
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 20, 133-149 (1980)

The Subgraph Homeomorphism Problem

ANDREA S. LAPAUGH AND RONALD L. RIVEST*

Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

Received October 15, 1979

We investigate the problem of finding a homeomorphic image of a “pattern” graph H
in a larger input graph G. We view this problem as finding specified sets of edge disjoint
or node disjoint paths in G. Our main result is a linear time algorithm to determine if
there exists a simple cycle containing three given nodes in G (here H is a triangle). No
polynomial time algorithm for this problem was previously known. We also discuss a
variety of reductions between related versions of this problem and a number of open
problems.

I. INTRODUCTION

The subgraph homeomorphism problem (SHP) is to find a homeomorphic image
of a “pattern” graph H in an input graph G. The images of certain nodes of H, which are
nodes of G, may be specified a priori and the images of the edges of H, which are paths
in G, may be required to be node-disjoint or edge-disjoint. Graphs G and H are either
both directed or both undirected. Examples are finding a Kuratowski subgraph (either
K, or &a) in a non-planar graph, finding certain kinds of network flows, finding Hamil-
tonian cycles, finding a simple cycle containing given nodes of G, and finding a set of
disjoint paths connecting certain nodes of G. Subgraph homeomorphism problems also
arise in the study of programming schema, since many schema properties are characterized
by the presence of reachability of certain substructures [12].

We summarize our research on the SHP as follows. We observe that the SHP is NP-
complete if both H and G are given as input; this follows from the reduction of the
Hamiltonian circuit problem to a node-disjoint SHP and the reduction of the multi-

commodity integral network flow problem to an edge-disjoint SHP. We therefore
consider the various SHP’s derived by fixing H. The main question for such SHP’s is,
“For every pattern graph H, is there a polynomial time algorithm which, given an input
graph G, will determine whether there is a homeomorphic image of H occurring in G ?”
For directed graphs, there are pattern graphs for which the SHP is NP-complete. However,
for undirected graphs, we can neither find a fixed H whose SHP is NP-complete nor
demonstrate that every H has a polynomial-time algorithm for its SHP. We therefore

* This research was supported in part by NSF Grant MC76-14294 and by a Xerox Special
Opportunity Fellowship.

133
0022-0000/80/020133-17$02.00/O

Copyright 0 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82478537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

134 LA PAUGH AND RIVEST

concentrate on the problem of determining which pattern graphs H have polynomial-time
algorithms. These problems turn out to be surprisingly difficult, even for very simple
graphs H.

The main result of this paper is a linear-time algorithm which determines if there
exists a simple cycle containing three given points of an undirected input graph G.
This problem is an instance of the SHP where the pattern’graph is a cycle of length three
(a triangle). Although this problem has a simple pattern graph, no polynomial time algo-
rithm was previously known. A polynomial time algorithm for another SHP with a simple
pattern graph-the two disjoint paths problem for undirected graphs-was recently
found by Y. Shiloach.

In Section II, we present definitions and a general discussion of the subgraph homeo-
morphism problem. In Section III we briefly sketch some reductions relating various
versions of the SHP and in Section IV we present the linear time algorithm for the triangle
problem. Section V is dedicated to a discussion of open problems and other work in the
area.

II. BACKGROUND

We assume the reader is familiar with standard graph and network flow concepts
[l, 111. Let H and G be two graphs, both directed or both undirected. A subgraph
homeomorphism is formally defined as a pair of one-to-one mappings, (v, a), the first
from nodes of H to nodes of G; the second from edges of H to simple paths of G. We
require that a path in G which corresponds to edge (x, y) in H go from W(X) in G to u(y)
in G. The graph H is called the pattern graph. If the image of the edges of His a set of
paths which are node disjoint up to endpoints, the homeomorphism is a node disjoint
homeomorphism. We then say that His node disjoint homeomorphic to a subgraph of G,
denoted H GN G. If the set of paths is edge disjoint, then H is edge disjoint homeo-
morphic to a subgraph of G, denoted H GE G.

We should note here that an alternate, but equivalent, definition of node disjoint
homeomorphism has been used historically. In the alternate definition, H &, G if nodes
can be inserted along the edges of H to yield a new graph H’ which is isomorphic to a
subgraph of G [9]. We prefer our definition since defining a homeomorphism in
terms of paths of G allows one to conceptualize the subgraph homeomorphism problem
in terms of finding paths in G and to readily use the body of path-finding algorithms
already in the literature.

The most general subgraph homeomorphism problem-given as input graphs G
and H, is H homeomorphic to a subgraph ,of G ?-is NP-complete for both node disjoint
and edge disjoint homeomorphisms, and for 3 both directed and undirected graphs. For
node disjoint homeomorphisms, this follows from.the NP-completeness of the Hamil-
tonian Circuit problem. Given the question, “Does G contain a Hamiltonian circuit ?”
we construct H such that the number of nodes in H is the,same as the number of nodes
in G, and the edges of H connect the nodes in a cycle. We then ask, “Is H homeomorphic

SUBGRAPH HOMEOMORPHISM PROBLEM 135

to a subgraph of G I” This will be the case if and only if G contains a Hamiltonian
circuit.

