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a b s t r a c t

Parameter and structure identifications are necessary in any modelling which aims to achieve a generalised
model. Although ANFIS (Adaptive Network-based Fuzzy Inference System) employs well-known parameter-
identification techniques, it needs to structure identification techniques for the determination of an optimum
number of fuzzy rules and the selection of significant input variables from among the candidate input
variables. In this study, a new structure identification scheme is developed and introduced, which is
simultaneously capable of the selection of significant input variables and the determination of an optimum
number of rules. This new structure identification was joined to ANFIS, and this joined modelling framework
was applied to the simulation of virtual air-pollution monitoring stations in Berlin. In this study, 18 virtual
particulate matter stations were simulated using the particulate matter data of some of the current stations. In
other words, the particulate matter monitoring network of Berlin has been intensified. The evaluation of
simulated virtual stations shows that, although the uncertainty of daily particulate matter measurement is
about 10 percent, the simulated virtual stations can estimate the mean daily particulate matter with less than
10 percent of error. Mean absolute error and root mean square error of the simulations are less than 2.4 and
3.4 mg/m3, respectively. The correlation coefficient of the simulation results was more than 0.94. In addition,
the range of mean bias error is between �1.0 and 0.5 mg/m3, and the range of factor of exceedance is between
�14.8 and 10.8 percent. It means that the simulated virtual stations have a small bias. These results
demonstrated the appropriate performance of the joined new structure identification scheme and ANFIS for
development of a virtual air pollution monitoring network.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The ability of fuzzy logic methodology to model complex non-
linear systems has been proven. Up to now, different fuzzy modelling
techniques have been developed (e.g., Mamdani, 1976; Takagi and
Sugeno, 1985), and they have been widely used for the modelling of
different systems.

System identification is the first step towards the modelling of a
system using fuzzy approaches. Two types of identification (parameter
identification and structure identification) are necessary for the fuzzy
modelling (Sugeno and Yasukawa, 1993). Parameter identification is
the determination of the parameters of the fuzzy model. In neuro-
fuzzy systems, the antecedent and consequent parameters are opti-
mised by a learning technique in the parameter identification step
(Alizadeh et al., 2012). Structure identification can be divided into two

sub-groups. The first sub-group is called input selection, and means
the determination of the appropriate input variables from among all
the possible input candidates. The second sub-group is the determina-
tion of the number of rules (Linkens and Chen, 1999).

As the number of input variables increases, the complexity of
the model increases (Alizadeh et al., 2012). Thus, an input selection
procedure is employed to select the appropriate input variables
(Sindelar and Babuska, 2004). Up to now, many different input
selection algorithms have been developed and utilised for the
modelling, and the input selection of fuzzy systems (e.g., Chiu,
1994; Jang, 1996; Nakashima et al., 1997; Gaweda et al., 2001;
Vieira et al., 2010).

Clustering techniques have beenwidely used to divide the space of
the variables and to determine the significant rules in the neuro-fuzzy
techniques. The clustering technique can be performed based upon
the input, output, and the joint input–output datasets (Mascioli et al.,
1997). Fuzzy C-mean Clustering (FCM) (Bezdek, 1973, 1981) is one of
the most widely-used clustering techniques in the fuzzy modell-
ing studies employed from among the different developed clustering
techniques, (e.g., Wong and Chen, 1999; Yao et al., 2000; Panella et al.,
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2001; Angelov, 2004; Panella and Gallo, 2005). The most important
problem in the application of the FCM technique in the fuzzy mod-
elling techniques for the determination of the rules is that the number
of rules must be known in advance. The determination of the opti-
mum number of rules is very important in fuzzy modelling, and fuzzy
modelling with an optimum number of rules can achieve a generalised
model (Panella et al., 2001). There are two opportunities for this
problem (1.utilizing of iterative techniques, 2.finding the optimal
clusters) (Tsekouras et al., 2005). Many studies have been endeavoured
to determine the optimum number of fuzzy-rules (the number of
clusters) (e.g., Chiu, 1994; Emami et al., 1998; Chen et al., 1998; Chen
and Linkens, 2000; Tsekouras et al., 2005; Dong and Wang, 2011;
Panella, 2012).

In addition, some methods have been developed that not only
select the significant input variables for fuzzy models, but also dete-
rmine the optimum number of fuzzy rules (clusters) (e.g., Sugeno and
Yasukawa, 1993; Lin and Cunningham, 1995; Yinghua and
Cunningham, 1995; Linkens and Chen; 1999; Chen and Linkens,
2001; Min-You and Linkens, 2001).

