
Trends
Complexity modeling. Biotechnol-
ogy engineers living systems that are
the product of evolution and can be
discretized and organized following dif-
ferent organizational layers, each one
with its own mechanisms and con-
texts. Bioengineering practitioners
must be aware of the rich and complex
relationships among these levels of
complexity.

Reproducibility. Most of biotechnol-
ogy cannot be reproduced for practi-
cal, temporal, and economic reasons.
Despite this, designed bioengineered
entities must work consistently and
robustly when released as products.

Multi-heuristics. Several heuristics
are implemented in parallel in modern
biotechnology. Each one follows a rea-
soning procedure that provides possi-
ble solutions and logical explanations.
They are not contradictory, just useful
for pragmatic reasons. The challenge is
to build engineering knowledge for a
biological field.
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Opinion
The Best Model of a Cat Is
Several Cats
Claes Gustafsson1,* and Jordi Vallverdú2,*

Modern biotechnology is emerging at the intersection of engineering, biology,
physics, and computer science. As such it carries with it history from several
disparate fields of research including a strong tradition in deductive reasoning
primarily derived from discovery focused molecular biology and physics. Engi-
neering biological systems is a complex undertaking requiring a broader set of
epistemic tools and methods than what is usually applied in today's discovery
based research. Inductive reasoning as commonly used in computer science
has proven to be a very efficient approach to build knowledge about complex
megadimensional datasets, including synthetic biology applications. The
authors conclude that the multi-heuristic nature of modern biotechnology
makes it an engineering field primed for inductive reasoning to complement
the dominating deductive tradition.

The Epistemic Challenge of Modern Biotechnology
Biotechnology has a long history starting with beer and bread production via early genetic
engineering for manufacturing of insulin up to current date synthetic biology where complete
pathways and genomes can be designed and synthesized de novo. Whereas an earlier version
of biotechnology relied on discovery based science and (in best case) random search for
improved non-natural biological entities, the tools made available over the past decade instead
allow for precise design and exact synthesis of a large number of putative solutions to any
biological problem. Biotechnology is consequently emerging as an engineering driven science
[1]. Where discovery based biotechnology goes searching for naturally existing proteins or genes
to combine in interesting new ways, engineering driven biotechnology instead builds novel
biology to specifications. The transition from discovery science to engineering driven applica-
tions affects biotechnological research in a number of different ways including the challenge of
epistemology (the theory of knowledge) [2] (Box 1).

Computational modeling, intensive artificial intelligence (AI) systems, and rigorous statistical
procedures are increasingly being placed at the heart of biotechnology together with highly
innovative methods, techniques, and ideas from engineering, biology, computer science, physics,
and chemistry. In addition to the increased breadth of technologies, there is also a rapidly increasing
size and velocity of data being generated to the extent that human data supervision is coming to an
end [3]. We are entering an era where scientists can no longer check, verify, replicate, or even
analyze the deluge of incoming data. Scientific research is becoming a black box that provides us
with new knowledge. As our science paradigm changes, we need to address some of the
cornerstones of how we extract knowledge and better understand how we know what we know.

The combination of analytical and synthetic epistemic approaches put us at an interesting
position: we create new knowledge and new biological systems, our ideas work, but we are
often not able to deconvolute the underlying truth of the mechanistic models supporting our
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Box 1. From a Black Box to Networked Systems: Challenges Facing Biotechnology

Reproducibility. With the exponential increase in scientific publications, datasets, and data sizes comes a limitation in
what can be effectively reproduced. Experimental replication by a separate party is difficult and mostly ignored practice. In
the few instances where biological experiments are replicated, the results have been less than perfect [37,39].
Experiments can be designed to be internally reproducible via, for example, systematic variance and model building.
In reality, the exponential growth of published research in the fields of bioengineering makes it impossible to reproduce all
results [40,41].

Supervision. The implementation of intensive AI, ML, and other automated learning systems for the purpose of
managing biotechnology labs with increasingly larger datasets will lead to a supervision problem. Given the complexity
of biological variable correlations and relationships and the growth of nonlinear, stochastic, and noisy data among
complex environments [5], it will be challenging to design a system to handle unforeseen results or contradictory data and
be able to expect the unexpected.

Standardization. In many new fields including synthetic biology and systems biology, standardization is a problem for
practitioners. The creation of the Synthetic Biology Open Language (SBOL) was motivated by the necessity of being able
to represent genetic designs through a standardized vocabulary of schematic glyphs (SBOL Visual) as well as a
standardized digital format [42]. Not only is there an urgent need to standardize the genetic elements but also a
unification of measurements and protocol automation to reduce what has been described as ‘the impact of “cultural art”
in laboratory methods’ [43].