For edge disjoint homeomorphism, we use the result of Even, Itai, and Shamir that the
two commodity integral network flow problem for unit edge capacities is NP-complete
[4]. Suppose we are given a directed network, N, with sources s, and s2 , sinks tr and ts
and all edge capacities equal to one. We show how to reduce the question, “Are there
simultaneous integral flows from s1 to t, and sa to t, of values k, and Ka , respectively I”
to an edge disjoint SHP for directed graphs. The question is equivalent to asking whether
there is a set of k, + k, edge disjoint paths in N such that kr go from s, to tr and K, go
from s, to t, . Divide each edge out of sr or ss into two edges by inserting one new node
on each edge. Now each edge disjoint path from s, or sa must have a distinct second
node. We can model the k, + k, edge disjoint paths by a pattern graph, H, which has
two source nodes, c, and c2 , two terminal nodes, dl and d, , kl distinct length two paths
from c, to dl , and k, distinct length two paths from c, to d, . The paths from c, to d, are
nodes disjoint from the paths from cr to dl . If we can modify the present network,
producing a network N’, to insure that c, maps to s, , cg maps to s, , dl maps to tr , and d,
maps to t, , then His edge disjoint homeomorphic to a subgraph of N’ if and only if the
desired flow exists in the original network, N. Let the original network have n nodes.
To insure the desired node mapping, we add 4n new nodes to each of H and N’ and edges
from each of these new nodes to c, and sr , respectively. Similarly, we connect 3n additional
new nodes to ca and sa ,2n additional new nodes to dl and tI , and n additional new nodes
to d2 and t, . Node ci must map to s1 , since s, is the only node in N’ with indegree at

F!xed: lA-3 Input:;Ac

Solution I :

with portiol specification:
v(ll=b
v(Z)= e

Solution 2:

e&c e&c
v(3)=c
(1,3)- <(b,cj>
(3,2) - <(c,d), (d,e)> mopping of
(2,l) - <(e,o),(o,b)> edges in H

v(3j.d
(1,3)--<(b,c),(c,d)’
(3,2) - <(d,e)> mopping of
(2,I)--<(e,f),(f,b)> edgesinH

@ indicates a node whose imoge or inverse image under Y is known.

FIG. 1. Example of a node disjoint SIP. In this example, the node mapping, u, is partially
specified.

136 LA PAUGH AND RIVEST

least 4n. (Self-loops are not counted.) Node ca must map to sa , since s, and sa are the only
nodes in N’ with indegree at least 372 and si corresponds to c, . Continuing this reasoning,
4 must map to t, and da must map to t, . We have found a pattern graph, H, with 10n +
4 + k, + k, nodes and a modification of network N, N’, such that H GE N’ if and only
if there are integral flows of two commodities in N with values k, and k, .

Given the above NP-completeness results, we focus on the solution of problems
where the pattern graph His fixed. A graph G and, possibly, a partial or total specification
of the mapping from nodes of H to nodes of G are given as input. An example
of a node disjoint homeomorphism problem is given in Figure 1. An algorithm to solve
such a problem may depend on the pattern graph and the subset of nodes of the pattern
graph on which the node mapping will be specified. We measure the time required by an
algorithm to solve the problem on input G as a function of the size of G, i.e. the number
of nodes in G plus the number of edges in G.

The variety of properties characterized by subgraph homeomorphisms and the appli-
cations of these properties motivate our interest in efficient algorithms for solving the
SHP for fixed pattern graphs. Ultimately, we would like to characterize the set of pattern
graphs for which the corresponding subgraph homeomorphism problems can be solved
in time polynomial in the size of the input graph (assuming P is not equal to NP). This
problem was in fact proposed by Hunt et al. in relation to programming schema and their
substructures [12]. The problem appears to be quite difficult. We have concentrated on
two research areas in the hope of learning more about the solution:

(i) Methods of reducing one SHP to another.

(ii) The solution of the SHP for particular pattern graphs, particularly for node
disjoint homeomorphism (since edge disjoint homeomorphism problems are reducible
to node disjoint homeomorphism problems as discussed in the next section.)

Our polynomial time algorithm for finding a cycle containing three given nodes of
a graph is our contribution to the second line of research above. Other contributions are
discussed in Section V.

III. REDUCTIONS

The reductions which we will present are of two types: those which relate edge disjoint
SHP’s to node disjoint SHP’s and those which reduce a node disjoint SHP for a particular
pattern graph to a node disjoint SHP for another pattern graph. Each reduction takes a
pattern graph, H, an input graph G, and a partial specification of the node mapping. It
produces a pattern graph, H’, and a set of graphs, So , with corresponding partial specifi-
cations of the node mapping. The pattern graph His homeomorphic to a subgraph of G
if and only if H’ is homeomorphic to a subgraph of one of the graphs in the set So . The
construction of H’ depends only on H and is independent of G. All constructions will
take at most polynomial time in the sizes of H and ,G. Finally, the number of graphs in
the set So is at most polynomial in the size of G. Note that the reductions we are using
correspond to the notion of Turing reducibility [16]. Given an instance of the SHP for

SUBGRAPH HOMEOMORPHISM PROBLEM 137

pattern graph H, we may not be able to find just one instance of the SHP for pattern
graph H’ whose solution corresponds to the solution of the first SHP. However, we can
use a given procedure to solve the SHP for pattern graph H’ as a subroutine, solve the
SHP for each graph in So , and thereby determine whether a homeomorphic image of H
exists in G.

To simplify the statement of reduction results, we use the term fixed SHP when the
node mapping is known a priori.

