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a b s t r a c t 

Historically, the assessment of credit risk has proved to be both highly important and extremely difficult. 

Currently, financial institutions rely on the use of computer-generated credit scores for risk assessment. 

However, automated risk evaluations are currently imperfect, and the loss of vast amounts of capital 

could be prevented by improving the performance of computerized credit assessments. A number of ap- 

proaches have been developed for the computation of credit scores over the last several decades, but 

these methods have been considered too complex without good interpretability and have therefore not 

been widely adopted. Therefore, in this study, we provide the first comprehensive comparison of results 

regarding the assessment of credit risk obtained using 10 runs of 10-fold cross validation of the Re-RX 

algorithm family, including the Re-RX algorithm, the Re-RX algorithm with both discrete and continuous 

attributes (Continuous Re-RX), the Re-RX algorithm with J48graft, the Re-RX algorithm with a trained 

neural network (Sampling Re-RX), NeuroLinear, NeuroLinear + GRG, and three unique rule extraction tech- 

niques involving support vector machines and Minerva from four real-life, two-class mixed credit-risk 

datasets. We also discuss the roles of various newly-extended types of the Re-RX algorithm and high 

performance classifiers from a Pareto optimal perspective. Our findings suggest that Continuous Re-RX, 

Re-RX with J48graft, and Sampling Re-RX comprise a powerful management tool that allows the creation 

of advanced, accurate, concise and interpretable decision support systems for credit risk evaluation. In 

addition, from a Pareto optimal perspective, the Re-RX algorithm family has superior features in relation 

to the comprehensibility of extracted rules and the potential for credit scoring with Big Data. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

1.1. Background 

Within the field of financial analysis, the assessment of credit

risk has historically been both of the utmost importance and quite

difficult. Beginning in the late twentieth century, the advent of so-

phisticated electronic data storage technologies meant that finan-

cial institutions could readily store information regarding potential

customers, such as repayment characteristics. As a result, the pro-

cess of loaning capital within the United States, the United King-

dom, and other industrialized nations is largely predicated on the

use of computer-generated credit scores [1] . 
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This automated calculation of credit scores is markedly supe-

ior in a number of respects compared with the former process

f hand-calculated risk assessments by banking professionals. Ad-

antages include increased objectivity and reliability, as well as re-

uced costs and labor during the assessment of new credit appli-

ations [2] . Nonetheless, at present, the credit evaluation perfor-

ance of humans with sufficient expertise can still be superior to

he results of automated assessments. For this reason, and because

he finance industry relies on the appropriate prediction of lend-

ng risks, research aimed at improving the validity of computerized

redit assessments is ongoing [3] . 

As noted, automated lending risk evaluations are currently im-

erfect, and, in fact, the failure of credit scoring algorithms to

dentify loan recipients who will eventually default on their loans

esults in sizable losses [1] . Based on readily available data, Fin-

ay determined that, as of the end of 2014, consumer debt in the

nited States and the United Kingdom stood at $3.1 trillion [4] and
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297 billion [5] , respectively. In addition, these two nations had

nnualized credit card and personal loan write-off rates of 3.03%

6] and 2.3% [7] , respectively. 

These data show that the loss of vast amounts of capital could

e prevented by improving, even to a small extent, the perfor-

ance of computerized credit assessments. As a result, numer-

us computational methods, including linear discriminant analy-

is (LDA), logistic regression (LR), and multiple discriminant analy-

is (MDA), have been considered for application in automated loan

ecision-making processes. 

.2. Credit scoring algorithm 

A number of alternative approaches have been developed for

he computation of credit scores over the last several decades,

ncluding support vector machines (SVMs) [8] , neural networks

NNs) [3,9] , ensemble classifiers [10] and various genetic al-

orithms [11] . However, these methods have not been widely

dopted because they are considered to be more complex and to

equire greater resources while offering less interpretability, even

hough they have been shown to produce significantly better re-

ults compared with those obtained from LDA, LR, and MDA. 

When considering consumer credit, it is important to note that

oan decisions must be defensible for social and legal reasons. For

xample, according to the United States Equal Credit Opportunity

ct (1976), financial institutions must be able to adequately explain

hy a loan application is denied [8] . 

.3. NN ensembles 

Pronounced improvements in the generalization capabilities of

rtificial NN (ANN)-based learning systems have been demon-

trated via the application of ANN ensembles, based on combining

he predictions of numerous trained ANNs in a voting process [12] .

More recently, compared with other methods of prediction,

mproved generalization has been exhibited by back-propagation

N (BPNN) ensembles [13] ; however, due to their lack of trans-

arency, a factor that has greatly restricted the applications of this

ethod, it is not possible to obtain an intuitive understanding of

he decision-making processes of such ensembles [14] . 

.4. Rule extraction 

One line of research that shows considerable promise is rule

xtraction, whereby a set of simple and comprehensible rules are

ound to explain the behavior of NNs [9] and SVMs [8,15] . 

Along these lines, the following three rule extraction methods

y an NN for the purpose of evaluating credit risk were assessed

y Baesens et al. [9] : the NeuroRule [16] , Trepan [17] , and Nefclass

18] algorithms. In addition, a number of methods have been pro-

osed for the extraction of information from BPNNs [19–21] . 

Since the practical application of classification processes typi-

ally has input composed of both discrete and continuous data,

r so-called mixed data [22] , rule extraction by Neurorule and

imilar programs requires that the continuous attributes first be

iscretized. During discretization, the input space is divided into

yper-rectangular regions, each of which corresponds to data sam-

les belonging to a specific class, and is associated with an ex-

racted rule condition [22] . 

However, some NN rule extraction programs, such as GLARE

23] and OSRE [24] , do not need to discretize the attributes of

ontinuous input data [19,20] . In such cases, linear combinations

f the appropriate input attributes, incorporating both continuous

nd discrete attributes, are used to generate extracted rules. 

Rule generation by NN ensembles is also the basis of the Dis-

retized Interpretable Multi-Layer Perceptron (DIMLP) model [25] ,
n which the knowledge contained in activation neurons and con-

ections is elucidated through the use of symbolic rules. Similarly,

he Rule Extraction from Network Ensemble (REFNE) [26] tech-

ique has been proposed as a means of obtaining symbolic

ules from NN ensembles trained to carry out classifications. This

pproach extracts rules from instances generated using trained

nsembles. 

