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Abstract 

This paper presents a mathematical model and an adaptation of the Strength Pareto Evolutionary Algorithm II (SPEA2) for the Mixed-Model 
Assembly Line balancing and equipment selection problem. The SPEA2 was enriched with a task and equipment reassignment procedure and 
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1. Introduction 

Nowadays, due to the current levels of globalization, 
competition and deregulation that have engendered a 
changeable, dynamic and uncertain global market with greater 
need for flexibility and responsiveness [1], the ability of a 
company to compete effectively is influenced to a large extent 
by its capacity to produce an increased number of customer 
based products in a timely manner [2]. Shorter product life 
cycles; high flexible, dynamic and efficient production 
systems are required, engendering an increased complexity in 
all factory domains. To handle this complexity, methods of 
Operations Research are often used to support the decision 
maker to plan flexible and optimal assembly lines. Assembly 
lines that allow a low cost production, reduced cycle times 
and accurate quality levels, can be classified into three 
variants: (i) the Single Model Line, designed to carry out a 
single product, (ii) the Mixed Model Line, designed to 
produce similar models of a product in sequence or batch and 
(iii) the Multi Model Line, designed to produce various 
similar or different models in large batches. Several standard 
scientific problems relating to these three variants have been 

formulated in the literature, such as the optimal process 
planning, facility layout, line balancing, buffer allocation, 
equipment selection, etc. [3]. While the Single and Multi 
Model Line are the least suited production systems for high 
variety demand scenarios, the Mixed Model Line is better 
appropriated to respond to these requirements of flexibility 
and efficiency. This paper deals with the resolution of a multi-
objective problem, namely with the line balancing problem 
and equipment selection problem, also called Assembly Line 
Design Problem, for a Mixed-Model-Line. While the line 
balancing problem is related to the decision problem of 
optimally partitioning or balancing the assembly tasks among 
stations, the equipment selection problem is associated to the 
decision problem of optimally selecting the equipment for 
each assembly task.  

In the next section, the basic concepts of multi-objective 
problems will be presented, followed by a state of the art in 
the field of the Assembly Line Design Problem, in which the 
weaknesses of the current available methods will be 
presented. Our efficient multi-objective optimization method 
will be presented in the last sections. 
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(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the International Scientifi c Committee of “The 47th CIRP Conference on 
Manufacturing Systems” in the person of the Conference Chair Professor Hoda ElMaraghy” 



83 Jonathan Oesterle and Lionel Amodeo  /  Procedia CIRP   17  ( 2014 )  82 – 87 

2. State of the Art 

2.1. Multi-Objective Optimization 

2.1.1. Basic Concepts and Terminology 
A multi-objective optimization problem (MOP) is a 

problem in which at least two objectives need to be 
simultaneously optimized. In mathematical terms, a MOP can 
be formulated as follows: 

  (1)  
s.t.   (2)  

  (3)  

Where denotes the number of objective functions,  
is the number of inequality constraints, and  the number of 
equality constraints.  

Due to the multi-objective nature of most real-life 
problems (e.g. in finance, scheduling, engineering design and 
medical treatment [4]), MOPs have been a rapidly growing 
area of research and application. Generally, these objectives 
are in conflict, implying that by improving one objective, 
another objective will become worse. MOPs with such 
conflicting objective will provide many optimal solutions, 
instead of only one. The reason for the optimality of more 
than one solution is that no one can be considered to be better 
than any other with respect to all objectives [5]. These optimal 
solutions are known as the Pareto-optimal solutions [6]. A 
solution , where  is the feasible region, is defined as 
either a Pareto-optimal solution or a non-dominated solution, 
if it does not exist another point, , such as 

and  for at least one function, 
where   and 

. A solution  is defined as Weakly Pareto-
optimal, if there does not exist another point, , such as 

.  