A neuro-fuzzy system is a fuzzy system which is presented in the
network architecture and the parameter identification of the fuzzy
system is performed by an automatic learning technique of an ada-
ptive network (Subasi, 2007). ANFIS (Adaptive Network-based Fuzzy
Inference System) (Jang, 1993) is one of the well-known neuro-fuzzy
approaches, and it has shown appropriate results in the modelling of
complex non-linear problems (Alizadeh et al., 2012; Subasi, 2007). The
parameter identification of ANFIS is performed by a learning techn-
ique in an adaptive network (Jang, 1993), but it needs to structure
identification.

In this study, a new structure identification scheme for ANFIS is
presented, which is able to determine not only the significant
input variables, but also the number of fuzzy rules (clusters).

There are some major objectives for the installation of air pollution
monitoring networks in urban areas, such as the description of the
spatio-temporal concentrations of pollutants and the validation of
the mechanistic models which describe the transporting and the
conversion of the pollutants in the atmosphere (Van Egmond and
Onderdelinden, 1981), investigation of the compliance of the concen-
tration of air pollutants with air quality standards (Liu et al., 1986), the
determination of critical air pollution conditions, and, consequently,
decisions regarding the issuing of public warnings or the imposition of
temporary immediate emission reductions (Chow et al., 2002), and the
evaluation of the exposure of people and other vulnerable receptors to
pollution, and the protection of public health (Trujillo-Ventura and
Hugh Ellis, 1991; Lozano et al., 2009).

To achieve the major objectives of air pollution monitoring net-
work development in an appropriate manner, the number of air poll-
ution monitoring stations in urban areas must be increased (Stalker
and Dickerson, 1962; Beaulant et al., 2008). Although an increase in
the number of stations in a monitoring network leads to better achi-
evement of the main objectives of the monitoring network develop-
ment, it is very expensive (Kanaroglou et al., 2005). The total cost of a
monitoring network has a direct relation with the total number of
stations in the network (Hickey et al., 1971; Modak and Lohani, 1985),
and it is the main constraint on the development of a dense air
pollution monitoring network (Trujillo-Ventura and Hugh Ellis, 1991).

There are about 0.32 cars and LDV (Light Duty Vehicles) per
resident and about 100,000 HDV (Heavy Duty Vehicles) in Berlin.
Berlin is situated approximately 200 km northwest of the industria-
lised area at Germany’s borders with Poland and the Czech Republic,
which is called the “Black Triangle” (Lenschow et al., 2001). Although
Berlin had a dense air pollution monitoring network in 1990s, it now
has a small number of monitoring stations and many of its station
have been shut down because of the high total cost of the dense
monitoring network. One of the techniques for the densification of the
air pollution monitoring network is the simulation of a virtual station

that is completely free-of-charge. The idea of a virtual station was
introduced by Ung et al. (2001, 2002).

In this study, the shut-down stations in Berlin are virtually re-
constructed by simulation technique, and these re-constructed
(virtual) stations are added to the current monitoring network for
the development of a dense air pollution monitoring network for
Berlin. Here, a new structure identification scheme is developed
and joined to the ANFIS technique for the simulation of some
virtual air pollution monitoring stations in Berlin.

The European Union (EU) has set two limit values for PM10
(Particulate matter less than 10 mm in aerodynamic diameter) for the
protection of human health. According to these limits, the mean daily
PM10 concentration may not exceed 50 (mg/m3) more than 35 times
per year, and the mean annual PM10 concentrationmay not exceed 40
(mg/m3) (European Union, 2008). The concentration of PM10 in Berlin
sometimes exceeds the EU limit (Görgen and Lambrecht, 2007).
Accordingly, particulate matter as an important pollutant in Berlin is
selected as an important case study, and virtual particulate matter
monitoring stations in Berlin are simulated in this study.

2. Algorithm of modelling

In this study, an input–output database is introduced to the
new structure identification algorithm. The algorithm of this new
structure identification scheme is described in the next section.
This structure identification scheme determines the optimum
number of rules and the significant input variables from among
the candidate input variables.

Then, the input–output database is divided into two databases
(training and testing databases). Then, fuzzy C-mean (FCM) clustering
technique (Bezdek, 1973, 1981) is utilised for the clustering of the
training database to the optimum number of clusters, determined by
structure identification scheme.