Validation. Once data is obtained, it must be processed and validated in its context so that relevant knowledge can be
extracted [6]. There are numerous ways to triangulate and iterate the obtained data for epistemic purposes, but in most
cases here again emerges the classic statistical problem: correlation does not imply causation [44].

Data management. With complex megadimensional structure–function biology data come issues with data manage-
ment. Automated cloud and emerging statistical analysis includes platforms such as Riffyn [45] and DNA ATLAS [46], or
new communities such as DIYBIO [47]. What are the measures for navigating sequence–function space? How to capture
and illustrate nodes in space not sampled but only explored by triangulation from experimental data? Challenges also
relate to the obtained data, signal distribution, and the somewhat arbitrary defined sequence identity of chemically
synthesized genetic materials and the lack of agreement of parameters for measuring the degree of standardization.

Uncertainty. Biology is dynamic and context-dependent in both spatial and temporal dimensions. Signals are often
stochastic further diminishing the deductive predictability. Kwok describes five key concerns for building biology
networks: undefined sections, unpredictable circuitry, unwieldy complexity, incompatible parts, and crashing variability
[48]. Engineering living systems is then an exercise in humility because of all the inherent uncertainties of all the parts in the
system.

Ethics. Many are the reviews and opinions on ethics in synthetic biology, ranging from the ‘playing God’ discussion
to patents versus open source, biosecurity, information control, data storage, production permissions, and regulation
[49–51].
conclusions [4]. The genetic elements and biobricks used by synthetic biology researchers and
increasingly across the board of biotechnology are not static or linearly additive, but dynamic,
context-dependent, and interactive [5]. Here can be found the friction point between truly
understanding biology in all its mechanistic detail versus engineering biology for novel functional
applications [6], with the transversal problem of the role of computational simulations for
modeling [7]. This is a growing epistemic struggle as biotechnology is rapidly moving towards
larger wet lab datasets while simultaneously embracing in silico lab.

Starting with Cohen and Boyer in the mid-1970s, the building of new proteins, pathways, and
genomes is gradually becoming commonplace. Bioengineering success stories ranging from
the synthesis of the 14 amino acid hormone somatostatin by Genentech in 1977 [8] to the recent
23 gene opioid production pathway engineered by the Smolke lab [9] shows the magnitude of
technical advancements over the past few decades. Despite recent success, many biological
phenomena ranging from tissue development of organs to manipulating neuronal information are
still outside our reach. As the complexity of the systems increases and data accumulates, we will
have to bring onboard additional ways to look at results and data and explore different epistemic
tools to build knowledge.
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Predicting Biology
Biotechnology often relies on an assumed perfect understanding of biological processes to, for
example, replace a promoter in a transcriptional unit. Despite the single variable change in an
otherwise constant system, it has proven exceedingly difficult even in extremely well controlled
systems to precisely predict the phenotypical outcome of a promoter replacement [10]. This is in
stark contrast to physics where electrodynamics, optics, magnetic potentials, and electrical
circuits all can be perfectly predicted by just four linear partial differential equations (Maxwell's
equations). Instead biology is a gooey and redundant complex megadimensional mess of
synergy and antagonism, and an abundance of variables that just come along for the ride
and correlates with other variables primarily due to evolutionary history, not because of casual
effects. Models based on physicochemical first principles rarely suffice to fully explain complex
biological functions, at least not at our current level of biological understanding.

The gap between reality and the model of reality is a classic philosophical problem: the infra-
determination of causal role theories. You can be using a model to explain your results, it works
and satisfies your theoretical and practical requests. . .but it is false. It happened to Copernicus
with his heliocentric model, it happened to Newton and his universal model, and to Becher's
phlogiston theory. The foundation of biotechnology is based on Crick's central dogma describ-
ing the flow of information within a biological system [11]. But the central dogma is incorrect, as
evidenced by reverse transcriptase, prions, catalytic RNA, and many additional processes that
all violate the core principles of the central dogma [12]. Even the most established of chemical
models, H2O, is oversimplified and incorrect. The reason for water properties such as conduc-
tivity, high boiling point, high surface tension, etc., cannot be explained by the H2O model.
Instead, the current scientific model of water requires that each H2O is hydrogen bonded with up
to four other water molecules, and these hydrogen bonds are constantly being broken and
reformed every 10–12 seconds, creating a large dynamic net of hydrogen bonds [13,14]. This
revised model is still just a model, but a much better model at predicting the properties of water.
To quote statistician George Box, ‘all models are wrong, but some models are useful’.

Similarly in synthetic biology and systems biology, most newly created gene networks are non-
functioning due to uncertain initial conditions, stochastic distribution, unaccounted for variables,
and disturbances of the extracellular environments [15]. Impressive gene networks have been
built de novo to specifications but only after many iterations and substantial investment in time
and resources. The opposite is also true; numerous are the successful semirandom protein
directed evolution experiments focused on altering functional properties where the amino acid
substitutions that have the most significant effect on the function were impossible to predict in
advance [16].