 
Fig. 1. Illustrative example of Pareto optimality 

2.1.2. Approaches to Solve Multi-objective Optimization 
Problems 

There exist many methods and algorithms for solving 
MOPs. These methods and algorithms can be divided in two 
categories: (i) classical methods which use direct or gradient-
based methods following some mathematical principles and 
(ii) non-classical methods which follow some natural or 
physical principles [7,8]. Classical methods mostly attempt to 
scalarize multiple objectives and perform repeated 
applications to find a set of Pareto-optimal solutions. In this 
first category, methods such as the weighted-sum method or 
scalarization method, ε-Constraints method, Goal-

programming, Goal-attainment method and min-max 
optimization can be found. What has made these methods 
attractive and why they have been so popular can be attributed 
to the fact that a wide range of well-studied algorithms for 
single-objective optimization problem (SOP) can be used. The 
main criticism of most of these methods is that although they 
may converge to one Pareto-optimal solution, these methods 
have to be applied many times in order to get more than one 
solution. This implies a systematic variation of weight vectors 
or ε parameters that does not guarantee a good diversity in the 
set of solutions and thus an inefficient search. In this iterative 
process, the systematic variation of parameters may also lead 
to an important CPU time. Moreover, some of these 
techniques may be sensitive to the shape of the Pareto-optimal 
front. Indeed, non-convex parts of the Pareto set cannot be 
reached by optimizing convex combinations of the objective 
functions [9]. Furthermore, as the solutions mainly depend on 
parameters such as, weights and upper/lower bounds, these 
methods also require certain knowledge in order to find 
Pareto-optimal solutions. Mainly due to these reasons the 
Multi-Objective Evolutionary Algorithms (MOEA), that stand 
for a class of stochastic optimization methods, have risen up. 
Schaffer [10] published the earliest work in the field of 
MOEA. He proposed a Vector Evaluated Genetic Algorithm 
(VEGA) based on the traditional Genetic Algorithm by using 
a modified selection. Since this first publication, the 
development of MOEA has successfully evolved, producing 
better and more efficient algorithms, due to in some way the 
incorporation of the elitism concept, which ensures that the 
number of non-dominating individuals in the population 
increases. According to their performances and 
characteristics, the MOEA can be classified in the following 
two groups: (i) First Generation, where the Multi-Objective 
Genetic Algorithm (MOGA), the Niched-Pareto Genetic 
Algorithm (NPGA) and the Non-dominated Sorting Genetic 
Algorithm (NSGA) can be found, and (ii) Second Generation, 
where the Strength Pareto Evolutionary Algorithm (SPEA), 
SPEA2 [11], the Memetic Pareto Achieved Evolution 
Strategy (M-PAES), the Pareto Envelope-based Selection 
Algorithm (PESA), PESA-II and the NSGA-II can be found.  

Two major problems must be addressed when an 
evolutionary algorithm is applied to solve MOP: 
(i) minimizing the distance to the optimal front and (ii) 
maximizing the diversity of the generated solutions. In this 
context, two fundamental issues have to be taken into 
consideration: (i) the mating selection and (ii) the 
environmental selection. The first issue is related to the 
question of how to guide the search towards the Pareto-
optimal front, while the second deals with the question of 
which individuals should be kept in the evolution process. 
The general concept, common to all these algorithms, is 
shown in Fig. 2.  

First an initial population, representing the starting point of 
the evolution process, is created at random (or according to a 
predefined scheme such as heuristics). In the fitness 
evaluation step, the fitness - reflecting the quality of a solution 
- is attributed. Afterwards, a binary tournament is normally 
used for the mating selection process. Here, the mating pool is 
filled up by individuals that have the best fitness values 
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during the binary tournament selection. In the fourth step, a 
certain number of parents are selected and a predefined 
number of children are created by combining parts of the 
parents. In opposition, the mutation process modifies 
individuals by changing small parts. Finally, in the 
environmental selection, individuals of the population and the 
modified matting pool form the new population [12].  

 

 

Fig. 2. Outline of a general evolutionary algorithm 

2.2. Line balancing and Equipment Selection 

While some multi-objective approaches for assembly line 
balancing can be found in the literature [13–16], there only 
exist few studies that address both the assembly line balancing 
problem and the equipment selection problem. The 
comprehensive reviews of the assembly line balancing 
problem are provided by Becker and Scholl [17], Boysen et 
al. [18], Gosh and Gagnon [19]. The combination of these two 
problems is also known as Assembly Line Design Problem 
(ALDP).  