III.1 Edge Disjoint Homeomorphism versus Node Disjoint Homeomorphism

Within the reductions which relate node disjoint homeomorphism to edge disjoint
homeomorphism, we have the following lemmas:

LEMMA 1. Any jxed node disjoint SHP for directed graphs is reducible to a jixed edge
disjoint SHP for directed graphs.

Proof. The construction used is analogous to that for changing vertex capacities to
edge capacities in network flow problems [19]. Suppose we have a pattern graph, H, and
a input graph, G. The reduction is accomplished by replacing each node, x, in G by
two nodes, HEAD(x) and TAIL(x). A d irected edge is added from HEAD(x) to TAIL(x).
All edges of G into x become edges into HEAD(x), and all edges of G out of x become
edges out of TAIL(x). W e now have a new directed graph, G’. A new pattern graph, H’,
is constructed analogously. If, in the original problem, node h of H was mapped to node
g of G, then the node HEAD(h) of H’ maps to HEAD(g) of G’, and TAIL(h) maps to
TAIL(g). A straightforward argument left to the reader proves H GN G if and only if
H’ GE G’.

LEMMA 2. Any edge disjoint SHP for directed (undirected) graphs is reducible to a node
disjoint SHP for directed (undirected) graphs.

Proof. The reduction replaces each node in the input graph, G, by a “switch”. Let
the nodes on a path other than the endpoints of the path be called interior nodes. Edge
disjoint paths in G containing the same interior node pass through node disjoint paths
within the switch corresponding to that node.

When a fixed SHP is being considered, no modification to the pattern graph is necessary.
The input graph is modified using switches as follows. In undirected graphs, switches are
cliques the size of the degree of the corresponding node. In directed graphs, switches are
bipartite graphs with one set of nodes the size of the indegree of the corresponding
node and one set of nodes the size of the outdegree of the corresponding node. All possible
edges from nodes of the indegree set to nodes of the outdegree set are present in the
switch. Each edge to a node, x, in the original input graph now goes to a distinct node
in the switch for x. In the directed case, edges into x become edges into a node of the
indegree set and edges out of x become edges out of a node of the outdegree set. If node x
of the input graph corresponds to a node, h, , in the pattern graph, then there is a distinct
node, x’, in the modified input graph in addition to the switch for x. In the new node

138 LA PAUGH AND RIVEST

mapping, h, maps to xl. In addition to the edges between nodes of the switch for x,
there is an edge connecting node x’ to each node in this switch. In the directed case, these
edges are directed from nodes of the indegree set and to nodes of the outdegree set.

When the subgraph homeomorphism problem is not fixed, more care need be taken
so that we will not create an instance of the pattern graph within a switch. Therefore,
the switches are required to have nodes of fixed small degree while the “original” nodes
of both the pattern graph and the input graph are guaranteed to have larger degree by
adding extra adjacent nodes. Suppose we have a directed edge disjoint SHP. Consider
a node y of the input graph, G. Let y have indegree IN,, and outdegree OUT, . To create
the switch fory, insert OUT,, nodes “close to” y on each edge intoy and IN, nodes “close
to” y on each edge out of y. Each original edge into y is connected to all original edges out
of y by adding an edge from each inserted node on the incoming edge to an inserted node
on an outgoing edge. Each inserted node is used for exactly one interconnection. There-
fore, nodes inserted on incoming edges have indegree one and outdegree two; nodes
inserted on outgoing edges have indegree two and outdegree one. Each edge, (II, t), in G
has become a path from u, through the IN, nodes inserted near u followed by the OUTt
nodes inserted near t, to t. A path in the original graph, G, which uses a node y as an
interior node can bypass y in the modified input graph by using an interconnecting edge
in the switch fory. To insure that nodes of the pattern graph do not map to inserted nodes
of the new input graph, we do the following: For each node of the pattern graph and each
node of the original input graph we add three nodes to the pattern graph and the new
input graph, respectively. An edge is directed to each new node from the node for which
it was added. In the resulting pattern graph, all original nodes have outdegree at least three.
In the resulting input graph, all nodes which were nodes in the original input graph have
outdegree at least three. All inserted nodes still have outdegree one or two, and, therefore,
cannot correspond to nodes of the original pattern graph.

Given an undirected edge disjoint SHP, we construct the new pattern graph and input
graph in the same manner as above. We insert d, - 1 nodes on each edge to a node x
of G, where d, is the degree of x, and make the interconnections. Each inserted node will

in G: in G’:

FIG. 2. Construction for Lemma 2. The degree of node u is d, ; the degree of node t is dtf
G’ and H’ are the graphs produced by the reduction.

SUBGRAPH HOMEOMORPHISM PROBLEM 139

have degree three. Therefore, we add four new nodes and edges for each node of the
pattern graph and each node of the original input graph to insure that nodes of the original
pattern graph map to nodes of the original input graph. Figure 2 illustrates the con-
struction used for undirected graphs.

III.2 Reductions among Node Disjoint Subgraph Homeomorphism Problems

Since we are not measuring the time take by an algorithm as a function of the size of
the pattern graph, we can solve any SHP for a particular pattern graph in polynomial
time if we can solve the fixed SHP for the pattern graph in polynomial time. This is
accomplished by solving the fixed SHP for each node mapping consistent with any
previously given partial specification of the mapping. This technique results in an
algorithm which is polynomial in the size of the input graph, where the order of this
polynomial may be the size of the vertex set of the pattern graph. This reduction is not
very appealing for two reasons. First, the exponent may be large. Second, the reduction
yields no simplification of the pattern graph itself. On the other hand, the two reductions
discussed below do simplify the pattern graph but can only be used when certain sub-
graphs exist within the pattern graph. The reductions are presented in terms of directed
graphs, but completely analogous reductions exist for the undirected case.