An initial TS (Takagi-Sugeno) fuzzy inference system (Takagi and
Sugeno, 1983) is developed by defining the input and output member-
ship functions. In this fuzzy system, each cluster is considered as a
rule; hence, the number of fuzzy rules is equal to the number of
clusters, developed by FCM.

Next, the parameters of the initial fuzzy inference system is
tuned in an ANFIS architecture.

Finally, the performance of trained model is evaluated using
testing database.

In order to clarify the modelling procedure, a brief explanation
is presented, given that the ANFIS modelling procedure is a well-
known technique.

First, the input–output database is introduced to the structure
identification scheme. Imagine that the X and Y are determined as
significant input variables and the optimum number of clusters is
determined equal to 2.

The FCM clustering technique divides the data into two clusters
and the initial TS fuzzy inference system initially adjusts a rule for
each cluster as below:

If XAμA1
ðxÞ and Y isAμB1 ðyÞ then f 1 ¼ p1Xþq1Yþr1

If XAμA2
ðxÞ and Y isAμB2

ðyÞ then f 2 ¼ p2Xþq2Yþr2

where μAi
ðxÞ and μBi

ðyÞ are the membership functions and
p1; q1; r1; p2; q2 and r2 are the constant values.

Then, the ANFIS architecture is utilised to tune the values of
p1; q1; r1; p2; q2 and r2 (consequent parameters) and the para-
meters of the membership functions (premise parameters).

ANFIS has five layers. The outputs of layer 1 are membership
functions. In the second layer, the membership functions are multi-
plied and the output of layer 2 is wi: wi ¼ μAi

ðxÞμBi
ðyÞ; i¼ 1;2.

In the third layer, the wi values are normalised wi ¼ ðwi=ðw1þ
�

w2ÞÞ; i¼ 1;2Þ.
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The output of the next layer are wif i ¼wi ðpiXþqiYþriÞ
i¼ 1;2.
Finally, in the fifth layer, the output is calculated as: F ¼Piwi f i.
Different learning techniques have been developed for the

tuning of the premise and consequent parameters in the ANFIS
(e.g., Jang and Mizutani, 1996; Mascioli et al., 1997; Tang et al.,
2005; Ho et al., 2009). In this study, the hybrid of the gradient
descent and least squares technique, developed by Jang (1993), is
employed to tune the premise and consequent parameters.

3. New structure identification scheme

In this new structure identification scheme, a heuristic partitioning
method is utilised for the partitioning of the mainMISO (Multi Inputs–
Single Output) database to some MISO sub-databases in a successive
manner. Each MISO sub-database is converted to some SISO (Single
Input–Single Output) sub-databases. In each SISO sub-database, the
non-linear relationship between the input and the output is deter-
mined by a fuzzy curve fitting technique, and a non-linear one-
variable function is developed. Among the developed one-variable
functions for the SISO sub-databases in each MISO sub-database, the
best one for the output estimation is determined, and, consequently,
the overall accuracy of the output estimation in the main MISO
database is evaluated. The heuristic partitioning method is iterated
to achieve the maximum overall accuracy of output estimation. When
the heuristic partitioning method is terminated, the number of MISO
sub-databases is utilised as the optimum number of fuzzy rules for
ANFIS. The selected input variables for partitioning in the heuristic
method are considered as the first group of candidate input variables
and their relative importance are determined based upon the number
of partitioning times of each candidate variable. In addition, the
employed input variables in the non-linear one-variable functions
are considered as the second group of candidate variables, and their
relative importance are determined based upon the number of
estimated output data by each variable. Finally, the suitable input
variables for ANFIS are determined by the combination of the relative
importance of two groups of candidate variables.

This structure identification technique uses the fuzzy curve fitting
technique, hence, its results are completely compatible with fuzzy
modelling techniques (e.g., ANFIS). In addition, the main database is
randomly divided into training and testing datasets in this new

structure identification scheme. Hence, the algorithm of structure
identification is iterated according to a user-defined number of
iterations, and, in each iteration, the main database is randomly
divided again. Finally, the suitable input variables and number of
fuzzy rules are determined based upon the combination of the results
of all of the iterations. These iterations neutralise the effects of random
dividing and generalise the results of structure identification scheme.

Now, the algorithm of the new structure identification scheme
is described in detail, step by step.

Step 1. Input–output database preparation: A database ðDÞ of
input candidate variables and corresponding output values is
prepared. Imagine that the database has n input variables
X ¼ X1; X2;…;Xnf gð Þ and one output variable ðYÞ. Thus, D can
be expressed as Eq. (1).