.5. Rule extraction for credit risk assessment 

An increasing number of bank collapses, accompanied by mas-

ive losses in the financial sector, has resulted in stricter interna-

ional banking regulations and created a demand for more accu-

ate models for assessing credit risk and structuring loan portfolios

mong financial institutions. 

A useful credit scoring model achieves a good balance between

ccuracy and comprehensibility. In this context, the former refers

o strong classification performance that minimizes prediction er-

or, while the latter refers to ease of comprehension by the users.

istorically, accuracy has been the primary focus of credit scoring

ecause any improvement—regardless of how minor—can poten-

ially lead to considerable savings and profits in the future. There-

ore, a considerable amount of literature has focused on evaluating

echniques to increase the accuracy of credit scoring models. 

However, it is also vital that credit scoring models be com-

rehensible for the following reasons. First, managers need credit

coring models that are easy to interpret to justify their reasons

or accepting or denying credit, which is an industry requirement

n numerous countries. Second, such models reduce the reluctance

mong managers to use statistical techniques for credit evalua-

ions. Third, the more thoroughly managers understand the infor-

ation they receive, the more insight they gain into the factors

ffecting credit default, thus allowing them to combine statisti-

al scores and expert judgement to make proper credit decisions.

hile various techniques have been applied to develop more com-

rehensible credit risk models, very few have focused on balancing

ccuracy and comprehensibility, which is required for a more ex-

austive decision-making process. 

Although increasingly complex models for the assessment of

redit risk continue to be developed, these are not empirically use-

ul because professionals in the financial industry primarily need

omprehensible models that can be easily used in practice [27] . 

On the other hand, rule extraction techniques generate classifi-

ation models that have clear advantages. First, they are compre-

ensible and can therefore be easily incorporated into financial ap-

lications where the classifications need to be extremely clear. Sec-

nd, extracted rules only sacrifice a small degree of accuracy com-

ared with the black box models from which they are generated

9] . 

.6. Related works 

Setiono and Liu [19] proposed NeuroLinear, a system for ex-

racting oblique decision rules from NNs that have been trained for

lassification of patterns. Each condition of an oblique decision rule

orresponds to a partition of the attributes’ instance space by a hy-

erplane that is not necessarily axis-parallel. The novel algorithm

e-RX, originally intended as a rule extraction tool, was recently

eveloped by Setiono et al. [22] . This algorithm provides a hierar-

hical, recursive consideration of discrete variables prior to analysis

f continuous data, and is able to generate classification rules from

Ns that have been trained on the basis of discrete and continu-

us attributes. Another algorithm for obtaining classification rules

rom discrete data, termed GRG (greedy rule generation), was writ-

en by Odajima et al. [28] . “Greedy” is included in the title because

n each iteration, the algorithm attempts to find the optimum rule,
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taking sample numbers and subspace sizes into consideration, as

well as the quantity of attributes that the rule will contain. In this

program, a standard decompositional approach is used to extract

rules from NNs, such that NNs having a single hidden layer are

trained, after which, the GRG algorithm considers the discretized

hidden unit activation values. 

Another recent rule extraction rule algorithm is Minerva [29] ,

which is somewhat unique because it is applicable under an ex-

tremely wide range of circumstances. Minerva can be applied to

regression and classification scenarios with both numerical and

categorical data without invoking an underlying black box assump-

tion. 

Three quantized SVMs (QSVMs) have recently been proposed,

representing unique DIMLP networks that are trained by employ-

ing an SVM learning algorithm [30] and applied for the purpose of

rule extraction. 

1.7. The Re-RX algorithm family 

From system engineering perspective, the Re-RX algorithm cas-

cade repeats the BPNN, the pruning, and C4.5 in a recursive cas-

cade ensemble. 

A major advantage of the Re-RX algorithm recently developed

by Setiono et al. [22] is that it was designed as a rule extraction

tool. It provides a hierarchical, recursive consideration of discrete

variables prior to analysis of continuous data. In addition, it is ca-

pable of generating classification rules from NNs that have been

trained on the basis of discrete and continuous attributes. 

In other words, the Re-RX algorithm achieves highly accurate

rule extraction and offers good comprehensibility through the gen-

eration of perfect or strict separation between discrete and contin-

uous attributes in the antecedent of each extracted rule. 

Recently, we proposed using both discrete and continuous at-

tributes to generate the decision tree in the Re-RX algorithm

framework (hereafter Continuous Re-RX) [22] . Although this seems

to be counterintuitive with the design concept of the Re-RX algo-

rithm, in that it results in the generation of a more complex de-

cision tree, the use of both types of attributes is done to enhance

accuracy [31,32] . 

To achieve both concise and highly accurate extracted rules

while simultaneously maintaining the good framework of the Re-

RX algorithm, we recently proposed supplementing the Re-RX al-

gorithm with J48graft, a class for generating a grafted C4.5 decision

tree (hereafter Re-RX with J48graft) [33,34] . 

Using the Re-RX algorithm, rules have been extracted from

pruned NNs previously trained using all available data samples as

well as more limited datasets [35,36] . Interestingly, there is little

difference in the accuracy of predictions resulting from rule sets

generated by pruned NNs trained using a selection of samples and

the predictions made by the same program applying an NN trained

using the complete dataset. This approach is deemed the “Sam-

pling Re-RX” method. 

Herein we provide the first comprehensive comparison of

the results obtained by 10 runs of 10-fold cross validation (CV)

of the Re-RX algorithm family based on the assessment of

credit risk calculated from four real-life, two-class mixed credit-

risk datasets. The results of the following methods are com-

pared: the Re-RX algorithm [22] ; Continuous Re-RX [31,32] ; Re-RX

with J48graft [33,34] ; Sampling Re-RX [35,36] ; NeuroLinear [19] ;

NeuroLinear + GRG [28] ; and three unique rule extraction tech-

niques involving SVMs [30] and Minerva [29] . 