Reduction 1. The first reduction is applicable when H contains a path of length
K > 1 from one node, called the tail node of the path, to another node, called the head
node. The correspondence between the tail and head nodes in H and nodes of the input
graph, G, must be known. Also, all interior nodes on this path must have indegree one
and outdegree one, and their correspondence to nodes in G must be unspecified. Number
the interior nodes of the path in H from 1 through K - 1, beginning at the tail node.
We delete the first k - 2 interior nodes on the path in H, producing a new pattern
graph H’. In G, we find all K - 1 length paths such that (i) the tail node of each path
corresponds to the tail node in H, and (ii) the tail node of each path is the only node
on the path which is known to correspond to a node in H. For each such path, we delete
the k - 2 interior nodes from G and make the head node correspond to the k - 1st
interior node on the path in H. Then H &., G if and only if there is a graph, G’, derived
from G by the above method, such that H’ &,, G’. Since k is a constant with respect to
the size of G, the path enumeration can be done in time polynomial in the size of G. The
reduction for each path takes only constant time. Figure 3 illustrates the reduction for
a particular path in G.

Reduction 2. The second reduction is applicable when H contains a node, called a
parent node, which is adjacent to k > 0 nodes, called leaf nodes. The leaf nodes must have
no other nodes adjacent to them. The correspondence of the parent node to a node in the
input graph, G, must be known, and the correspondence of the leaf nodes to nodes in G
must be unknown. Then, in G, we may assume that the nodes corresponding to leaf nodes
are adjacent to the node corresponding to the parent node by edges of the appropriate
direction. For each possible image set in G of the leaf nodes in H, we delete the leaf nodes
in H and the image set in G to produce two new graphs, H’ and G’. If for any such H
and G’, H’ & G’, then H &,, G. Figure 4 illustrates the reduction.

140 LA PAUGH AND RIVJZST

H:

H’:

0

node node

0 M
tail
node

i3 head
node

z,avCheod node)

G’for path using u,,u2,and u3:

indicates (1 node whose image or inverse image
under node mopping v is known.

FIG. 3. Illustration of Reduction 1.

@ indlcotes o node whose image or inverse Image under the
node mapplng ,v, is known.

FIG. 4. Illustration of Reduction 2.

The two special purpose reductions just presented are only useful if we know how to
solve the SHP for the resulting pattern graph, 27. Dinic’s algorithm for single commodity
network flow problems [3] provides polynomial time algorithms for some SHP’s, for
example: any fixed SHP when the pattern graph is a tree of depth one (directed or
undirected). However, for fixed SHP’s, such simple pattern graphs as a cycle of length
three or two disjoint edges do not lend themselves to single commodity network flow
formulations. In the next section, we outline a linear time algorithm to solve the fixed
SHP when the pattern graph is an undirected cycle of length three.

IV. A LINEAR TIME ALGORITHM FOR THE TRIANGLE PROBLEM

We now present a linear time algorithm for the following problem: given an undirected
graph, G, and three nodes of G, determine whether the three nodes lie on a common
simple cycle, and construct that cycle if it exists. We attack the problem by breaking G

SUBGRAPH HOMEOMORPHISM PROBLEM 141

into pieces and looking for paths which must exist in these pieces if the cycle is to exist
in G. We build up sets of node disjoint paths known to be in G until we can construct
the desired cycle from these paths or declare that the cycle does not exist. The algorithm
is rather lengthy and involves much case analysis. Some details have been omitted due
to space and readability considerations. The algorithm was originally presented in [13],
where all details can be found.

Let the three specified nodes of the graph G be A, B, and C. We assume that G is
biconnected since A, B, and C must be in the same biconnected component if they lie
on the same cycle. We also assume that none of the edges (A, B), (A, C), or (C, B) are
in G. If one of them, say (A, C), is in G, the problem is reduced to finding a path from A
to C which contains B. This can be done in linear time as a unit vertex and edge capacity
single commodity network flow problem with source B and sinks A and C.

If G contains three node disjoint paths, each with A as one endpoint and one of B
or C as the other endpoint (with renaming of the nodes if necessary), then a cycle can be
constructed by piecing together parts of these paths with parts of other paths which must
exist by the bicom-rectivity of G. Three such node disjoint paths can be found by merging
nodes B and C in G into one node, denoted BC, and applying Dinic’s network flow
algorithm to the resulting graph with source BC and sink A. When B and C are
merged, each edge to/from B or C becomes an edge to/from BC. (Duplicate edges are
removed.)

Suppose G contains three node disjoint paths, each with A as one endpoint and one
of B or C as the other endpoint. In this case, we can always find three node disjoint
paths from A such that two have B as the other endpoint and one has C as the other
endpoint (or vice versa). To see this, suppose we have three node disjoint paths from A to
23. There must be a path, R, from C to A which does not contain B, by the biconnectivity
of G. Some initial portion of this path, R[C, z], is node disjoint from the three paths
between A and B except at a. (The notation “‘~[u, ,I” denotes the portion of a path p
from node u to node t.) Using this initial portion and the portion of the path it intersects
from z to A gives a path from A to C which is node disjoint from the two remaining paths
between A and B.