As a formal conclusion and following the nature of our previous arguments, we can affirm that
biological nature is beyond our epistemic real understanding (‘understanding’ in the sense a
mechanical engineer would use the term). We are only able to create idealized maps of the
biological territories, but the truth is that the best model of a portion of reality is the same reality,
as expressed so nicely by Borges with his brilliant short story ‘On Exactitude in Science’ [17]. The
model itself is not the truth, just an intentional symbolic oversimplification.

The Philosophies of Truth: Inductive versus Deductive Reasoning
Philosophers have long been discussing how we know what we know and the methods to reach
true knowledge (Table 1). Beyond debates about how we capture data and the reliability of
senses or instruments, there is a second-level problem: how to extract knowledge from results.
Historically, two main and opposite approaches for reasoning have been situated at the core of
any knowledge: inductive and deductive reasoning. Inductive methods refer to the process of
inferring a general law or principle from the observation of particular instances, whereas a
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Table 1. Synthetic Biology and Reasoning

Reasoning Process

Deductive Inductive Abductive

Methods and Techniques Frequentist statistical
methods
Data testing

Machine learning
Bayesian statistics
Predictions

Research guesses
Modeling and simulation
deductive method is the inference of particular instances by reference to a general law or
principle. Hume, Popper, and Carnap worked on inductive ideas while deductive support was
defended by Aristotle, Descartes, and Frege, among others. One simplistic example is how we
know the dropped coin will fall to the ground. Deductive reasoning says, ‘I know the coin will fall
to the ground because the two bodies “coin” and “earth” attract each other with a force that is
proportional to the product of their masses and inversely proportional to the square of the
distance”. Inductive reasoning instead says, ‘I know the coin will fall to the ground because when
I dropped it yesterday and every day in the past it would always fall to the ground’.

And then there is abductive reasoning. Within science in general and the fields of law, computer
science, and AI in particular, the concept of abductive reasoning has taken hold [18]. Abduction,
or as it is also often called ‘inference to the best explanation’ or simply ‘best guess’, is a type of
inference that assigns special status to explanatory considerations. The example being: ‘The
lawn is wet. It probably rained last night’. Other possible explanations exist (sprinklers, hail, or
dogs), but rain is the simplest and most efficient explanation. Most philosophers agree that this
type of inference is frequently employed, in some form or other, in everyday life and in scientific
reasoning [19].

Abductive and inductive reasoning is emerging in systems biology and bioengineering sciences.
For example, cellular metabolite fluctuations and response to environmental challenges was
predicted and explanatory rules derived from metabolite concentrations combined with existing
pathways and kinetic models as input data using a type of inductive logic programming (ILP)
called consequence finding induction (CF induction), which integrates abductive and inductive
methods. The tool was used to explore all possible metabolic pathway solutions in hyperspace
and identifying the most effective and simplest models that could best describe the results [20].
ILP can be defined as the intersection of machine learning (ML) and logic programming to deal
with induction in first-order logic. Thus, unlike many other ML techniques, ILP has applicability to
discover causal relations and identifying missing biochemical knowledge (Y. Yamamoto, PhD
thesis, The Graduate University for Advanced Studies, Hayama, Japan, 2010).

Similarly, abductive logic programming (ALP) has been used to analyze and elucidate relation-
ships from microarray signals to provide general models of how gene interactions cause
changes in observable expression levels of genes. The models derived from the ALP process
is a formalization of the implicit reasoning that governs biologists designing microarray experi-
ments [21] (I. Papatheodorou, PhD thesis, University of London, 2007).

Any biological process can be understood through deductive or inductive reasoning. At DNA2.0
Inc., we have spent the past decade or so systematically exploring the coding preferences of
recombinant genes to maximize heterologous protein expression and identified certain codon
biases and other patterns that have causal correlation with high protein expression. We can use
deductive reasoning (or more likely abductive reasoning in this case) and explain the codon bias
preferences as a consequence of dynamic tRNA amino acid charging differences due to
metabolic stress – a model with attractive logic and reasonably well supported by data [22].
Alternatively, we can use inductive reasoning and conclude that certain codons and patterns
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have a causal correlation with recombinant protein expression yield [23]. Inductive reasoning
provides us with testable, robust, and transferable predictions, whereas deductive reasoning
based on the same data has proven less useful.

Where deductive reasoning stumbles, inductive reasoning can be very useful. Statistics and ML
derived from inductive reasoning are directly applicable to high complexity systems. Successful
examples of applying ML to biological sciences include predicting therapy efficacy from genomic
data [24], small molecule drug design through QSAR (quantitative structure–activity relationship)
[25], annotation of genetic elements [26], and many other applications recently reviewed [27].

