
Procedia Food Science 1 (2011) 483 – 491

Available online at www.sciencedirect.com

doi:10.1016/j.profoo.2011.09.074

11th International Congress on Engineering and Food (ICEF11) 

Developing novel 3D measurement techniques and prediction 
method for food density determination 

Shivangi Kelkara, Scott Stellaa, Carol Bousheyb, Martin Okosa
a* 

aAgricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA (okos@purdue.edu) 
b Department of Foods & Nutrition, Purdue University, West Lafayette, IN, USA  

 

Abstract 

Density is a physical characteristic which depends on the experimental technique used and structural properties of 
food. True, apparent, and bulk are different types of densities based on the way volume is measured. For porous foods 
such as grain food products, accurate measurement of density is challenging. Current measurement techniques for 
food density are inconsistent and nutrient databases do not have sufficient density data.  Computed tomography (CT) 
and magnetic resonance imaging (MRI), laser scanners are non-destructive diagnostic tools for characterizing food 
microstructure. The objectives of this study were to 1) optimize the parameters of CT, MRI, and laser scanner to 
determine food density and compare the corresponding values with other traditional techniques, and 2) to develop 
neural networks as a prediction method for apparent and bulk densities. MicroCT 40 (Scano Medical Inc.), 
Lightspeed QX/i clinical CT (GE Healthcare), and 3 Tesla Signa HDx MRI (GE Healthcare) were used to acquire 3D 
images of foods for true density. A 3D laser scanner (NextEngine, Inc) was used to scan the foods items for apparent 
density. Neural networks were used in conjunction with the data collected from laser scanner and using food 
composition and processing conditions to generate a black-box prediction scheme. The results of CT, MRI, and laser 
scanner showed great potential to estimate density in comparison to traditional techniques. Porosity was estimated 
from the CT and MRI scanned image data. Laser scanner was successful in acquiring 3D images and calculating 
apparent density. Neural networks provided reliable density prediction power and were comparable to the other 
empirical equations in terms of accuracy. The ability to predict food density based on composition and processing 
conditions is necessary to fill gaps in nutrient databases and account for new foods. 
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1. Introduction 

Accurate measurement of dietary intake has always been a concern for researchers and is of particular 
importance recently, in the wake of obesity epidemic. To determine the weight of food consumed, the 
density of that food needs to be known. Density is a volume dependent property which can be easily 
determined if the volume was correctly measured or estimated [8]. Density defined as density = [mass 
(g)/volume (cc)], is measurable via a number of different methods and can be categorized into three 
distinct measurement regimes. ‘True density’ is the density of the pure substance or material determined 
from its component densities considering conservation of mass and volume. ‘Apparent density’ is the 
density of a particle including all pores (porosity) remaining in the material. ‘Bulk density’ is density 
when particles are packed or stacked in bulk including void spaces (void fraction) (Fig.1). For foods of a 
porous nature (e.g., sugar cookie) a difference in the apparent density and the true density is observed. 

 

   
True density Apparent density Bulk density 

Fig. 1. Example of true, apparent and bulk density of puffed cornflour pellets 

Food materials are naturally irregular in shape, so accurate prediction of volume is challenging. The 
use of traditional displacement techniques is laborious and a large possibility of inaccuracy exists. The 
true density of food has been measured using a gas comparison pycnometer by measuring the volume of 
only the solid portion of the food [14, 25]. Mercury porosimeters can also be used specifically to measure 
the true density. However, there is no assurance that mercury has intruded into all the pores even at high 
pressures [18].   

The solid displacement method using rapeseed has been commonly used for determination of volume 
of baked products such as bread [2, 18]. Non-homogeneity of the seed, seed-sample interaction (sticking), 
as well as crude and subjective levelling off of the seed in the sample vessel can contribute to large 
standard deviations. Various other methods such as the dimension measurement, though simple and 
effective cannot be used for soft, irregular foods and liquid foods. Apparent density can also be calculated 
by the buoyant force method and has been used on a large scale for fruits and vegetables. Errors arise due 
to the possibility of mass transfer from the sample to the liquid or partial floating of the sample. Samples 
have been enclosed in cellophane, polythene, or coated with a thin layer of varnish, wax or silicon grease 
to make them impervious to water [11, 12]. To avoid floating of sample, a liquid of lower density or a 
sinker rod has been used [15, 21].   