Now assume that two of the paths found have B as one endpoint and one has C as an
endpoint (or vice versa). Call these paths PI , Pz , and P, respectively. Since G is bi-
connected, we can find two node disjoint paths from B to C. Call these paths Qr and &a .
Define x1 to be the closest node to C on QJC, B] which is also on P,[A, B] or PJA, B].
The subpath Qr[C,] x1 is node disjoint from PI and Pz except at node x1 . Defme x2 on
Qz similarly. Both x1 and xa may equal B, but at most one equals A, since Q1 and Qa
are node disjoint. Let y be the closest node to A on P,[A, C] which is also on QJC, XJ
or Qa[C, x2]. Then, P,[A, y] is node disjoint from Qr[C, x1] and Qa[C, x2] except at y.
Since xi (similarly x2) is on PI or Pz , and y is on P, , y can equal x1(x2) only if y is equal
to A, the only node which P3 has in common with PI and Pz . Without loss of generality,
assume y is on Qr . Then y cannot equal xa . If x2 is on P2 , the path composed of subpaths
PJA, B], P,[B, x2], Qz[xz , C], QJC, y], and P,[y, A], in that order, is a simple cycle
containing A, B, and C. If x2 is on PI , subpaths P,[A, B] and P,[B, xa] are used instead
of P,[A, B] and P,[B, x2]. Figure 5 illustrates one configuration for x1 , x2 , and y.

142 LA PAUGH AND RIVEST

-a- indicates cycle containing A, 13, ond C.

FIG. 5. Piecing together desired path.

If G does not contain three node disjoint paths from A to B and C, then we do the
following:

Step 1. We find a node cutset of size two which separates A from B and C and such
that this cutset cannot be separated from B and C by removing any other two nodes of
G. If this cutset also separates B from C, there is no cycle containing A, B, and C, and
we are done.

The required cutset can be found using information provided by Dinic’s network
flow algorithm. Given a flow from a source node, s, to a terminal node, t, Dinic’s algorithm
proceeds by finding an augmenting path along which flow can be increased while main-
taining the edge and node capacity restrictions on the flow. For networks with unit
edge and node capacities, as in our application, the augmenting path can use edges not
used by the present flow, and edges used by the present flow but in the opposite direction
to the flow. The augmenting path will contain an interior node on a path of present flow
only if at least one edge incident on that node in the augmenting path is used by a path
of present flow in the opposite direction, Upon termination of the algorithm, there are no
augmenting paths to t. However, we know to which nodes there remain augmenting
paths from s.

For our application, A is the terminal node, and B and C are merged into one source
node, BC. If we are executing Step 1, we can find exactly two node disjoint paths from
A to B or C, corresponding to a flow of 2 from BC to A. Call the paths of flow from BC
to A, Pl and P2. Suppose the set of nodes to which there are augmenting paths from
source BC upon termination of Dinic’s algorithm includes a node on Pl. Let Al be the
closest such node to A on Pl. Otherwise, let Al be the node adjacent to BC on Pl.
Define A2 on P2 similarly. The set {Al, A2) is a cutset separating A from B and C
in G. This can be seen by noting that any path from A to B or C which does not contain
Al or A2 would define an augmenting path from BC to some node (possibly A) closer
to A on Pl than Al or closer to A on P2 than A2.

SUBGRAPH HOMEOMORPHISM PROBLEM 143

Suppose there are two nodes different from Al, A2, B and C which separate Al and
A2 from B and C in G. Then one of these nodes must appear on Pl[BC, Al] and the
other must appear on P2[BC, A2]. However, either Al is adjacent to BC, or, given flows
along Pl[BC, Al] and PZ[BC, A2], there is an augmenting path to Al. This augmenting
path increases the flow into Al while leaving the flow to A2 unchanged. The new flow
corresponds to three node disjoint paths in G-two from B or C to Al, and one from
B or C to A2. Thus, two nodes cannot separate B and C from Al and A2.

Step 2. We now consider only that component K of G which contains B and C when
nodes Al and A2 are removed. (If B and C are not in one component, the cycle does
not exist.) We have a path in G from Al to A2 containing A which lies outside K. To
complete the cycle, we would like to find a path from Al to A2 containing B and C in
either order whose interior nodes are in the component K. If both of edges (Al, B) and
(A2, C) or both edges (Al, C) and (A2, B) are in G, we are done. Any path from B to C
in component K will complete the desired cycle.

If neither of the above pairs of edges is in G, we test if B and C are biconnected in K.
If B and C are not biconnected in K, we can determine if a path from Al to A2 containing
B and C exists. Let x be a node separating B and C in K. (Remember that edge (B, C)
doesn’t exist.) Removing x separates K into components. Let KB denote the component
containing B and Kc denote the component containing C. Any path from Al to A2
containing B and C must consist of a path from Al (or A2) to x containing B whose
interior nodes are all in KB , and a path from A2 (respectively Al) to x containing C
whose interior nodes are all in Kc . The existence of these paths is easily determined by
solving appropriate network flow problems.

If B and C are biconnected in K, we continue.