We describe the Re-RX algorithm in Section 2.1 , Continuous Re-

RX in Section 2.2 , Re-RX with J48graft in Section 2.5 , and Sam-

pling Re-RX in Section 2.7 . In Section 3 , we describe experimental

datasets and setup, while in Section 4 , we present the results. In

Section 5 , we discuss the experimental results and provide a de-
ailed discussion on the Re-RX algorithm family from a Pareto opti-

al perspective, Continuous Re-RX vs. high performance classifiers,

e-RX with J48graft and Sampling Re-RX for the comprehensibility

f extracted rules, and the potential of the Re-RX algorithm family

or credit scoring with Big Data. Finally, in Section 6 , we summa-

ize our conclusions. 

. Method 

.1. Recursive rule extraction algorithm (Re-RX algorithm) 

Although the Re-RX algorithm can easily handle multi-group

roblems, it was originally developed to consider only two-group

lassification problems [22] . The outline of the Re-RX algorithm is

s follows: 

Algorithm Re-RX ( S, D, C ) 

Input: A set of data samples S having discrete attributes D and continuous 

attributes C. 

Output: A set of classification rules. 

1. Train and prune [37] an NN by using the dataset S and all of its D and C 

attributes. 

2. Let D ′ and C ′ be the sets of discrete and continuous attributes, 

respectively, still present in the network, and let S ′ be the set of data 

samples correctly classified by the pruned network. 

3. If D ′ =φ, then generate a hyperplane to split the samples in S ′ according 

to the values of the continuous attributes C ′ , and then stop. 

Otherwise, use only the discrete attributes D ′ to generate the set of 

classification rules R for dataset S ′ . 
4. For each rule, R i is generated: 

If support( R i ) >δ1 and error( R i ) >δ2 , then 
• Let S i be the set of data samples that satisfy the condition of rule R i and 

D i be the set of discrete attributes that do not appear in rule condition 

R i . 
• If D i =φ, then generate a hyperplane to split the samples in S i according 

to the values of their continuous attributes C i , and then stop. 
• Otherwise, call Re-RX ( S i , D i , C i ). 

Any NN training and pruning method can be used in Step 1

f the Re-RX algorithm, as it does not make any assumptions re-

arding the NN architecture; however, we have restricted ourselves

o the use of BPNNs with only one hidden layer because such

etworks have been shown to retain the universal approximation

roperty [38] . 

A crucial component of any NN rule extraction algorithm is

n effective NN pruning algorithm. Pruning the inputs that are

ot needed to solve the problem allows the extracted rule set to

e more concise, and a pruned network also helps to filter noise

hat might be present in the data, such as that from outlying or

ncorrectly labeled data samples. Therefore, from Step 2 onward,

he algorithm only processes training data samples that have been

orrectly classified by the pruned network. Previously, we devel-

ped an NN pruning algorithm that incorporates a penalty function

uring training and adds a positive penalty value to the sum-of-

quared error function for each connection with nonzero weight

37] . Consequently, many of the connections have weights very

lose to zero when network training is complete, and those with

ery small values can typically be pruned without adversely affect-

ng the accuracy of the network. 

If all discrete attributes are pruned from the network, the algo-

ithm generates a hyperplane in Step 3 
∑ 

 i ∈ C ′ 
wiCi = w 0 

hat separates both groups of samples. Statistical and machine

earning methods such as logit regression or SVMs can then be

sed to obtain the constant and the rest of the coefficients of the

yperplane. We employ an NN with one hidden unit in our imple-

entation. 

A set of classification rules comprising only discrete attributes

s generated when at least one discrete attribute remains in the
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Recursive-Rule Extraction Algorithm
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Fig. 1. Schematic overview of the Recursive-Rule eXtraction (Re-RX) algorithm. 
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runed network, which effectively partitions the input space into

maller subspaces based on the values of the discrete attributes.

ach subspace corresponds to a generated rule, and when the rule

s not sufficiently accurate, the Re-RX algorithm is used to further

artition the subspace. 

The support of a rule, which is the percentage of samples cov-

red by that rule, and each rule’s corresponding error rate are

hecked in Step 4. If the support meets the minimum threshold δ1 

nd the error rate exceeds the threshold δ2 , then the subspace of

he rule is further subdivided either by calling Re-RX recursively

hen no discrete attributes remain present in the conditions of

he rule, or by generating a separating hyperplane involving only

he continuous attributes. Because the Re-RX algorithm handles

iscrete and continuous attributes separately, it generates a set of

lassification rules that are more comprehensible than those with

oth types of attributes in their conditions. 

To enable a better understanding of its underlying mechanisms,

 brief overview of the Re-RX algorithm and the concept behind

ts design is shown in Fig. 1 . C4.5 [39] was used to generate de-

ision trees in the Re-RX algorithm. The subdivision of the Re-RX

lgorithm is a unique function that is inherent in its nature. Each

uccessive subdivision allows the use of other previously unused

ttributes; this increases the number of extracted rules as well as

heir accuracy. 

It should be noted that the accuracy, comprehensibility, and

onciseness of extracted rules have important trade-offs. Before

ubdivision, extracted rules are more comprehensible and concise,

et less accurate. Conversely, after subdivision, extracted rules are

ess concise, yet more accurate. 

.2. Re-RX algorithm with continuous attributes (Continuous Re-RX) 

Although a primary aim of the Re-RX algorithm is the strict

eparation of discrete and continuous attributes in the antecedent

f each extracted rule, this design often results in reduced accu-
acy. Whereas the Re-RX algorithm prunes continuous attributes

C’) before the C4.5 decision tree is generated ( Fig. 2 ), Continuous

e-RX uses both discrete (D’) and continuous attributes (C’) to gen-

rate the decision tree [31,32] , which results in increased complex-

ty. This may seem counterintuitive to the algorithm’s design, but

he use of both types of attributes also results in increased accu-

acy. An outline of Continuous Re-RX is as follows: 

Continuous Re-RX (S ′ , D ′ , C ′ ) 
Input: A set of data samples (S ′ ) having both discrete (D ′ ) and 

continuous (C ′ ) attributes. 

Output: A set of classification rules. 

1. Train and prune [37] an NN using the dataset S and all of its D and C 

attributes. 

2. Let D ′ and C ′ be the sets of discrete and continuous attributes, 

respectively, still present in the network, and let S ′ be the set of data 

samples correctly classified by the pruned network. 