Methods for determining bulk density generally determining the weight of the volume of the food 
using household measures (e.g., 1 cup, 1 tablespoon). These tools are commonly used and reported in the 
food composition databases. However, this type of density measurement poses the greatest challenge due 
to the variety of ways the pieces of solid food in cup may be arranged. 

A large number of empirical equations and models also exist to determine density of foods.  However, 
factors such as the formation of air phase or pores, swelling or anti-swelling of the solid phases, loss of 
volatiles, and interaction of constituent phases are not taken into consideration while developing these 
models [20]. 

Optical methods have recently been used to study food microstructure. Image analysis of the 
microstructure, including the size, shape, networking, connectivity and distribution of various phases is 
possible. Computed tomography (CT), magnetic resonance imaging (MRI) and 3-dimensional (3D) 
scanners are currently being used on a wide-scale to understand complex food systems. CT, a medical 
imaging method, uses ionizing radiation in the form of x-rays to generate cross-sections of 3D image of 
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an object from a large series of 2D images taken around a single axis of rotation. Micro CT has been used 
to study the 3D structure of cellular foods such as aerated chocolate, mousse, marshmallow, muffins [10], 
apple tissue [13] and the rise of dough [3]. MRI uses non-ionizing radiation frequency to provide image 
contrast on the basis of the molecular ability and physicochemical properties of water to acquire images.  
By variation of scanning parameters of MRI, contrast can be altered and enhanced in various ways to 
detect different features of a food item. Several studies such as the determination of structural properties 
of cereal products [22], study of bread baking [28] and grain structure of baked bread [26] have reported 
the use of MRI. However, most of these studies utilized CT and MRI for qualitative evaluation of foods 
for a better understanding of the physical food structure.   

Few studies involving CT and MRI have been used for quantification. Porous structure of bread was 
evaluated using a micro CT by quantification of porosity using iterative cluster analysis based on k-means 
algorithm [6] whereas Wagner et al., [28] quantified porosity using paraffin microcapsules during 
proofing of dough in MRI. Porosity quantification from digital images involves segmentation and 
thresholding steps. Thresholding is the process of selecting pixels on the basis of brightness or color 
range. It basically converts a gray-scale image into a binary image [23]. Manual setting of threshold 
levels is possible by adjusting sliders on the image histogram while visually observing the image in a 
preview window. Hence, thresholding image is the step where most image measurement errors arise, due 
to inconsistent human judgment. A large number of automatic thresholding algorithms are present which 
can be used to separate the light and the dark regions using ImageJ software (http://rsbweb.nih.gov/ij/).   

Geometrical characterization of food products was successfully shown using 3D scanners for food 
process modelling [27]. Laborious efforts were saved and errors decreased using a 3D laser scanner for 
volume estimation from the acquired 3D digital images of irregular foods.   

In addition to accurate measurement, predictive methods are needed to accommodate new porous food 
entries which are homemade recipes. Very little work has been done to generalize the prediction of 
density of foods under a variety of conditions. Chengliu et al., [4] approached the density estimation 
problem using fuzzy logic using machine learning techniques applied to a specific food to predict French 
fry bulk density from different processing time and temperature as fuzzy sets.   But a generalized 
methodology to predict the density of a mixture of foods does not exist.  

Artificial neural networks (ANN) could be used for physical property prediction which consists of a 
multilayer feed forward model with a back propagation leaning rule [9, 17]. To obtain a final density of 
food, neural networks could be used to build a hierarchy system in which an identified food is passed 
through a series of categories depending on the required density regime.  

The objectives of this study were to 1) optimize the parameters of CT, MRI, and laser scanner to 
determine food density and compare the corresponding values with other traditional techniques, and 2) 
develop neural networks as a prediction method for apparent and bulk densities.   

 

2. Materials and Methods 

The test samples used for these analyses represented foods typically eaten by adolescents [24]. The 
methods used required no sample preparation. Densities of the selected foods were measured using the 
following established techniques. 

2.1. Gas Pycnometer 

Stereopycnometer (Quantachrome Instruments, FL) connected to a nitrogen gas cylinder, was used to 
measure true volume of the selected food items. Food samples were weighed and volume was determined 
using the pycnometer in triplicate.  
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2.2. Solid Displacement Method-Rapeseed 

A loaf-volumeter (National Mgf. Co., Lincoln, NE) was used to measure the apparent density of foods 
using rapeseeds. The volume of food items was measured in triplicate by the non-destructive, solid 
displacement method [2].  