Biology Is Complicated
Engineering biological systems is a complex undertaking. The cell can be engineered on gene,
protein, pathway, and genome levels (Figure 1). Each level represents a different abstraction level
of the underlying genome sequence and adheres to level-specific assumptions and constraints
for how we believe we affect the system, but the different abstraction levels are just figments of
our deductive imagination. Changing an A to a C somewhere in the genome for the purpose of
introducing an amino acid substitution in a protein may unintentionally affect mRNA structure,
RNAi binding sites, chromosome tertiary structure, and a plethora of other biological events.
Sometimes the outcome of the engineering supports the prediction model, but is that because
we only look for solutions that fit the model (looking for car keys under the streetlight)?

From an ML perspective the genome is just a long string of agnostic ACGT information. The
>1012 base pairs currently available in GenBank constitute a poorly systematized nucleotide
sequence repository that determines all of the known biology, even if we do not understand most
of the sequence–function correlations. Inductive ML methods when based on systematically
varied data can be used to model the sequence–function correlation and build testable
prediction models without any underlying mechanistic understanding. When validated, these
inductive models can create novel biological processes encoding properties not previously seen
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Figure 1. Multisituated Expression and Causal Determination of Biological Mechanisms. Systems biology
attempts to explain the causal behavior at different system levels, which are subsequently combined nonlinearly for the
whole organism. This multileveled complexity makes it difficult (impossible?) to achieve a complete mechanistic engineering
approach to dynamic living entities.
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Outstanding Questions
What does it mean to ‘understand’
biology?

Contrary to mechanical engineering or
physics, biology is the product of bil-
lions of years of multidirected evolution
with a combination of current and
ancestral selective pressures that typi-
cally has nothing to do with the prop-
erties being engineered by
biotechnology practitioners. It is diffi-
cult to weed out correlation from
causality.

How do we navigate vast biological
sequence–function space?

Sequence space is large. Even a small
16 amino acid antibody variable region
requires 2016 (�1021) variants to be
sampled exhaustively. This is approxi-
mately equal to the grains of sand on
earth. We need statistical tools, data
management processes, and episte-
mology different from what is typically
used today to address virtual and
physical data of that size, scope, and
velocity. Many of these tools are
already available in adjacent ‘big data’
fields.

How do we integrate current
deductive knowledge with future
inductive knowledge?

Will we have different epistemology for
different classes of information, or can
we use a pluralism of epistemologies in
parallel, just like physics can treat light
as both a particle and a wave
simultaneously.
in biology [28–31]. Directed evolution and similar random search-based paradigms do not
include a learning step and accordingly are not inductive ML methods.

The deep complexity of living objects prohibits a singular epistemic approach. We are here faced
with the fact that a multitude of models and methods may all provide different facets of the
underlying truth of biology. Consequently, several epistemic approaches and methods should
be considered valid in parallel as they in combination provide a better understanding of biology
than each one separately.

Extending Reliable Epistemology to Biotechnology
Even though bioengineering has successfully constructed many amazing non-natural biological
entities ranging from small molecules [32] to proteins [33] to pathways [34], the technology is not
based on a solid foundation of sequential layers of additive knowledge. Even more so, perhaps
we will never be able to explain biology as whole, instead be content with exploring it as the sum
and dynamic interaction of several complex models that operate at different levels (see Out-
standing Questions). Nevertheless, proper engineering practices make it possible to operate
and create successful novel biological entities despite using only models with poor predictive
accuracy. In some cases, such as WholeCellSimDB [35], the combination of engineering and
understanding combines theoretical and practical results for an integrated outcome. Again, the
dynamic, stochastic, and complex behavior of biological systems and subsystems show a
nonlinear behavior that is a pragmatic research paradigm.

Our first conclusion is that modern biotechnology represents a crucial challenge for epistemic
debates in contemporary sciences. Secondly, biotechnology is a clear example of multi-heuristic
research as it often struggles to apply the principles of deductive science to biology. In a series of
recent publications, the reproducibility of landmark oncology studies are questioned [36], drug
target models are often inaccurate [37], and non-confirmatory findings are difficult to publish
[38]. How do we really know what we know? The old problem of knowledge is exacerbated in the
field of biotechnology where the building of novel biological systems is based on combining
supposedly additive biological elements for predictable phenotypical function.

This led us to a third and last conclusion: is there such a thing as objective absolute knowledge
that can be isolated and mapped, or are we just dealing with fuzzy sets of dynamic data that are
highlighted and tagged for practical purposes without ever reaching the real truth? The more
tools we have in our epistemic toolbox, the better we are equipped to build new biology based
on the glimpses of knowledge the data provides us with. Pluralism in reasoning and logic will give
us maximal exposure to the truth. To paraphrase the famous mathematician Norbert Wiener –

‘the best model of a cat is several cats’.
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