3. Generate decision tree by using both discrete (D ′ ) and continuous (C ′ ) 
attributes [31,32] . 

4. For each rule, R i is generated: 

If support (R i ) >δ1 and error (R i ) >δ2 , then 
• Let S i be the set of data samples that satisfies the condition of rule R i , 

let D i be the set of discrete attributes, and let C i be the set of 

continuous attributes that does not appear in rule condition R i . 
• Call Continuous Re-RX (S i , D i , C i ). 

Otherwise, Stop. 

As shown in Fig. 2 , in Continuous Re-RX, we carefully set the

alue of the values of δ1 and δ2 in Step 4. 

.3. J4.8 

J4.8 [40] is a Java-based version of C4.5 [39] , which itself is

n improved version of Quinlan’s ID3 algorithm [41] . The decision

rees generated by C4.5 are used for classification, so this algorithm

s usually described as a statistical classifier. Although these algo-

ithms are quite similar, the improvements C4.5 has over ID3 are

hat it uses the gain ratio to determine the best target attribute,
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Recursive-Rule Extraction Algorithm with Continuous Attributes
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Fig. 2. Schematic overview of the Recursive-Rule eXtraction (Re-RX) algorithm with continuous attributes (Continuous Re-RX). 
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and, for numerical attributes, it creates a threshold and then splits

the data into those whose attribute value is either greater, or less

than or equal to, that threshold. C4.5 can also handle attributes

with variable cost, and can prune the decision tree after its cre-

ation, which reduces its size and saves both time and memory. 

2.4. J48graft 

Decision tree grafting was developed in order to improve upon

the “simplest is best” method for selecting a good tree. The basic

tenet of tree grafting is that similar objects tend to have a high

probability of belonging to the same class, and if following this

process results in a better classification model, then yielding more

complex trees becomes unnecessary. 

Grafting is a post-process that can easily be applied to decision

trees. The primary objective of grafting is to reclassify regions of

an instance space containing no training data or only misclassi-

fied data, which in turn decreases prediction error. First, grafting

identifies the best-suited cuts of existing leaf regions. Next, new

leaves with classifications differing from the original are created

via a branching out process, which increases the complexity of the

tree naturally. However, tree grafting only considers branches that

do not introduce classification errors in the data that has already

been classified correctly, which ensures error reduction. 

The C4.5A algorithm introduced by Webb, which is also referred

to as the “all-tests-but-one partition (ATBOP),” is an even more ef-

ficient method for evaluating potentially supporting evidence [42] .

It was the implementation of the C4.5A algorithm in open source

data mining software (the Waikato Environment for Knowledge

Analysis [Weka]) that led to the development of J48graft [40] . 

Pruning aims to reduce the complexity of a decision tree while

retaining good predictive accuracy, and therefore can be thought

of as the opposite of grafting. Despite these contrasts, or possibly

because of them, Webb [43] concluded that pruning and grafting

work well in parallel. 
.5. Re-RX algorithm with J48graft (Re-RX with J48graft) 

With the objective of extracting more accurate and concise clas-

ification rules, we proposed replacing the conventional Re-RX al-

orithm, which uses C4.5 as a decision tree [39] , with Re-RX with

48graft [33,34] . The conventional pruning used in J4.8 both com-

lements and contrasts that used in J48graft [44] . The performance

f the Re-RX algorithm [22] is thought to be greatly affected by

he decision tree. To extract more accurate and concise classifi-

ation rules, in consideration of the grafting concepts associated

ith J48graft, we decided to replace J4.8 with J48graft in the Re-RX

lgorithm. 

We frequently employ Re-RX with J48graft [33,34] to form de-

ision trees in a recursive manner while training MLPs using BP,

hich allows pruning [37] and therefore generates more efficient

LPs for rule extraction. A schematic overview of Re-RX with

48graft is shown in Fig. 3 . 

.6. Sampling selection 

In contrast to the development of more complex models for

wo-class classification problems such as credit scoring, Setiono

35,36] proposed a supervised learning scheme that aims to in-

rease model accuracy by selecting the most appropriate training

ata samples. 

In this scheme, models for classification problems, such as NNs,

re trained using a historical dataset. In the case of classification

roblems such as credit scoring, the credit risk of each sample is

abeled as either good or bad. However, some of these class labels

ay be incorrectly assigned, resulting in the presence of irregular

ata samples. Although these samples may have similar attributes,

s is commonly the case for most samples in one class, they ac-

ually belong to a different class. This is problematic because the

resence of irregular and/or mislabeled data samples in a training

ataset is likely to adversely affect the performance of the NN. 



Y. Hayashi / Operations Research Perspectives 3 (2016) 32–42 37 

Recursive-Rule Extraction algorithm with J48graft

Rule setMLP

BP
Learning

Let D’ and C’ be the sets of discrete
and con�nuous a�ributes, respec�vely, 
s�ll present in NN. Let S’ be the set of 
data samples correctly classified by the 
pruned network.

*

Rule set
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yes
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MLP

Pruning
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Fig. 3. Schematic overview of the Recursive-Rule eXtraction (Re-RX) algorithm with J48graft (Re-RX with J48graft). 
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In the sampling selection technique proposed by Setiono et al.

35,36] , NNs are trained to identify potentially irregular and/or

islabeled data samples. Data samples that are consistently mis-

lassified by a majority of NNs are then removed before a model is

onstructed to distinguish between good and bad credit risk. 

The sampling selection technique can be summarized as fol-

ows: (1) Ensemble creation: train an ensemble of M feedforward

Ns using the available training data samples; (2) Sample selec-

ion: select training data samples based on the predictions of the

N ensemble; (3) Model generation: use the selected samples to

rain an NN; and (4) Rule extraction: apply an NN rule extraction

lgorithm to obtain concise and interpretable classification rules

apable of distinguishing between good and bad credits. 

The selection of samples in Step 2 is, as the name suggests, a

ore component of the sampling selection technique. First, we em-

loyed an NN ensemble to identify outliers in the training dataset.

n effective method for improving the predictive accuracy of nu-

erous learning methods is to remove outliers and noise prior to

earning. If a data sample is incorrectly classified by a proportion

f NNs exceeding the threshold ρ and thereby identified as an out-

ier, it is discarded; otherwise, it is retained in the training dataset.

.7. Re-RX algorithm combined with sampling selection technique 

Sampling Re-RX) 

Here we describe Re-RX combined with sampling selection

echniques (Sampling Re-RX) for preprocessing. 