2.3. Computed Tomography (CT) 

MicroCT 40 (Scano Medical Inc.) and Lightspeed QX/i clinical CT (GE Healthcare) were used to 
determine the porosity of the foods. The parameters of microCT were optimized for x-rays at 45 kVp and 
177μA intensity. Medium resolution and 35.6mm sample cell was selected for scanning. 

2.4. Magnetic Resonance Imaging (MRI) 

A 3D fast spin echo proton density-weighted pulse sequence was used to acquire 0.5mm isotropic 
resolution images of foods using a 3 Tesla Signa HDx MRI (GE Healthcare). The MRI is equipped with 
proton spectroscopy for MRS and a real-time acquisition system for use with echo-planar fMRI. 

2.5. Laser Scanner 

A NextEngine 3D scanner (NextEngine Inc, Santa Monica, CA) was used, and the 3D surface images 
were converted into solid volumes using SolidWorks 2007, (SolidWorks Inc, Concord, MA). The 
volumes and densities estimated by scanning were compared using experimental measurements.   

2.6. Artificial Neural Network (ANN) 

Foods were categorized into true, apparent, or bulk density.  True density was predicted [5], which 
served as an initial step in identifying the correct density. For apparent density, information about 
processing conditions was considered in addition to the food's components.  Once the apparent density 
has been resolved in this hierarchy system it then passes, if needed, to the bulk density. 

A simple model was generated using existing data in Food & Nutrient Database for Dietary Studies 
(FNDDS) (http://www.ars.usda.gov/Services/docs.htm?docid=17031), for apparent density predictions of 
a variety of chemically leavened cakes.  In this neural network there were nine inputs including six 
compositions, processing temperature, processing time, and percent of leavening agent in the whole 
recipe. There were four hidden layers each with five neurons containing tangent sigmoid transfer 
functions.  The output layer consisted of a single neuron containing a pure linear transfer function. 

 

3. Results and Discussion 

The CT, MRI and laser scanner were successful in capturing the features and geometric shape of the 
food products. The results of few of the foods scanned using CT, MRI and laser scanner are shown in 
Figure 2.  
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Classic white 

breada 
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cupcakea 
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Fig. 2. Examples of scans using clinical x-ray CT (a), x-ray micro CT (b), MRI (c) and laser scanner (d) 

The apparent density of a few select foods measured by the solid displacement method using rapeseed 
and the laser scanner is shown in Table 1. The density values from both methods was comparable and 
within range for all the foods. However, laser scanner technique was quick, easy while solid displacement 
was laborious and required multiple repetitions to avoid large variability. Further, true density of the same 
foods was measured using the gas pycnometer. Using this information porosity was calculated, porosity = 
[1 – (apparent density/ true density)].  

Table 1. Porosity measurement using laser scanner and other traditional techniques 

Food Item Using Solid 
displacement 

Apparent density 

Using Laser scanner 

Apparent density 

Using Gas pycnometer  

True density 

Porosity 

 

 g/cc g/cc g/cc (%) 

Sliced white bread 0.1937 0.2170 1.0541 79.41 

Sourdough english muffin 0.3417 0.3049 1.2948 76.45 

Cinnamon raisin bagels 0.3022 0.2682 1.2929 79.26 

Chocolate chip muffin 0.4696 0.4889 1.2406 60.59 

Cupcake 0.4576 0.5059 1.3264 61.86 

 
In order to determine porosity from CT and MRI data, the most favourable threshold value is 

necessary. For this purpose, the scanned images from CT were segmented and for different threshold 
values porosity was estimated. Algorithms were developed in MATLAB® to count proportion of both 
classes of pixels in the binary images and obtain percentage porosity. The figure 3 shows the varying 
porosity when the threshold on the microCT is manually increased.  