D¼ xmk ; y
m� �� �

; m¼ 1;…;M; k¼ 1;…;n ð1Þ
where xmk is the mth member of the kth variable (Xk) xmk A

�
Xk and XkAXÞ, ym is the mth member of Y and M is the total
number of observations.
Step 2. Training and test databases: the database is randomly
partitioned to the training (two third of database) and testing
(one third of database) databases. Hereinafter, the training
database is called the database.
Step 3. Dividing the database: each database must be divided
into two smaller databases. In the first iteration of the system
identification algorithm, there is only one database (D) and it is
divided into two smaller databases. In general, a generated
database is expressed as Dds

k and it is the sth database in the dth
iteration and has been generated by dividing the kth variable of
a bigger database. The bigger database has been divided into
two parts sA 1;2f gð Þ and this database is the sth part.
When any of the input variables (Xk) are divided into two parts, then
D is divided into two sub-databases ðD11

k ; D12
k Þ. D11

k and D12
k are

the databases generated by dividing the kth variable in the first
iteration.

D¼ D11
k ; D12

k

n o
ð2Þ

D11
k ¼ xtl ; y

t� �� �
; t ¼ 1;…;Q1; l¼ 1;…;n if XkrT1

k ð3Þ

D12
k ¼ xtl ; y

t� �� �
; t ¼ 1;…;Q1; l¼ 1;…;n if Xk4T1

k ð4Þ

Fig. 1. Berlin map with its 12 particulate matter monitoring stations.
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where T1
k is the median of Xk in database D. Q1 is the number of

observations in each database and it is equal to M/2.
In the second iteration, it is decided which database should be
divided into two smaller databases D11

k or D12
k

� �
. Imagine D11

k is
selected for the dividsion and it is divided to two smaller databases
ðD21

k0 ; D
22
k0 ; k

0A 1;…;nf gÞ. D21
k0 and D22

k0 are the databases, generated
by dividing the k0th variable of D11

k in the second iteration. In the
second iteration, D has been divided to three databases as below:

D¼ D21
k0 ; D22

k0 ; D
12
k

n o
ð5Þ

D21
k0 ¼ xtl ; y

t� �� �
; t ¼ 1;…;Q2; l¼ 1;…; n if ðXkrT1

k & Xk0 rT2
k0 Þ ð6Þ

D22
k0 ¼ xtl ; y

t� �� �
; t ¼ 1;…;Q2; l¼ 1;…;n if ðXkrT1

k & Xk0 4T2
k0 Þ ð7Þ

D12
k ¼ xtl ; y

t� �� �
; t ¼ 1;…;Q1; l¼ 1;…;n if Xk4T1

k ð8Þ
where Q2 is the number of observations in each database and is
equal to Q1=2. T2

k0 is the median of Xk0 in database D11
k .

This algorithm is iterated and the D is divided into more small
databases. In general, D in the dth iteration is divided into dþ1
small databases.
Which database is selected for the division into two smaller
databases in each step, and which Xk is the best one to be divided
into the selected database?
First, the method for the determination of the appropriate Xk for
dividing a database is explained here. Then, the method for the
selection of a database for the division will be explained in Step 4.
For the determination of the best variable for the division, all of
the possible dividing options are performed. Hence, for the
division of the Dds

k into two smaller databases, n possible options
are performed and 2n databases are generated. The data in each
generated database are divided into n one-variable databases.
Thus, when the jth variable is divided into two small databases,
2n one-variable databases (S) are generated.

Sijs ¼ ðxt;ji ; ytÞ
n o

; i¼ 1;…;n; t ¼ 1;…;Qd; s¼ 1;2 ð9Þ

Qd is the number of ðx; yÞ points in the one-variable database.
The relationship between Xi and Y ðŶ i ¼ f ji Xið Þ; i¼ 1;…;nÞ in all
of Sij1 is calculated by a fuzzy interpolation technique called IDS
(Ink Drop Spread) (Bagheri Shouraki and Honda, 1999). Similarly,
the relationship between Xi and Y Ŷi ¼ gji Xið Þ; i¼ 1;…;n

� �
in all

of Sij2 is calculated. The accuracy of f ji and gji functions (one-
variable functions) for the estimation of output (Y) is evaluated.
Consequently, f jz and gjz0 ðz & z0A 1;…;nf gÞ are determined as the

Fig. 2. The 18 old removed particulate matter monitoring stations (Virtual stations).