The objective of this algorithm is to achieve highly accurate,

oncise, and interpretable classification rules for the credit scor-

ng dataset. However, the credit scoring dataset for rule extraction

as a financial dataset, so the focus was on decreasing the num-

er of extracted rules and the average number of antecedents. To

xtract concise rules, we employed Sampling Re-RX, which is bet-

er suited for achieving concise and interpretable, as opposed to

ccurate, classificiation rules. 
We preprocessed the credit scoring dataset using the sampling

election technique [35,36] to extract a fewer number of rules and

 lower average number of antecedents. We then employed Sam-

ling Re-RX to extract a set of concise and interpretable diagnostic

ules. A schematic overview of Sampling Re-RX is shown in Fig. 4 .

s shown in the figure, in Sampling Re-RX, a supplementary cross-

alidation loop is carried out with sampling selection by an NN

nsemble. 

The most important objective of Sampling Re-RX in terms of

redit scoring is to improve the conciseness and interpretability of

xtracted rules for financial professionals. Hereafter, Re-RX, Contin-

ous Re-RX, Re-RX with J48graft and Sampling Re-RX are referred

o as the “Re-RX algorithm family.”

. Datasets and experimental setup 

Assigning accurate credit scores to consumers is a vital function

f financial institutions. Credit scores are typically calculated using

 mathematical decision model that establishes risk based on the

ssessment of various attributes such as the consumer’s age and

nnual income. This assessment process must be transparent, so

redit scores must be generated using a “white box” model. 

To highlight both the effectiveness and the appropriateness of

ur proposed model for assessing credit risk, we used the fol-

owing four real-life, two-class mixed credit-risk datasets: German,

ustralian, Bene1 and Bene2. A brief description of these datasets

s provided below. These four datasets contain a wide variety of

ttributes, including continuous variables, nominal variables with

 limited number of values, and nominal variables with a large

umber of values, and are therefore frequently referred to in the

iterature and utilized by financial researchers. 

.1. Australian credit dataset 

Available through the University of California Irvine (UCI) Ma-

hine Learning Repository [45] , the Australian Credit Dataset
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Fig. 4. Schematic overview of the Re-RX algorithm combined with sampling selection technique (Sampling Re-RX). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Characteristics of datasets in credit risk evaluation. 

Dataset size Input total Input continuous Input discrete 

Australian 690 14 6 8 

German 10 0 0 20 7 13 

Bene1 3123 27 18 9 

Bene2 7190 28 18 19 
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contains 690 samples with 14 attributes, eight discrete with two

to 14 values, and six continuous. This dataset also contains 307

(approximately 44.5%) positive and 383 (approximately 55.5%) neg-

ative instances. To protect the confidentiality of the data, all at-

tribute names and values have been changed to meaningless sym-

bols. For the purposes of this study, we randomly divided this

dataset into 50% training data and 50% test data. 

3.2. German credit dataset 

Also available through the UCI Machine Learning Repository is

the German Credit Dataset [45] , which contains 10 0 0 samples with

20 attributes. Credit is classified as either good (about 700 sam-

ples) or bad (about 300 samples). Other attributes include: (1) cur-

rent status of existing checking account; (2) duration of account

in months; (3) credit history; (4) credit purpose; (5) credit line;

(6) status of savings account(s)/bonds; (7) length of current em-

ployment; (8) installment rate in percentage of disposable income;

(9) sex and marital status; (10) debtors/guarantors; (11) number

of years in current residence; (12) property owned; (13) age; (14)

other existing installment plans; (15) type of residence; (16) num-

ber of existing credit lines; (17) occupation; (18) current status

regarding telephone service; (19) foreign worker status; and (20)

number of dependents. For the purposes of this study, we ran-

domly divided this dataset into 70% training data and 30% test

data. 

3.3. Bene1 and Bene2 credit datasets 

In this study, the Bene1 and Bene2 datasets [9] used by

Benelux-based major financial institutions to summarize consumer

credit data were also used. In accordance with standard banking
ractices, customers in these voluminous datasets are flagged as

igh risk if they have ever been in payment arrears for more than

0 days. For the purposes of this study, we randomly divided these

atasets into approximately 67% training data and 33% test data. 

.4. Experimental setup 

Next, the training sets within each database were used to train

Ns and extract classification rules. One input unit was created

or each continuous attribute in the dataset, and either thermome-

er or dummy variable encoding was used to convert discrete at-

ributes into a binary input string [46] . The characteristics of the

atasets used for evaluating credit risk are summarized in Table 1 .

n order to deal with the class imbalance problem commonly as-

ociated with credit scoring datasets, we used the area under the

eceiver operating characteristic curve (AUC-ROC) to evaluate per-

ormance because it does not include class distribution or misclas-

ification costs [47] . 

. Results 

.1. Performance 

In order to guarantee the validity of the results, we used 10

uns of 10-fold CV [48] to evaluate the classification rule accuracy
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Table 2 

Comparison of results from Minerva, QSVM-L, QSVM-P3, QSVM-G, Re-RX ∗ , Sampling Re-RX, Re-RX with J48graft and Continuous Re-RX for the German 

dataset (10 runs of 10-fold cross validation). 

Index Minerva QSVM-L QSVM-P3 QSVM-G Re-RX ∗ Sampling Re-RX Re-RX with J48graft Continuous Re-RX 

TS ACC % 70.51 ± 2.66 74.8 ± 0.8 75.10 ± 0.9 73.0 ± 1.3 71.82 ± 1.17 73.2 ± 0.32 72.78 ± 0.87 75.22 ± 0.33 

AUC 0 .65 0 .66 0 .650 0 .692 

# rules 8 .4 77 .4 85 .4 170 .6 45 .1 19 .34 16 .65 39 .6 

Ave # Ante. 5 .61 5 .3 5 .4 5 .7 9 .39 6 .2 6 .19 9 .13 

Re-RX: Recursive-Rule eXtraction; TS: testing dataset; AUC: area under the receiver operating characteristic (ROC) curve; # rules: number of rules; ACC: 

accuracy; Ave. # ante.: average number of antecedents; 10CV: 10-fold cross validation: 10 ×10CV: 10 runs of 10-fold cross validation; SVM: support vector 

machine. 