Step 3. To component K, we add Al, A2, and all edges of G which go from Al
or A2 to nodes of K. Call the resulting subgraph of G, K’. Due to our choice of Al and
A2 as the “nearest” cutset of size two to B and C, there are two cases for each of Al
and A2. The cases for Al are:

(a) There are three node disjoint paths in the new graph, K’, such that two of
the paths have Al as one endpoint and either B or C as the other endpoint. The third
path connects A2 with one of B and C.

(b) The only possible paths from Al to B or C which do not contain A2 are edges
(Al, B) and (Al, C). At,least one of these edges is an edge of K’.

Cases (a) and (b) are not mutually exclusive, but if (a) does not hold, (b) must hold.
The cases for A2 are analogous with the roles of Al and A2 interchanged. If it is not
the case that (a) holds for both Al and A2, we can reduce the problem of finding a path
from Al to A2 containing B and C to at most two instances of a problem of the form:
“Is there a path in K’ from A2 to B containing C but not Al ?” (This is the question
used if (Al, B) exists; B and C are interchanged for the second question if (Al, C)
exists. Obviously, if neither path exists, the cycle doesn’t exist either.) If the new graph
does contain both sets of node disjoint paths, i.e. (a) holds for both Al and A2, we
continue.

144 LA PAUGH AND RIVEST

Step 4. The new graph, K’, may not be biconnected, regardless of whether or not the
component K from which it was constructed is biconnected.

Claim. If K’ is not biconnected, B and C are the only possible articulation points.

Proof. Observe that (i) Al and A2 cannot be articulation points of K’, since K’ was
formed by adding Al and A2 to a component of G resulting from the removal of Al
and A2. (ii) Any articulation point of K’ must separate Al from A2 in K’. Otherwise,
the articulation point is also an articulation point of G, but G is biconnected. (iii) There
are two node disjoint paths in K’ from B to C which contain neither Al nor A2. (iv) There
are two node disjoint paths in K’ from Al to B or C. (v) There are two node disjoint
paths in K’ from A2 to B or C.

Given observations (iii)-(v) above, we can construct a path in K’ from Al to A2 which
does not contain node x, where x is any node in K’ other than Al, A2, B and C. The
details of the construction are left to the reader and are available in [13].

If K’ is not biconnected, it is simple to split K’ into its biconnected components and
determine if the required subpaths of a path from Al to A2 containing B and C exist
in the appropriate components. If K’ is biconnected, we continue.

Step 5. All sets of three node disjoint paths satisfying Case (a) of Step 3 must have
Structure 1, Structure 2, or Structure 3, as shown in Figure 6. Since K’ is biconnected,
Structure 3 can be reduced to Structure 1 or Structure 2 by a method similar to that used
on the original graph, G, to reduce three node disjoint paths from A to B to three node
disjoint paths with two from A to B and one from A to C. If Structure 1 is found for
either Al or A2, we can piece together the desired path from Al to A2 containing B
and C using the three disjoint paths of Structure 1 and other paths known to exist in K’.
The technique used is essentially the same as that used when there are three node disjoint
paths from A to B or C in the original graph, G. If only Structure 2 is found for each
of Al and A2, we continue. Note that we now have two sets of node disjoint paths-one
of Structure 2 for Al and one of Structure 2 for A2.

Step 6. We determine if there are three node disjoint paths in K’, each with Al
or B as one endpoint and A2 or C as the other endpoint, or each with A2 or B as one
endpoint and Al or C as the other. If neither set of node disjoint paths exists, then the

Structure I Structure 2

Al A2 Al A2

Structure 3

Al A2

FIG. 6. Possible structures for Step 5. Structures shown are for A 1. B and C are interchangeable.
Structures for A2 are obtained by interchanging Al and A2.

SUBGRAPH HOMEOMORPHISM PROBLEM 145

desired path from Al to A2 containing B and C cannot exist, since the subpaths of this
path would be one such set of node disjoint paths. Again, we can use Dinic’s network
flow algorithm to test if three such paths exist.

If we find any such set of three node disjoint paths, the desired path from Al to A2
containing B and C is guaranteed to exist. We use the sets of node disjoint paths found
so far to construct the desired path. In the following discussion, we assume that there are
three node disjoint paths each with Al or B as one endpoint and A2 or C as the other
endpoint. A parallel argument deals with the case when the three node disjoint paths
instead go from Al or C to A2 or B.

Consider the two disjoint paths from B to C containing neither Al nor A2 which are
guaranteed to exist by Step 2. Since there are three node disjoint paths from Al or B
to A2 or C, there is at least one augmenting path in a network constructed from K’
with flow corresponding to the two node disjoint paths between B and C. This augmenting
path results in three node disjoint paths, each from Al or B to A2 or C. In addition, we
now have that at least two of the paths must have B as an endpoint and at least two must
have C as an endpoint, since augmenting paths can only increase the flow into or out of
endpoints of flow. The possible configurations of these paths are shown in Figure 7.
Cases 4 and 5 require no further discussion. Cases 2 and 3 can be reduce to Case 1 or

Case I Case 2

Al B Al B

Case 3

Al B

Case 4

Al B

Case 5

Al B

A2 C A2 C A2 C A2 C A2 c
reduces to reduces to ellminoted desired
I or5 I or5 previously poth

FIG. 7. Configurations of node disjoint paths for Step 6.

0: falling conflguratlon b: one successful conflgurotion

A2A
q, #BorC --- indicates desired poth
q2+ Bor C
q3#i30rC

FIG. 8. Merging sets of paths in Step 6.