Table 1
The removed and current stations, with the time periods of the concurrent hourly
particulate matter data of the current and removed stations (the codes of the
stations are corresponding to Figs. 1 and 2).

Removed stations
(output variables)

Current stations
(input variables)

Time periods of
particulate matter
data

Number of
hourly
concurrent data

MC 001 MC 10, 32, 42, 77,
85, 117, 174

1996.01.23–
1997.01.22

5,952

MC 006 MC 10, 32, 42, 77,
85, 174

1994.01.31–
1995.04.03

9,168

MC 007 MC 10, 32, 42, 77,
85, 117, 174

1994.12.01–
1996.02.02

6,360

MC 009 MC 10, 32, 42, 77,
85, 117, 174

1994.12.01–
1996.03.29

7,440

MC 017 MC 10, 32, 42, 77,
85, 117, 174

1995.10.16–
1997.10.06

12,360

MC 018 MC 10, 32, 42, 77,
85, 117, 174

2009.01.18–
2011.01.18

14,928

MC 020 MC 10, 32, 42, 77,
85, 174

1994.01.31–
1995.11.24

6,480

MC 023 MC 10, 32, 42, 77,
85, 117, 174

1995.03.30–
1996.03.29

4,992

MC 024 MC 10, 32, 42, 77,
85, 174

1994.08.28–
1995.10.19

8,112

MC 025 MC 10, 32, 42, 77,
85, 117, 174

1995.03.28–
1997.03.27

11,064

MC 027 MC 10, 32, 42, 77,
85, 117, 174

2009.01.10–
2011.01.10

11,688

MC 028 MC 10, 32, 42, 77,
85, 117, 174

1994.10.19–
1995.10.19

7,080

MC 030 MC 10, 32, 42, 77,
85, 117, 174

1994.10.19–
1995.10.19

7,152

MC 078 MC 10, 32, 42, 77,
85, 117, 174

1995.01.30–
1996.01.30

5,064

MC 080 MC 10, 32, 42, 77,
85, 117, 174

1995.03.27–
1997.03.26

11,088

MC 081 MC 10, 32, 42, 77,
85, 117, 174

1995.04.04–
1996.04.03

4,920

MC 083 MC 10, 32, 42, 77,
85, 117, 174

1995.01.30–
1996.01.30

5,016

MC 145 MC 10, 32, 42, 77,
85, 117, 171, 174

2002.03.27–
2004.03.09

10,272
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best one-variable functions with the lowest errors, respectively. If
we consider ej as the total error of the output (Y) estimation in Dds

k
by f jz and gjz0 , then ej for j¼ 1;…;n is calculated and the
minimum value in e1;…; en

� �
is determined. Consider ek

0
as the

minimum. Consequently, the input variable corresponding to
the minimum error ðXk0 Þ is the best variable for dividing Dds

k into
two smaller databases ðDdþ1; 1

k0
and Ddþ1; 2

k0
Þ and f k0z Xzð Þ and

gk0z0 Xz0ð Þ are the best one-variable functions for the estimation of
output in the two generated databases, and eðf k0z Þ and eðgk0z0 Þ are
their corresponding errors, respectively.
Step 4. Rule-base generation: in the first iteration of the
dividing algorithm, D is divided into two databases (see
Eqs. (2)–(4)). Then two one-variable functions (f kz Xzð Þ and
gkz0 Xz0ð Þ) are determined and utilised for the output estimation
in two databases. The error of the one-variable functions are
eðf kz Þ and eðgk

z'Þ. Therefore, the rule-base can be expressed as Eq.
(10).

If XkrT1
k then cY1 ¼ f kz Xzð Þ

If Xk4T1
k then cY2 ¼ gkz0 Xz0ð Þ

8<: ð10Þ

Using the test database, the accuracy of generated rule-base
(Eq. (10)) for the estimation of the output variable Yð Þ is evaluated.
The error of output estimation in the first iteration is expressed as
E1.
In the second iteration of the dividing algorithm, the database

with higher error is selected for dividing. Imagine eðf kz Þ4eðgk
z'Þ,

then, D11
k must be divided to two smaller databases using the

dividing method, explained in Step 3. Thus, two one-variable

functions (f k0z1 Xz1

� �
and gk'z2Xz2 ; z1 & z2A 1;…;nf g) are determined

and utilised for the output estimation in the two databases.
Accordingly, D is divided to three databases (Eq. (5)), and a rule-
base with three rules (Eq. (11)) is generated. The error of these one

variable functions are e f k0z1

� �
,e gk0z2

� �
and e gk

z'

