maintenance, 2006.

[11] International Standards Organisation: ISO/IEC 14882:2003. Programming Languages - C++,
second edition, 10 2003.

[12] H. Jasak, A. Jemcov, and Z. Tukovic. OpenFOAM: A C++ Library for Complex Physics Sim-
ulations. In International Workshop on Coupled Methods In Numerical Dynamics, pages 1–20,
2007.

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1495

[13] Stephen C. Johnson. Lint, a C Program Checker. Computer Science Technical Report, 65, 1978.

[14] Olaf Krzikalla, Kim Feldhoff, Ralph Müller-Pfefferkorn, and Wolfgang E Nagel. Scout: A Source-
to-Source Transformator for SIMD-Optimizations. In Euro-Par 2011: Parallel Processing Work-
shops, pages 137–145. Springer, 2012.

[15] Ajit Kumar, Andrew Sutton, and Bjarne Stroustrup. Rejuvenating C++ Programs through
Demacrofication. In 28th IEEE International Conference on Software Maintenance (ICSM), 2012,
pages 98–107. IEEE, 2012.

[16] E. Larour, H. Seroussi, M. Morlighem, and E. Rignot. Continental scale, high order, high spatial
resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). Journal of Geophysical
Research: Earth Surface, 117(F1), 2012.

[17] E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel,
and A. Khazendar. Inferred basal friction and surface mass balance of the Northeast Greenland
Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface
altimetry and ISSM (Ice Sheet System Model). The Cryosphere, 8(6):2335–2351, 2014.

[18] Chris Lattner. LLVM and Clang: Next generation compiler technology. In The BSD Conference,
pages 1–2, 2008.

[19] LLVM. Clang Static Analyzer, 2015. http://clang-analyzer.llvm.org/, last accessed: 04-2016.

[20] Gabriel Martinez, Mark Gardner, and Wu-chun Feng. CU2CL: A CUDA-to-OpenCL Translator
for Multi- and Many-core Architectures. In IEEE 17th International Conference on Parallel and
Distributed Systems (ICPADS), 2011, pages 300–307. IEEE, 2011.

[21] Nicholas Jie Meng, Diane Kelly, and Thomas R Dean. Towards The Profiling Of Scientific Software
For Accuracy. In Proceedings of the 2011 Conference of the Center for Advanced Studies on
Collaborative Research, pages 257–271. IBM Corp., 2011.

[22] Sri Hari Krishna Narayanan, Boyana Norris, and Beata Winnicka. ADIC2: Development of a
Component Source Transformation System for Differentiating C and C++. Procedia Computer
Science, 1(1):1845–1853, 2010.

[23] Roger P Pawlowski, Eric T Phipps, and Andrew G Salinger. Automating Embedded Analysis
Capabilities And Managing Software Complexity In Multiphysics Simulation, Part I: Template-
Based Generic Programming. Scientific Programming, 20(2):197–219, 2012.

[24] Dan Quinlan. ROSE: Compiler Support For Object-Oriented Frameworks. Parallel Processing
Letters, 10(02n03):215–226, 2000.

[25] N. Safiran and U. Naumann. Toward Adjoint OpenFOAM. Technical report, Citeseer, 2011.

[26] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, fourth edition, 2013.

[27] M. Towara and U. Naumann. A Discrete Adjoint Model for OpenFOAM. Procedia Computer
Science, 18(0):429 – 438, 2013. 2013 International Conference on Computational Science.

[28] Eelco Visser. A Survey of Strategies in Rule-Based Program Transformation Systems. Journal of
Symbolic Computation, 40(1):831 – 873, 2005. Reduction Strategies in Rewriting and Programming
special issue.

[29] Hyrum K Wright, Daniel Jasper, Manuel Klimek, Chandler Carruth, and Zhanyong Wan. Large-
Scale Automated Refactoring Using ClangMR. In 29th IEEE International Conference on Software
Maintenance (ICSM), 2013, pages 548–551. IEEE, 2013.

[30] Xusheng Xiao, Gogul Balakrishnan, Franjo Ivančić, Naoto Maeda, Aarti Gupta, and Deepak
Chhetri. ARC++: Effective Typestate and Lifetime Dependency Analysis. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, pages 116–126. ACM, 2014.

[31] Beckett Yx Zhou, Tim A. Albring, Nicolas R. Gauger, Thomas D. Economon, Francisco Palacios,
and Juan J. Alonso. A Discrete Adjoint Framework for Unsteady Aerodynamic and Aeroacoustic
Optimization. In AIAA Aviation. American Institute of Aeronautics and Astronautics, 2015.

Source Transformation for Compatibility with Operator Overloading Hück, Utke and Bischof

1496