146 LA PAUGH AND RIVEST

Case 5 by recalling that K’ is biconnected and using the same technique used when we
had three node disjoint paths from A to B. We now deal with Case 1.

Let us review the sets of node disjoint paths at our disposal. We have: (i) By Case 1
above, three node disjoint paths-one from Al to A2 and two from B to C, (ii) By Step 5,
three node disjoint paths-one from Al to B, one from Al to C, and one from A2 to B
or C, (iii) Again by Step 5, three node disjoint paths-one from A2 to B, one from A2
to C, and one from Al to B or C.

Denote the paths of (ii) above collectively by Q. For each path of (ii) above, there is
some initial portion, Q[Al, pr], Q[Al, qa], or Q[A2, qs], respectively, which is node
disjoint from the disjoint paths from B to C except at endpoint qr , q2 , or q9 . Some final
portion, Q[plc , qk], of each of these subpaths is also node disjoint from the path from Al
to A2 except at p, , k = 1, 2, or 3. All configurations of the pk’s and qh’s on the paths
of(i) except the configuration shown in Figure 8a yield a path from Al to A2 containing
B and C. Figure 8b illustrates one successful configuration. If we have the configuration
in Figure 8a, a similar analysis is done for the paths of (iii). The subpaths of the paths
of (iii) analogous to Q[plc , qk], k = 1, 2, and 3, are denoted R[slc , rx]. We take into
account the ways in which the R[s L , rk] can intersect Q[Al, ql] and Q[Al, qz] already
found. If we have not found a path from Al to A2 containing B and C after processing
the paths of (iii), we must have the configuration of paths shown in Figure 9.

FIG. 9. Last configuration of paths before completion of Step 6. Nodes r1 , rp , q1 , q2 are not
equal to B or C.

FIG. 10. Positions for node y of Step 6. All yield desired path. A indicates a possible position
for y. In addition, y may equal q1 , qa , r, , r2 , B or C. One solution is indicated by - - - - -.

SUBGRAPH HOMEOMORPHISM PROBLEM 147

Our construction of K’ insures that edge (Al, A2) is not in K’. Therefore the path
from Al to A2 in (i) above is of length at least two. Let x be any interior node on the
path from Al to A2. Node x is also in component K from which K’ was constructed.
Therefore, there is a path from x to B which contains neither Al nor A2. Call this path P.
Let y be the closest node to x on P which is also on Q[Al, qJ, Q[Al, q2], R[A2, r,],
R[A2, r,] or one of the node disjoint paths from B to C. Let z be the closest node to y on
P[x, y] which is also on the path from Al to A2. Note that x does not equal Al or A2.
All possible positions for z and y yield a path from Al to A2 which contains B and C,
as can be verified by examining Figure 10.

The algorithm presented above relies heavily on J. Hopcroft’s linear time algorithm
to find biconnected components [l, 10, 181 and Dinic’s algorithm for one-commodity
network flow [3]. We never need to find more than a flow of three using Dinic’s algorithm
(corresponding to a set of three node disjoint paths). Therefore, our use of the algorithm
requires only linear time. (R.E. Tarjan and S. Even have provided a careful analysis
of this algorithm from which we make this conclusion [5, 191.) Each step of the algorithm
presented above can be done in linear time and is executed at most once. Therefore,
the algorithm is of linear time. A more detailed discussion of the timing of the algorithm,
including necessary bookkeeping, can be found in [13].

V. CONCLUSION AND FURTHER PROBLEMS

We havepresented above a generaldescriptionof the SHP and some methods of reducing
one SHP to another in polynomial time. We have also presented a linear time algorithm
to determine if three given nodes of an undirected graph lie on a common simple cycle.
This problem and the two disjoint paths problem-given two pairs of nodes of an
undirected graph, are there two node disjoint paths in the graph with each pair of nodes
serving as the endpoints of one of the paths ?-are basic problems for all fixed SHP’s
for undirected graphs. Any undirected graph which has at least two edges and is not a
tree of depth one will contain a cycle of length three or two disjoint edges. Thus, the
fixed SHP for any undirected pattern graph with more than two edges will contain one
of the above problems as a subproblem unless it is a tree of depth one.

Contributions to the solution of the two disjoint paths problem are found in several
places. Larman and Mani [14] and Watkins [20] address the question: “What properties
of an undirected graph guarantee the existence of two node disjoint paths between
any two pairs of nodes in the graph ?” Yossi Shiloach has found a polynomial time
algorithm to solve the two disjoint paths problem for any undirected graph [17]. His
results expand those of Watkins for a graph G such that the complete graph on five nodes
is homeomorphic to a subgraph of G and the node connectivity of G is at least four. They
extend earlier results of Per1 and Shiloach for planar graphs [15].