� �
.

if ðXkrT1
k Xk0 rT2

k0 Þ then cY1 ¼ f k0z1 Xz1

� �
if ðXkrT1

k Xk0 4T2
k0 Þ then cY2 ¼ gk0z2 Xz2

� �
if Xk4T1

k then cY3 ¼ gkz0 Xz0ð Þ

8>>><>>>: ð11Þ

Using the test database, the accuracy of generated rule-base (Eq. (11))
for the estimation of the output variable Yð Þ is evaluated. The error of
the output estimation, in the second iteration is expressed as E2.
This dividing procedure and the rule-base generation (Steps 3 and 4)
are continued until Ed4Ed�1:

Step 5. The rule-base with d�1 rules is considered as the best
rule-base in the first iteration of the algorithm, and it is expressed
as R1 ¼ d�1. In this rule base, the number of dividing times of
each input variable is calculated, and, consequently, is expressed as
the dividing vector ðDV�!1 ¼ dv1; dv2;…; dvn

	 
Þ. In addition, the
number of the estimated data provided by the different variables
can be calculated using the one-variable functions in the rule-base
and the number of data in the d�1 databases. Consequently, the
results of these calculations can be presented as the function vector
FV1
��!¼ f v1; f v2;…; f vn

	 
� �
.

Step 6. Combine the training and testing databases to generate the
original database, and then proceed to Step 2. Steps 2–6 are
iterated according to the user defined number of iterations (I).
These iterations neutralise the effects of the random dividing in the
second step, and generalise the results. Steps 2–6 are iterated I

times. Thus, I different dividing vectors ðDV�!1; …; DV
�!

IÞ, function
vectors ð FV�!1; …; FV

�!
IÞ and vector of number of rules R1;…;RIð Þ

are generated.

Step 7. Input selection: the average of the I dividing and function
vectors are calculated DV ; FV

� �
. Then DV and FV are normalised

as the sum of the elements in each vector as equal to 1. Afterwards,
the average of two normalised vectors is calculated and called
importance vector IV

�!¼ IV1;…; IVnð Þ
� �

. The elements of this
vector show the relative importance of the different input variables
for the modelling of the output variable. Finally, the variables with
low importance are removed from the database and the modelling
is performed by the remained variables.
Step 8: Optimum number of rules: the average of vector of
number of rules is calculated R

� �
. R is considered as the

optimum number of rules or clusters.

4. Experiment

4.1. Case study, data and software

Berlin (Fig. 1) is the capital city of Germany and is located in the
North-eastern part of Germany. It has a population of 3.4 million
residents and covers an area of about 900 km2. At present, Berlin has
only 12 PM10 monitoring stations (Fig. 1). At the beginning of the
1990s, it had a high level of airborne particulate matter concentration
(Lenschow et al., 2001), and it had a dense monitoring network with
more than 40 stations, developed for the appropriate monitoring of
the pollutants in the city (SenStadt, 1998). The number of monitoring
stations decreased greatly until the end of 1990s (Lenschow et al.,
2001). Fig. 2 shows some of these removed stations that are used as
virtual stations in this study.

We tried to find some old concurrent hourly particulate matter
data from these stations, represented in Figs. 1 and 2. Table 1 shows
the time period and the number of the concurrent data of each rem-
oved station (the stations in Fig. 2) and some of the current stations
(the stations in Fig. 1). The stations in Table 1 are either far from the
main traffic lanes or the current traffic level around them has no
significant difference with the traffic level in the time period of the
simulations (Table 1). In this study, the current stations and each
removed station in Table 1 are considered as input and output
variables for simulation, respectively. Finally, each simulated remo-
ved station is considered as a virtual station, and, consequently, the
particulate matter monitoring network of Berlin is densified (12þ
18¼30 stations).

Table 2
The appropriate input variables (current stations) for the simulation of the output
variables (removed or virtual stations) with the optimum number of rules
(clusters).

Output variables Appropriate input variables Optimum number of rules

MC 001 MC 10,32,77 16
MC 006 MC 10,77 4
MC 007 MC 10,32,77,85 16
MC 009 MC 10,32,42,77 32
MC 017 MC 10,32,42 8
MC 018 MC 10,42,117 8
MC 020 MC 10,42,77 16
MC 023 MC 10,32,42,85 16
MC 024 MC 32,42,77,85 24
MC 025 MC 42,85 6
MC 027 MC 10,32,42 8
MC 028 MC 10, 32,42,77 16
MC 030 MC 42,77 4
MC 078 MC 77,85 8
MC 080 MC 10,42,85,117 16
MC 081 MC 10,42,77,85 24
MC 083 MC 10,42,85 8
MC 145 MC 10,32,77 12
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A computer programme was developed in MATLAB (R2013b) for
the implementation of our new structure identification scheme, and,
consequently, ANFIS was also implemented in MATLAB.