Table 3 

Comparison of results from the Minerva, NeuroLinear, NeuroLinear + GRG, QSVM-L, QSVM-P3, QSVM-G, Re-RX ∗ , Sampling Re-RX, Re-RX with J48graft and Continuous 

Re-RX for the Australian dataset (10 runs of 10-fold cross validation). 

Index Minerva Neuro Neuro QSVM-L QSVM-P3 QSVM-G Re-RX ∗ Sampling Re-RX with Continuous 

Linear Linear + GRG Re-RX J48graft Re-RX 

TS ACC % 85.57 ± 1.70 83 .64 86 .40 85.60 ± 0.20 85.7 ± 0.6 85.6 ± 0.3 86.06 ± 0.36 86.48 ± 0.26 86.04 ± 0.29 86.93 ± 0.29 

AUC 0 .86 0 .864 0 .862 0 .869 

# rules 4 .80 6 .60 2 .80 2 .0 20 .5 8 .3 15 .43 11 .04 4 .58 14 .0 

Ave # Ante. 2 .93 1 .0 3 .7 2 .6 6 .23 5 .27 2 .38 5 .95 

Re-RX: Recursive-Rule eXtraction; TS: testing dataset; AUC: area under the receiver operating characteristic (ROC) curve; # rules: number of rules; ACC: accuracy; 

Ave. # ante.: average number of antecedents; 10CV: 10-fold cross validation: 10 ×10CV: 10 runs of 10-fold cross validation; SVM: support vector machine. 

Table 4 

Comparisons between the Re-RX algorithm family for the Bene1 dataset (10 runs of 

10-fold cross validation). 

Index Re-RX ∗ Sampling Re-RX with Continuous 

Re-RX J48graft Re-RX 

TS ACC % 70.22 ± 1.93 72.06 ± 0.09 70.95 ± 0.37 72.50 ± 0.35 

AUC 0 .679 0 .68 0 .669 0 .702 

# rules 43 .2 25 .46 27 .74 48 .40 

Ave. # Antecedents 7 .57 6 .25 7 .38 7 .52 

Re-RX: Recursive-Rule eXtraction; TS: testing dataset; AUC: area under the receiver 

operating characteristic (ROC) curve; # rules: number of rules; ACC: accuracy; Ave. 

# ante.: average number of antecedents; 10CV: 10-fold cross validation: 10 ×10CV: 

10 runs of 10-fold cross validation; SVM: support vector machine. 
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Table 5 

Comparisons between the Re-RX algorithm family for the Bene2 dataset (10 runs of 

10-fold cross validation). 

Index Re-RX ∗ Sampling Re-RX with Continuous 

Re-RX J48graft Re-RX 

TS ACC % 71.66 ± 0.56 72.6 ± 0.12 70.69 ± 0.51 74.67 ± 0.58 

AUC 0 .616 0 .60 0 .615 0 .648 

# rules 54 .4 28 .31 27 .61 75 .9 

Ave. # Antecedents 7 .81 6 .1 6 .46 7 .95 

Re-RX: Recursive-Rule eXtraction; TS: testing dataset; AUC: area under the receiver 

operating characteristic (ROC) curve; # rules: number of rules; ACC: accuracy; Ave. 

# ante.: average number of antecedents; 10CV: 10-fold cross validation: 10 ×10CV: 

10 runs of 10-fold cross validation; SVM: support vector machine. 
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f test datasets. The k-fold CV method is widely applied by re-

earchers to minimize the bias associated with random sampling. 

We trained the credit scoring datasets using the Re-RX algo-

ithm family and obtained 10 runs of 10-fold CV accuracies for the

est dataset (TS ACC), the number of extracted rules (# rules), the

verage number of antecedents (Ave. # ante.), and the AUC-ROC. 

Numerous types of rules have been suggested in the literature

rom the perspective of the expressive power of extracted rules,

ncluding propositional rules, which take the form of IF-THEN ex-

ressions and clauses defined using propositional logic, and M -of-

 rules. Breaking from traditional logic, fuzzy rules allow partial

ruths instead of Boolean true/false outcomes. 

Even if all types of rules are considered, the consensus is that

o matter how they are defined, an ideal measure has yet to be de-

eloped; therefore, “what is a concise and/or interpretable rule?”

emains a difficult question to answer. To address this, we at-

empted to develop a “rough indicator” of conciseness by compar-

ng the average number of antecedents from extracted rules gener-

ted using a variety of techniques. 

In Tables 2 through 5 , we conducted the first comprehen-

ive performance comparisons of Minerva [29] , NeuroLinear [19] ,

euroLinear + GRG [28] , three rule extraction techniques using

VMs [30] , and the Re-RX algorithm family for each of the four

redit scoring datasets. 

Some results displayed in Tables 2 and 3 were obtained from

reviously published literature [19,28–30] . All values for other

ethods in the tables were generated using 10 runs of 10-fold CV.

ince use of 10-fold CV was not clearly described in the original lit-

rature, we independently implemented the Re-RX algorithm, i.e.,
e-RX, from the original authors [22] , and obtained accuracies us-

ng 10 runs of 10-fold CV. 

. Discussion 

.1. Performance for the German dataset 

Continuous Re-RX showed the best accuracy for the test

ataset, nearly identical to that obtained by QSVM-P3 [30] and

SVM-L [30] with a much higher number of extracted rules. Min-

rva provided the smallest number of extracted rules. The num-

er of extracted rules obtained using Re-RX 

∗ was less than half

hat of Sampling Re-RX and Re-RX with J48graft. Although QSVM-

, QSVM-P3, and QSVM-G [30] showed better accuracy, they also

ad a much higher number of extracted rules. 

.2. Performance for the Australian dataset 

Continuous Re-RX showed the best test accuracy. However, the

est accuracies for all algorithms were between 85.5% and 86.93%.

n the other hand, QSVM-L showed a remarkably concise number

f rules (2.0) with only 1.0 antecedent. However, considering the

educed conciseness for the German Dataset ( Table 2 ), which was

btained using the same method, we should not presuppose such

xcellent conciseness for all types of datasets. 

NeuroLinear + GRG also showed a concise number of rules at 2.8.

omparing NeuroLinear + GRG with NeuroLinear, GRG preprocess-

ng for the Australian Dataset was very effective for conciseness

nd accuracy. 