Graves and Withney [20] are one of the first who 
addressed the problem of line balancing and equipment 
selection together. The aim was to select the equipment and 
assign the tasks to stations in order to minimize the system 
costs and the annual fixed costs of workstations and 
operating. Pinto et al. [21] considered a model in which they 
combined the line balancing problem with the decision of 
parallel processes. Bukchin and Tzur [22] addressed a model 
in which the total equipment costs are minimized for a given 
cycle time. In their model, each equipment type has individual 
costs and has influence on the task processing times. Nicosia 
et al. [23] presented a similar model and solved it with a 
dynamic programming algorithm. Kim and Park [24] 
associated the problem previously defined with robotic lines. 
They assigned tasks, parts and tools to robotic cells, defined 
as stations, in order to minimize the total number of cells 
activated.  

The methods developed in the previous cited works 
(branch-and-bounds, dynamic-programming, a strong cutting 
plane algorithm, etc.) belong all to the classical methods for 
solving MOP. As depicted in the previous chapter, these 
methods may only be able to find an optimal solution and not 
a set of optimal ones. As the various objectives involved in 
such a MOP may be in conflict, a set of optimal solutions is 
necessary. Furthermore, in mathematical complexity, the line 

balancing and equipment assignment problem is NP-hard, 
since it is easy to reduce them to a bin packing problem which 
is also NP-hard in the strong sense [25]. This means that an 
optimal solution is not guaranteed for problems of significant 
size and thus for most of the real-world problems. 

For these reasons, our contribution in this paper will be 
focused on the development of a resolution method for a 
ALDP that is independent from the size of the problem that 
needs to be resolved and that aims at delivering a set of 
Pareto-solutions that minimizes the total costs and the idle 
time of the line.  

2.3. Problem Description 

There are  models of a product and a set of tasks . For 
each task, there is a set of available equipment with different 
task processing times and costs. The task processing times 
may vary between the models. The problem is to allocate the 
tasks to workstation in such a way that the idle time for each 
model and the equipment costs are minimized and the various 
precedence constraints respected.  

The decisions that have to be taken address two related 
issues: (i) the equipment selection problem, where the 
equipment for a given task has to be selected and (ii) the 
balancing problem, where the tasks have to be assigned to the 
stations. 

2.4. Problem Assumptions 

The following assumptions are stated to clarify the setting 
of the addressed problem: 

 There is a given set of equipment types for each task. 
Each type is associated with a specific deterministic 
processing time and a specific cost. The equipment 
cost includes the purchasing and operational costs. 

 The precedence diagram for each model are known 
 Parallel stations and buffer are not allowed 
 Material handling, loading and unloading times, such 

as setup-times are negligible or included in the task 
processing times 

 Common tasks exist between the models and have to 
be assigned to the same stations 

2.5. Notations 

The notations of the mathematical model are listed below: 
  denotes the total number of tasks 
  denotes the total number of products 
  denotes the total number of workstations 
  denotes the total number of equipment available 

pro task 
 denotes the set of tasks in the workstation  
  denotes the set of tasks in the whole problem 
  denotes the cycle time of product  
  denotes the costs of the equipment  of the task  
  denotes the processing time of the task  of the 

product  of the equipment  
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2.6. Mathematical Model 

Our approach aims at minimizing the idle time for each 
product over the assembly line and the total equipment costs. 
Thus, it remains to find the set of Pareto-solutions of , 
where: 

  (4)  

The first  objective functions are related to the 
minimization of the idle time of a model , with 

. The reader will note that the cycle time of the 
models should be identical for an efficient mixed model line. 

 
 

(5)   

If , a graphical representation of the Pareto-
solutions becomes more difficult. In this case, the  objective 
functions can be replaced by the following objective function, 
where  represents a weight of importance for a given 
product  ( =1): 

 
 

(6)   

The last objective function is related to the costs of the set 
of equipment assigned to the workstation. 

 
 

(7)  

All these objective functions are subject to the following 
constraints: 

  (8)  

  (9)  

  (10)  

 
 
 

(11)  

 
 
 

(12)  

  (13)  

The constraints (8) will assure that all tasks have been 
assigned to one station, while the constraint (9) will assure 
that tasks cannot be assigned to more than one station. The 
constraint (10) will only affect a task  if all predecessors  
have already been assigned to previous stations. The 
constraint (11) prevent to assign tasks to station if the 
workload of this given station does not exceed the given cycle 

time of the model. The constraint (12) will guarantee that the 
same equipment will be allocated to each task  over all the 
model  The constraint (12) indicates that the decision 
variable  can only take the values 0 or 1. 