4.2. Results and discussion

For each row in Table 1, an input–output database was created.
The input and output variables in each database were the hourly
particulate matter concentration of the stations of second and first
columns of Table 1, respectively. Finally, 18 input–output databases
were created. The structure identification scheme was applied to
these databases, and, consequently, the appropriate input vari-
ables and the optimum number of rules in the databases were
determined (Table 2).

Then, initial TS fuzzy inference systems were generated, after
which the parameters of the fuzzy inference systems were tuned
using ANFIS. After each training step (epoch), the performance of the
model is evaluated by the testing dataset. If the error of the model is

less than the previous step, then the training procedure is continued
and the next training step is performed, otherwise the training
procedure is terminated. The EU limit for PM10 is expressed as daily
and annual scales, and, hence, the results of the hourly simulations of
18 virtual stations are converted to daily scales.

The results of the training of the 18 ANFIS model for the
simulation of the 18 virtual stations have been presented in
Table 3. Then, the test dataset was employed for the evaluation
of the performance of the developed models. The evaluation
results of the 18 developed models for the estimation of the mean
daily PM10 concentration have been presented in Table 4. The R,
MAE, RMSE, MBE, FOEX and MAPE values in Tables 3 and 4
represent the correlation coefficient, the Mean Absolute Error
MAE¼ ð1=nÞPn

i ¼ 1 jOi�Si j
� �

, the Root Mean Square Error RMSEð

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞPn

i ¼ 1 Oi�Sið Þ2
q

Þ, the Mean Bias Error MBE¼ ð1=nÞ P
i ¼ 1

 
nðSi�OiÞÞ, the Factor Of Exceedance ðFOEX¼ ððnS4O=nÞ�0:5Þ�
100Þ, and the Mean Absolute of Percentage Error MAPE¼ 1=n

� ��Pn
i ¼ 1 jOi�Si j=jOi j

� �� 100Þ, respectively. n is the number of obs-
ervation data, Oi and Si are the observed and simulated PM10 con-
centration of the ith data, respectively. nS4O is the number of data
whose simulated values is higher than their observation values.

The results of Tables 3 and 4 demonstrate that the appropriate
virtual stations have been simulated. According to Table 4, the MAPE
of the developed models is less than 10 percent, and the correlation
coefficients of the models are more than 0.94. In addition, the
uncertainty of the daily PM10 measurement in Berlin is about 10
percent (K. Grunow, personal communication, 2014) and the percent
of error for all of the simulations is less than 10 percent (Table 4).
These results demonstrate that the simulated stations have excellent
performance for the estimation of the daily PM10 concentration. The
MAE and RMSE of the simulations are less than 2.4 and 3.4 mg/m3,
respectively. In addition, the range of the MBE is between �1.0 and
0.5 mg/m3 and the range of the FOEX is between �14.8 and 10.8
percent. It means that the simulated virtual stations have a small
bias, and that some of the simulations have been over-estimated
while others have been under-estimated.

The scatter plot of the mean daily test data for 3 stations (MC 020,
MC 027 and MC 080) has been presented in Fig. 3. In addition,
the time series which simulated and measured the daily PM10
concentration (mg/m3) in the test dataset of MC 020, MC 027 and MC
080 stations have been presented in Fig. 4. Figs. 3 and 4 demonstrate
the high accuracy of the developed models and imply the appropriate

Table 4
Evaluation of the testing results of 18 ANFIS models for the simulation of virtual stations for the estimation of mean daily PM10 concentration.