For undirected graphs, the complexity of most SHP’s is unknown; however, for
directed graphs, the situation is quite different. Steven Fortune, John Hopcroft, and
James Wyllie have determined for which pattern graphs the corresponding fixed SHP’s
are NP-complete [6]. If the pattern graph is a tree of depth one with all its edges entering

57+“/3-3

148 LA PAUGH AND RIVEST

If in G one wonts: then odd: and look for:
new edges

A C 0, (‘-3 ? UC S

i i

S

>
new nodes

T
B D Au ? CG ’ +D 0

T
new edges

If in Gone wants: then : and look for:
S

u

s2 si

Split S into S, and S2such
that the outgoing edges of S ore
edges of SI ond the incoming edges
of S are the edges of Se. 1 !;

T Split T similarly. TI T2

FIG. 11. Equivalence of two fixed SHP’s for directed graphs.

the root or all its edges leaving the root (self-loops at the root and multiple edges are
allowed), then the corresponding SHP can be formulated as a single commodity network
flow problem and solved in polynomial time. Otherwise, the corresponding fixed SHP
is AU’-complete. In particular, the two disjoint paths problem for directed graphs and
two problems equivalent to it-finding a cycle containing two given nodes of a directed
graph (see Figure 11) and finding a path from one given node through a second given
node to a third given node-are NP-complete. These results imply that even when the
node mappings are not know, the SHP’s for some directed pattern graphs are NP-
complete. To prove this, the technique of enforcing a certain node mapping through
degree requirements is used. However, there are SHP’s with unspecified node mappings
for which we have neither a polynomial-time algorithm nor a proof of iVP-completeness.
Fortune, Hopcroft, and Wyllie mention as an open problem the complexity of SHP’s
whose (directed) pattern graphs have nodes all of whom are of combined degree (indegree
plus outdegree) three and whose node mappings are unspecified [6].

We see that SHP’s encompass a large number of natural problems in the area of
algorithms on graphs. For undirected graphs, the complexity of most of these problems
remains open; our results here represent only the initial steps towards resolving these
questions. For example, the reductions outlined in Section III are of somewhat limited
use and stronger reductions are desirable. We would like to be able to know when we
can add an edge or a node to a pattern graph or further specify a node mapping, and then
be able to modify an existing algorithm to solve the new problem. Most of all, we would
like to know for which pattern graphs and for what partial specifications of the node
mappings do the corresponding SHP’s have polynomial-time algorithms for their solutions.

REFERENCES

1. A. AHO, J. HOPCROFT, AND J. ULLMAN, “The Design and Analysis of Computer Algorithms,”
Addison-Wesley, Reading, Mass., 1974.

2. C. BEIGE, “The Theory of Graphs and Its Applications,” Wiley, New York, 1966.

SUBGRAPH HOMEOMORPHISM PROBLEM 149

3. E. A. DINIC, Algorithm for solution of a problem of maximum flow in a network with power
estimation, S&et Math. Dokl. 11, No. 5 (1970), 1277-1280.

4. S. EVEN, A. ITAI, AND A. SHAMIR, On the complexity of timetable and multicommodity flow
problems,” SIAM /. Cornput. 5, No. 4 (Dec. 1976), 691-703.

5. S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, SIAM J. Comput. 4,
No. 4 (Dec. 1975), 507-518.

6. S. FORTUNE, J. HOPCROFT, AND J. WYLLIE, “The Directed Subgraph Homeomorphism
Problem,” Cornell University, Department of Computer Science Technical Report 78-342,
1978.

7. D. GELLER, Forbidden subgraphs, in “Proof Techniques in Graph Theory” (F. Harary, Ed.),
pp. 37-47, Academic Press, New York, 1969.

8. F. HARARY, “Graph Theory,” Addison-Wesley, Reading, Mass., 1971.
9. F. HARARY, On the history of the theory of graphs, in “New Directions in the Theory of

Graphs” (F. Harary, Ed.), pp. l-17, Academic Press, New York, 1973.
10. J. E. HOPCROFT AND R. E. TARJAN, Algorithm 447: Efficient algorithms for graph manipulation,

Comm. ACM 8, No. 6 (June 1973), 372-378.
11. T. C. Hu, “Integer Programming and Network Flows,” Addison-Wesley, Reading, Mass., 1969.
12. H. B. HUNT AND T. G. SZYMANSKI, Dichotomization, reachability, and the forbidden subgraph

problem, in “Proceedings of the Eighth Annual ACM Symposium on Theory of Computing,”
pp. 126-l 34, Association for Computing Machinery, New York, 1976.

13. A. LAPAUGH, “The Subgraph Homeomorphism Problem,” Massachusetts Institute of
Technology, Laboratory for Computer Science TM 99, Feb. 1978.

14. D. LARMAN ANTI P. MANI, On the existence of certain configurations within graphs and the
l-skeletons of polytopes, Proc. London Math. Sot. 20, No. 3 (1970), 144-160.

15. Y. PERL AND Y. SHILOACH, Finding two disjoint paths between two pairs of vertices in a graph,
J. Assoc. Comput. Muck. 25, No. 1 (Jan. 1978). 1-9.

16. H. ROGERS, JR., “Theory of Recursive Functions and Effective Computability,” McGraw-Hill
New York, 1967.

17. Y. SHILOACH, “The Two Paths Problem is Polynomial,” Stanford University, Computer Science
Department Technical Report CS-78-654, 1978.

18. R. E. TARJAN, Depth first search and linear graph algorithms, SIAM J. Comput. 1, No. 2
(June 1972), 146-I 60.

19. R. E. TARJAN, Testing graph connectivity, in “Proceedings of the Sixth Annual ACM Sym-
posium on Theory of Computing,” pp. 185-193, Association for Computing Machinery,
New York, 1974.

20. M. WATKINS, On the existence of certain disjoint arcs in graphs, Duke Math. J. 35 (1968),
231-246.