2.7. Optimization Method 

The choice of the SPEA2 was based on the study of Zitzler 
et. al [11], in which they compared the behavior of various 
evolutionary approaches based on test functions. The study 
shows that SPEA2 and NSGA-II displayed the best 
performance among the algorithms. 

As all MOEA, our SPEA2 consists of two main phases, 
namely: (i) Initialization of the population and (ii) Genetic 
procedures aiming at the evolution of the population, 
comprising the selection, crossover, mutation). 

In our method, we used the following solution encoding, 
based on a double chromosome. To each task will be assigned 
two numbers that respectively represent the workstation to 
which it will be assigned and the number of the chosen 
equipment in the available set of equipment. This attribution 
is done by taking the previously listed constraints into 
account. The following figure shows an example where the 
tasks 1,3,8 are affected to station 1, the tasks 2,9 to the station 
2, the tasks 4,6,10 to the station 3 and the tasks 5 and 7 to the 
station 4. In this example, each task of the first station will be 
performed with the first equipment of the set of task specific 
equipment. 

 

Fig. 3. Chromosome encoding 

2.7.1. Initialization of the Population 
The initial population is created by using a set of 20 well-

known tasks assignment rules, often used in scheduling and 
bin-packing problems and the equipment are selected 
randomly. The rest of the initial population  is generated 
randomly.  

2.7.2. Genetic Procedures 
Starting with this initial population and an empty archive, 

the following steps (see Fig. 4) are performed per iteration 
until reaching a stopping criterion (predefined computed time, 
iterations, or when the archive is only composed of non-
dominated solutions). The fitness value of each individual in 
the population is the sum of the strengths of all individual by 
which it is dominated. The strength  of an individual 
is proportional to the number of individuals it dominates. 
Further information about the fitness assignment can be found 
here [26]. According to this fitness values, the new archive is 
composed of the non-dominated solution of the union of the 

Chromosome 

Workstation 
Tasks 
Equipment 
TaskAssignation 

Equipment 

Tasks number 
Workstation 1 2 1 3 4 3 4 1 2 3 

1 2 1 3 2 1 3 1 1 1 

1 2 3 4 5 6 7 8 9 10 

1 
1 3 8 
1 1 1 
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2 3 

2 
2 9 
2 1 

3 
4 6 10 
3 1 1 



86   Jonathan Oesterle and Lionel Amodeo  /  Procedia CIRP   17  ( 2014 )  82 – 87 

old archive and the population. Here, if the size of the archive 
exceeds its predefined size, the truncation procedure, 
procedure whereby the individuals with the minimum distance 
to other ones are truncated until reaching the predefined size, 
is computed. In the other case, the archive is filled with 
dominated solution. In the mating selection, only individuals 
from the archive are selected via a tournament selection. In 
the last step, according to their probabilities, the crossover and 
mutation operations are performed to generate the new 
population. 
 

 
Fig. 4. Main Loop of the SPEA2 

Fig. 5 shows an example of the crossover procedure, which 
has the role to combine pieces of information of different 
individuals in the population. Two parents from the 
tournament selection are chosen, and a crossover point  is 
randomly generated. The assignment to workstations and the 
equipment selection information until  is copied from the 
Parent 1 to the Offspring and the remaining position are 
copied from the Parent 2. As also represented in Fig. 5, due to 
the verification of the preservation of the various constraints 
(cycle time, precedence constraints), some tasks have, after 
the crossover process, no workstation and equipment 
assignation. In order to produce feasible individuals, these 
tasks must be reassigned. The reassignment procedure aims to 
allocate the tasks to workstations in such a way that all the 
previous defined constraints are respected. For each task  to 
be reassigned, the procedure computes the earliest  and the 
latest  workstation to which it can be assigned, by taking 
into account the equipment that has the greatest processing 
time . Each task  is assigned to the first workstation 
that meets the constraints and the equipment is randomly 
selected (by taking into account the new size of E). When it is 
not possible to find a feasible workstation within [ , a 
new workstation is opened for the task . The mutation 
procedure, which randomly disturbs the genetic information, 
performs small changes in a single parent. Here, a set of tasks 
will be reassigned and new equipment will be selected. For 
this mutation procedure, the reassignment procedure 
described above is also used. The reader will note that the size 
of this set of tasks should not exceed 10% of the number of 
tasks  in order to avoid a random search. 