Virtual
station

Nr. of daily test PM10
data

Mean of daily test PM10 data
(mg/m3)

Standard deviation of daily test PM10 data
(mg/m3)

R MAE
(mg/m3)

RMSE
(mg/m3)

MBE
(mg/m3)

FOEX
(%)

MAPE
(%)

MC 001 82 43.7 20.2 0.943 2.9 3.7 �0.04 1.2 7.6
MC 006 136 37.3 16.4 0.962 3.5 4.7 0.00 8.0 9.5
MC 007 90 32.6 15.1 0.978 2.3 3.2 �0.27 4.5 7.8
MC 009 106 35.5 18.8 0.98 3.0 4.0 0.51 10.2 9.0
MC 017 173 35.5 16.9 0.985 2.5 3.1 �0.21 1.1 8.2
MC 018 208 24 10.6 0.992 1.0 1.3 0.05 6.7 4.5
MC 020 90 31.3 16.0 0.991 1.6 2.2 �0.16 �1.1 5.3
MC 023 68 34.1 15.6 0.982 2.5 3.1 0.22 �0.75 8.4
MC 024 114 28 11.9 0.98 1.8 2.4 0.02 6.1 6.9
MC 025 158 32.8 17.1 0.985 2.2 3.1 �0.14 1.9 7.5
MC 027 162 23 9 0.985 1.3 1.7 �0.03 0.0 6.5
MC 028 101 31.3 13.5 0.98 2.3 2.8 �0.42 �6.9 8.2
MC 030 104 30.6 12.4 0.972 2.5 3.1 �0.21 �2.0 8.9
MC 078 69 28 14 0.985 1.7 2.4 �0.49 0.72 6.5
MC 080 155 38.5 19.8 0.979 2.9 4.0 0.16 6.8 7.9
MC 081 68 38.8 18.6 0.984 2.9 3.6 0.26 4.2 8.4
MC 083 71 34.4 16.8 0.977 2.6 3.6 �1.08 �14.8 8.0
MC 145 145 27.9 14.6 0.986 1.9 2.5 �0.07 4.8 7.4

Table 3
Evaluation of the training results of the 18 ANFIS models for the simulation of the
virtual stations for the estimation of the mean daily PM10 concentration.

Virtual
station

Nr. of
daily
train
PM10
data

Mean of
daily train
PM10 data
(mg/m3)

Standard
deviation of
daily train
PM10 data
(mg/m3)

R MAE
(mg/m3)

RMSE
(mg/m3)

MAPE
(%)

MC 001 164 43.4 20.7 0.986 2.3 2.9 7.2
MC 006 246 37.5 18.4 0.976 2.3 3.2 7.5
MC 007 174 33.0 17.5 0.993 1.1 1.6 5.4
MC 009 203 36.9 22.9 0.992 1.7 2.7 6.6
MC 017 342 35.4 19.6 0.995 1.3 1.8 6.4
MC 018 411 24.0 12.1 0.996 0.8 1.2 3.5
MC 020 177 40.4 18.2 0.993 1.4 1.9 4.8
MC 023 139 40.2 19.1 0.990 1.6 2.1 6.3
MC 024 223 32.6 14.3 0.983 1.3 1.7 6.6
MC 025 303 36.8 19.8 0.990 1.4 2.3 6.0
MC 027 322 23.5 11.7 0.991 1.1 1.6 5.5
MC 028 194 33.2 14.5 0.998 1.1 1.3 5.2
MC 030 194 33.0 14.0 0.978 1.6 2.0 7.2
MC 078 139 38.8 16.3 0.965 2.3 3.2 7.4
MC 080 307 43.4 20.8 0.980 2.3 3.2 6.7
MC 081 136 50.9 22.4 0.984 2.4 3.4 5.6
MC 083 139 35.5 17.0 0.992 1.2 1.7 5.6
MC 145 283 27.8 18.1 0.997 1.3 2.0 4.7
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performance of the joined new structure identification scheme and
ANFIS for development of a virtual particulate matter monitoring
network.

In total, the results demonstrated that the new developed
structure identification scheme provides the appropriate perfor-
mance, and combining this scheme with ANFIS lead to the

Fig. 3. The scatterplots of the daily test PM10 data (mg/m3) of (a) MC 020, (b) MC
027 and (c) MC 080 stations.

Fig. 4. The time series of simulated (dash line) and measured (solid line) daily
PM10 concentration (mg/m3) in the test dataset of (a) MC 020, (b) MC 027 and
(c) MC 080 stations.
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development of high accuracy and free-of-charge virtual stations
for the daily monitoring of particulate matter in Berlin.

5. Conclusions

In this study, a new structure identification scheme has been
developed. This structure identification technique is able to deter-
mine the optimum number of fuzzy rules and select the significant
input variables. This technique was joined with ANFIS in a modelling
framework, and was applied for the simulation of virtual air pollution
monitoring station in Berlin. The results of simulation of 18 virtual
particulate matter stations for Berlin (R40.94 and MAPEo10
percent) demonstrated the capabilities of this new structure identi-
fication technique.
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