The number of rules and the average number of antecedents

btained by NeuroLinear for the German Dataset [19] were 2.0
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Table 6 

Performance of various classifiers and Continuous Re-RX, Sampling Re-RX, and Re-RX with J48graft for the Australian dataset. 

Method [10 ×10CV] TS ACC (%) # Rules Rule set Ave. # ante. Year [ref.] 

Vertical bagging decision trees model 91 .97 – – – 2010 [49] 

Weighted-least squares SVM RBF 90 .63 – – – 2011 [50] 

Kernel, fuzzification, penalty factors-multi-criteria optimization classifier 88 .84 – – – 2014 [51] 

Weighted-case-based-reasoning with preference functions optimized with GA 88 .55 – – – 2012 [52] 

Random space bagging decision tree 88 .01 – – – 2012 [53] 

Neighborhood + rough set + SVM RBF 87.52 ± 0.052 – – — 2011 [54] 

Decision tree ensemble (boosting-100) 87 .23 – – — 2014 [55] 

Hidden Markov model/group method of data handling 87.02 ± 1.56 – – –– 2013 [56] 

Continuous Re-RX 86.93 ± 0.29 14 Possible 5 .95 2016[31 ,32] 

SVM + stratified sampling 86.83 ± 3.96 – – – 2012 [57] 

Sampling Re-RX 86.48 ± 0.26 11 .04 Possible 5 .27 2015 [35,36] 

Artificial immune network-based classifier 86 .38 – – – 2012 [58] 

Axiomatic fuzzy set (5CV) 86 .22 451 .6 – – 2013 [59] 

Naïve Bayes + wrapper (GA) method 86 .09 – – – 2015 [60] 

Re-RX J48graft 86.04 ± 0.87 4 .58 Yes 2 .38 2016 [33,34] 

Group-wise feature selection (50 ×5CV) 85.6 ± 2.5 – – – 2012 [61] 

Re-RX: Recursive-Rule eXtraction; TS: testing dataset; ACC: accuracy; Ave. # ante.: average number of antecedents; 10CV: 10-fold cross validation: 5CV: 5-fold 

cross validation: 10 ×10CV: 10 runs of 10-fold cross validation; 50 ×5CV: 50 runs of 5-fold cross validation; SVM: support vector machine; RBF: radial basis 

function; GA: genetic algorithm. 
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and 8.5, respectively [28] . Although the number of extracted rules

was quite small, the number of antecedents was quite high. Al-

though NeuroLinear + GRG did not provide an average number of

antecedents for the Australian Dataset, it may show a tendency

similar to NeuroLinear in that the average number of antecedents

would not be very interpretable. Minerva and Re-RX with J48graft

showed a considerably smaller number of extracted rules than

Re-RX 

∗. 

5.3. Performance for the Bene1 dataset 

All methods in the Re-RX algorithm family showed approxi-

mately the same test accuracies. 

In contrast, Sampling Re-RX and Re-RX with J48graft showed

about a 30% reduction in the number of rules extracted using Re-

RX 

∗. Since the tendency to generate more rules than other rule

extraction algorithms is the most serious problem in Re-RX, this

result is quite meaningful. 

5.4. Performance for the Bene2 dataset 

Continuous Re-RX showed the best test accuracy, but was only

slightly better than the other methods. In addition, it showed a

much higher number of extracted rules than Re-RX 

∗. On the other

hand, Sampling Re-RX and Re-RX with J48graft showed about the

half number of rules extracted using Re-RX 

∗. In the same manner

as that in Section 5.3 , this result was quite meaningful. 

5.5. Performance of the Re-RX algorithm family from a Pareto 

optimal perspective 

As the present experiments have demonstrated, no extraction

methods that generate both highly accurate and comprehensible

rules for credit scoring datasets have been identified. Therefore,

as noted in Section 2.1 , the best approach appears to be find-

ing a good balance between the two. However, to the best of our

knowledge, no ideal rule extraction algorithm has been reported.

In the light of this situation, we decided to develop highly accu-

rate rule extraction methods that also offered high comprehensi-

bility by generating perfect or strict separation between discrete

and continuous attributes in the antecedent of each extracted rule.

Obtaining a small number of extracted rules from a dataset

does not guarantee that the rules extracted by another algo-

rithm, such as when the Australian Dataset was processed by
euroLinear + GRG, will have higher comprehensibility. To compare

he extent of comprehensibility between different algorithms, the

verage number of antecedents per extracted rule is a good indi-

ator. 

Needless to say, if we can find a Pareto optimal solution, we

ill obtain the best rule extraction algorithm. Ideally, we hope to

xtend the Pareto optimal curve to obtain a wider viable region

nd provide improvements in both accuracy and comprehensibil-

ty. Several newly developed multi-objective optimization formulas

sing revolutionary computation and related-techniques could be

sed to provide a theoretical and practical basis for determining a

ood balance between accuracy and comprehensibility. 

.6. Continuous Re-RX vs. high performance classifiers 

For further analysis, we tabulated the accuracies of high perfor-

ance classifiers for the Australian Dataset, which were recently

eported using 10 runs of 10-fold CV, as an example. 

As shown in Table 6 , the difference in classification accuracy

btained by Continuous Re-RX has been approaching within 5% of

hat obtained by the highest current performance classifier [49] . 

From the perspective of rule extraction, the number of rules for

igh performance classifiers, if applicable, can be treated as infi-

ite. In other words, the only objective function of the classifier is

ts accuracy. Therefore, high performance classifiers are no differ-

nt from resignation to find a compromise between both require-

ents by building a simple rule set that mimics how the well-

erforming complex model (black-box) makes it decisions. 

Although the number of rules extracted using Continuous Re-

X was much higher than that of other algorithms in the Re-RX

lgorithm family, Continuous Re-RX still has the best rule extrac-

ion accuracy, with only slightly lower separation capability be-

ween discrete and continuous attributes in the antecedent of each

xtracted rule. The competition for achieving only better classifica-

ion accuracy for the credit scoring dataset has appeared to plateau

49,50] , and unless classification accuracy can be considerably im-

roved, i.e., close to 100%, a very limited contribution will be made

o the financial services industry. 