 

    

Fig. 3. Plots for White sliced bread and chocolate chip muffin scanned using microCT showing varying estimated porosity when 
threshold is manually adjusted 
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Using the porosity calculated from the experimental measurements conducted earlier (Table 1); the 
optimum threshold for white sliced bread and chocolate chip muffin is estimated to be 35 and 22 
respectively. Due to complex nature of food systems, the threshold value is unique for every food. It 
would not be possible to generalize this value for rest of the foods.  Hence, amongst various thresholding 
algorithms, Ostu’s clustering algorithm was selected to perform automated thresholding. It is a histogram-
shape based image thresholding method that minimizes the intra-class variance, defined as a weighted 
sum of variances of the two classes of pixels (foreground and background). The algorithm calculates the 
optimum threshold separating the two classes of pixels so that their combined spread (intra-class 
variance) is minimal [16]. Ostu’s algorithm has been previously used in image analysis for understanding 
the role of sugar and fat in cookies [6], and during characterization of microstructural properties of 
breaded chicken nuggets [1]. 

Table 2 shows the porosity calculated from the different 3D internal imaging techniques. The threshold 
was calculated using Ostu’s algorithm and further algorithms were used to obtain percentage porosity. 
The advantage of MRI over CT is that MRI has the ability to change the contrast of the images. Small 
changes in the radio waves and the magnetic fields can completely change the contrast of the image. 
Hence, it is possible to get higher detail and highlight various parts of the sample. On the other hand, CT 
is cheaper and takes lesser time to acquire images. Hence, for simple foods CT could be utilized whereas 
MRI could be used for food mixtures containing multiple components.  

Table 2. Porosity estimated using ostu’s algorithm and 3D imaging CT techniques 

Porosity Imaging Technique Food item 

(%) SD* 

Micro CT Multigrain bread 68.412 1.353 

 Cinnamon raisin bagels 75.745 3.142 

Clinical CT Bread roll 56.637 3.618 

 Sourdough English muffin 45.519 7.195 

*SD is the standard deviation between the 2D slices of each food item 
 

Figure 4 shows the ANN model generated for chemically leavened products. It is possible to use this 
model for simulations of decomposed recipes of new or existing products.  Each recipe is reduced to a 
mass percent ingredient list which is cross-referenced with FNDDS to obtain a total proximate analysis.  
Results are summarized in Table 3. 
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Fig. 4. ANN model for chemically leavened products 

A pre-processor was added to the neural network which used the previously described inputs in a 
simplified mechanistic model [7] to reduce the dimensionality of the input vector to a feasible value.  This 
was done via principal component processing. The outputs were then passed to the neural network and 
trained using the existing data from FNDDS.  Instead of setting aside a portion of the training data for 
validation, kitchen experiments were done to test the network.   

Table 3. Apparent density estimated using laser scanner and predicted by ANN 

Using Laser Scanner; Apparent Density  Food Item 

g/cc SD 

ANN prediction  

g/cc 

Sugar cookie 0.827 0.052 0.7193 

Spritz cookie 0.479 0.048 0.4983 

White cake 0.577 0.061 0.6287 

Pound cake 0.886 0.093 0.4907 

Hostess Ding Dong 0.512 0.009 0.4969 

 

4. Conclusions 

Density measurement of porous foods (e.g. cake, bread) and food mixtures (e.g. breakfast cereal, 
salad) is challenging. The determination of the mass is straightforward, but volume is difficult. This study 
demonstrates successful acquisition and application of techniques to measure density of foods using 
image processing techniques. They require no sample preparation and can supply volume information. 
Procedures are currently being developed to build 3D geometrical models of these food products from CT 
and MRI scans.  Advances in the above mentioned internal imaging techniques can now be used to 
measure volume and porosity of food samples. Owing to the complex nature of the wide variety of food 
items (apart from simple baked foods), the response of the CT and the MRI needs to be studied  in further 
detail for different foods with varied oil and moisture content. The variability in results and tedious nature 
of the traditional measures shows that credible methods and precise analytical methods are needed to 
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reduce variability and measure density. For foods, these measurements are not always possible using 
traditional techniques or by 2D image analysis using statistical techniques. With CT, MRI and laser, full 
3D images can be obtained with good resolution. They can further be used to understand the design, 
analysis, and processing science of food products. 

Neural networks can be used for existent composition data (from food label or recipe) and new data 
being collected from laser scans, MRI, and CT images for network training. Further work is in progress 
for the use of neural networks to determine void fraction to resolve bulk density. Our intention is to use 
this more globally to determine the density of any food given the processing conditions and its 
composition. Currently the model does not generalize well for higher moisture content products, but 
inclusion of processing parameters such as baking time, temperature, mixing time and rigor, may alleviate 
this. 
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