 

 
Fig. 5. Example of the crossover procedure 

3. Numerical Experiment 

In order to illustrate our approach, the following combined 
precedence diagram and equipment characteristics were used. 
The cycle time was fixed to 50 for both models. The evolution 
of the solutions through the iterations is shown Fig. 7. An 
example of non-dominated solutions for this problem is 
shown in Table 2. Here, each solution is different and cannot 
be considered to be better than any other with respect to the 
three objectives. 

Table 1. Equipment properties 

 Model 1 Model 2  
 Processing times Costs 

Task          
1 30 21 22 23 21 11 101 199 142 
2 18 27 16 28 18 16 131 191 148 
3 16 26 29 22 15 15 157 189 166 
4 13 20 18 29 11 21 164 166 173 
5 16 29 21 19 27 24 186 189 126 
6 20 28 22 23 26 19 165 145 108 
7 29 14 14 12 29 28 106 195 132 
8 25 15 30 28 10 23 183 149 101 

 

 
 

Fig. 6. Combined precedence diagram 

 
Fig. 7. Evolution of the population through the iterations 
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Pareto-Non-Dominated Solutions

Input:Population_size, Archive_size, P_crossover, P_mutation 
Output:Archive 
Population←InitializationPopulation(Population_size) 
Archive←{} 
While(StopCondition()) 
FitnessPopulation←FitnessAssignment(Population) 
FitnessArchive←FitnessAssignment(Archive) 
Archive←ExtractNonDominatedSolution(Population,Archive) 
If(size(Archive)>Archive_size) 

FunctionTrucationOperator 
ElseIf 

FunctionFillOutWithDominatedSolution(Population,Archive) 
End 
Selected←BinaryTournament(Archive,Population_size) 
Population←Crossover&Mutation(Selected,P_crossover,P_mutation) 
Population←truckationprocedure(Population) 
End 

Tasks number 

Parent 1 
Equipment 
Workstation 1 2 1 3 4 3 4 1 2 3 

1 2 1 3 2 1 3 1 1 1 

1 2 3 4 5 6 7 8 9 10 

Offspring 
Equipment 
Workstation 1 2 1 3 4   3 1  

1 2 1 3 2   2 2  

Parent 2 
Equipment 
Workstation 1 2 1 3 4 3 2 3 1 4 

1 2 1 3 2 2 1 2 2 2 

4 5 6 7
c p 

2 1 2 3 33

6 7 7

4 5 5 8 8
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Table 2. Example of non-dominated solutions 

 Station Tasks Equipment Idle 
time  

Idle 
Time 

Costs 

So
lu

tio
n 

1 1 {1,2} {2,2} 13 48 1251 
2 {3,6} {1,2} 
3 {4,7} {2,1} 
4 {5,8} {1,3} 

So
lu

tio
n 

2 

1 {1} {1} 45 88 1042 

2 {2,3} {1,3} 
3 {4,6} {2,2} 
4 {5,7} {3,1} 
5 {8} {3} 

So
lu

tio
n 

3 1 {1,2} {2,1} 44 6 1369 

2 {3,6} {1,2} 
3 {4,7} {3,2} 
4 {5,8} {1,1} 

4. Conclusion 

In this paper, we formulated and solved the Mixed Model 
Assembly Line Design Problem, composed of a line balancing 
and equipment selection problem. While the line balancing 
problem is related to the decision problem of optimally 
partitioning or balancing the assembly tasks among the 
stations with respect to some objective(s), the equipment 
solution is associated to the decision problem of optimally 
selecting the equipment for each assembly task.  

While the research in this area has so far been focused on 
the resolution of this problem through the utilization of single-
objective optimization methods and classical-methods, we 
proposed a new non-classical method based on an adaptation 
of the SPEA2 algorithm. This optimization method aims at 
finding a set of non-dominated solutions that minimize the 
idle time of various models among an assembly line and 
minimize the equipment costs. This approach, which is 
independent from the size of the problem, was enriched with a 
task and an equipment reassignment procedure. Taking into 
account the perspectives, it could be interesting to test other 
genetic procedures (crossover, mutation and also the 
reassignment procedure) and add some operating conditions 
of real-world assembly lines, such as tasks assignment 
restrictions, parallel stations, etc. In the future, we will 
compare various evolutionary approaches to solve the 
addressed problem and compare their results, such as their 
strengths and weaknesses. 
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