.7. Re-RX with J48graft and Sampling Re-RX for comprehensibility of

xtracted rules 

Recently, Chen et al. [62] reported that financial rule extrac-

ion is completely algorithmic or automatic in most systems, and
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as little supervision or user interaction. In order to acquire useful

nd comprehensible knowledge, users need to be integrated into a

lack box process through an interactive visual framework. How-

ver, in their study, Chen et al. ignored various rule extraction al-

orithms and/or methods. 

In contrast, Fortuny and Martens [63] claimed that comprehen-

ibility is required in any domain in which a model needs to be

alidated before it can be used in practice, such as medical diag-

osis or audit mining. 

In credit scoring, this requirement is a legal one [8] , as de-

cribed in Section 1.2 . The Basel III Capital Accord includes sim-

lar requirements in relation to models for internal capital re-

uirement calculations. Furthermore, findings from previous stud-

es have shown that when the inner workings of a decision-making

ystem are not understood by users, they will be skeptical and re-

uctant to use the model, even if it is well known to improve per-

ormance. Although the importance of comprehensibility has long

een established [64] , current data mining research seems to have

 sole focus on predictive accuracy only. While it is possible to

ncrease comprehensibility by constraining or modifying existing

echniques (e.g., as in [65] ), it is often more desirable to inspect

he behavior of well-studied techniques without altering their in-

er workings. Rule extraction techniques have been proposed as a

ethod to generate predictive rules that mimic the classifications

ade by the black-box technique without modifications [66] , and

hey play an important role in data mining, which has been de-

cribed as a process of finding novel and useful patterns in data

67] . 

As shown below, the rule set generated from the Australian

ataset using Re-RX with J48graft provides insight into the logic

nderlying the black-box model in human-readable form. 

The extracted rule set obtained by the Re-RX with J48graft in

he present paper is quite concise and intepretable for users. Since

he Australian Dataset includes categorical attributes, A4, A5, A6,

12, we converted these into binary code as follows: 

R1: D31 = 0 Then Class 1 

R2: D28 = 0 AND D31 = 1 AND D32 = 0 Then Class 1 

R3: D28 = 1 AND D31 = 1 AND D32 = 0 Then Class 2 

R4: D31 = 1 AND D32 = 1 Then Class 2. 

The average number of extracted rules was 4.0 and the aver-

ge number of antecedents was only 1.75. Furthermore, only three

ttributes (D28, D31 and D32) were used. However, the predic-

ive accuracy of the entire rule set was 86.04 ± 0.29. As shown in

able 6 , comparing the classification accuracies, that obtained us-

ng Re-RX with J48graft (86.04 ± 0.29) was about 5.93% lower than

hat of the best performance classifier [49] . 

Certainly, recent high performance classifiers with a grand-scale

echniques have shown very high classification accuracies; how-

ver, we believe that if the quality of the extracted rules from the

nancial datasets is strongly considered, the opportunity for su-

ervision and interaction of financial professionals will be dramat-

cally increased. Because transparency is necessary for datasets, us-

ng Re-RX with J48graft and Sampling Re-RX is expected to encour-

ge and motivate new financial data analytics. 

In fact, the Re-RX algorithm family has already been used for

oncise and interpretable extracted rules in regard to medical di-

gnosis for breast cancer [34] and thyroid diseases [32] . In these

ases, the quality of rules is emphasized over the classification

ccuracy. 

.8. Potential of the Re-RX algorithm family for credit scoring with 

ig data 

To date, many studies have used both the German and Aus-

ralian Datasets as part of a general tendency to employ either
mall- (below 10 0 0 samples) or medium-sized (10 0 0–10,0 0 0 sam-

les) datasets [2] . However, more recently, the use of datasets with

ore than 10,0 0 0 samples has somewhat increased [68] . 

Finlay [1] demonstrated that the credit risk calculations of

rominent financial institutions typically use datasets that are ei-

her small or of low dimensionality. The largest dataset used in the

resent study was the Bene2 Dataset, which contains 7190 sam-

les, because the real-world datasets discussed by Finlay, which

ontain 88,789 and 138,606 samples [1] , were considered too large

o allow rule extraction via the Re-RX algorithm family in a rea-

onable time frame. 

Regarding the complexity of the Re-RX algorithm family, Re-RX

ith J48graft took about 5 s to train the German Dataset using

 standard workstation computer (3.1 GHz Intel Xeon E5-2687 W,

.5 GHz Turbo, 25 MB Cache; 64 GB RAM; 512 GB DDR3 System

emory). The testing time was negligible. 

Therefore, presently, the Re-RX algorithm family remains diffi-

lut to use in real-time and/or online tasks for large-scale credit

coring. However, with considerable improvement in information

echnology and processing speeds, the Re-RX algorithm family can

e expected to run much faster on standard workstations or con-

entional personal computers. 

. Conclusion 

In this study, we conducted the first comprehensive perfor-

ance comparison based on 10 runs of 10-fold CV between the

e-RX algorithm family, NeuroLinear, NeuroLinear + GRG, Minerva

nd three rule extraction techniques from SVMs by applying these

rograms to four different real-life, two-class mixed credit-risk

atasets. 

The high accuracy of Continuous Re-RX was superior to that ob-

ained using Re-RX, Re-RX with J48graft, Sampling Re-RX, Neuro-

inear, NeuroLinear + GRG, Minerva and three SVM-based methods. 

Re-RX with J48graft and Sampling Re-RX both use a recursive

ascade ensemble to construct a unique hybrid classifier ensemble

ith perfect or strict separation between discrete and continuous

ttributes in the antecedents of extracted rules, so as to maintain

igh comprehensibility. Therefore, these two algorithms generated

ighly comprehensible rules with perfect or strict separation. 

These findings suggest that Continuous Re-RX, Re-RX with

48graft, and Sampling Re-RX comprise a powerful management

ool that allows the creation of advanced, accurate, concise and in-

erpretable decision support systems for credit risk evaluation. 

In addition, the superior features of the Re-RX algorithm fam-

ly from the Pareto optimal perspective were discussed, as well as

ontinuous Re-RX vs. high performance classifiers, and Re-RX with

48graft and Sampling Re-RX in relation to the comprehensibility

f extracted rules and the potential of the Re-RX algorithm family

n credit scoring with Big Data. 

In future studies, we intend to develop much more accurate and

omprehensible rule extraction algorithms for large-sized datasets,

nd to attempt to come close to achieving true rule extraction from

ig Data. 
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