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Abstract

We study the expectation value of a nonplanar Wilson graph operator in SL(2, C) Chern–Simons the-
ory on S3. In particular we analyze its asymptotic behavior in the double-scaling limit in which both the 
representation labels and the Chern–Simons coupling are taken to be large, but with fixed ratio. When the 
Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations 
obtained in this double-scaling limit describe a very specific class of flat connection on the graph com-
plement manifold. We find that flat connections in this class are in correspondence with the geometries 
of constant curvature 4-simplices. The result is fully non-perturbative from the perspective of the recon-
structed geometry. We also show that the asymptotic behavior of the amplitude contains, at the leading 
order, an oscillatory part proportional to the Regge action for the single 4-simplex in the presence of a 
cosmological constant. In particular, the cosmological term contains the full-fledged curved volume of the 
4-simplex. Interestingly, the volume term stems from the asymptotics of the Chern–Simons action. This 
can be understood as arising from the relation between Chern–Simons theory on the boundary of a region, 
and a theory defined by an F 2 action in the bulk. Another peculiarity of our approach is that the sign of 
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2 H.M. Haggard et al. / Nuclear Physics B 900 (2015) 1–79
the curvature of the reconstructed geometry, and hence of the cosmological constant in the Regge action, is 
not fixed a priori, but rather emerges semiclassically and dynamically from the solution of the equations of 
motion. In other words, this work suggests a relation between 4-dimensional loop quantum gravity with a 
cosmological constant and SL(2, C) Chern–Simons theory in 3 dimensions with knotted graph defects.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and overview

In this paper we show that the SL(2, C) Chern–Simons expectation value of a particular 
Wilson-graph operator is related to the Regge action of discretized general relativity with cosmo-
logical constant in four spacetime dimensions and Lorentzian signature. This relation is found in 
the double-scaling limit in which both the representation labels associated to the Wilson-graph 
operator and the modulus of the complex Chern–Simons level are scaled to infinity, while keep-
ing their ratio, as well as the phase of the complex level, fixed. As an intermediate result we also 
show that the critical point equations obtained in this double-scaling limit allow a full reconstruc-
tion of the geometry of a homogeneously and non-perturbatively curved 4-simplex. The sign of 
the curvature can be either positive or negative. To be more precise we find that for a given graph, 
if any, there are always two critical points related by an orientation flip. To further fix ideas and 
notation, let us write the expectation value we are interested in explicitly

ZCS

(
S3;�5

∣∣ �j,�i)= ∫ DADĀ eiCS
[
S3 |A,Ā

]
�5

( �j,�i ∣∣A, Ā
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)

is a specific graph operator, depending in particular on the representation 

labels �j decorating the edges of the graph and the (complex-conjugate) connections (A, Ā), and 
where CS
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]
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Then, if we let j refer to a uniform scaling of all of the representation labels, the double-scaling 
limit (d.s.l.) we will refer to is

j, |h| →∞ while j/|h| ∼ const, and arg(h)= const, (3)

and its result on the expectation value of eq. (1) is (when not suppressed, and modulo an overall 
phase that we are not writing here for clarity, but which will be discussed at the end of the paper)
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where at , �t and V4 are respectively the areas of the triangular faces of the reconstructed, curved 
4-simplex,2 the (hyper-)dihedral angles associated to such faces, and the (non-oriented) 4-volume 
of the 4-simplex. All the quantities appearing on the right-hand side are functions of the repre-
sentation labels and the Chern–Simons level appearing on the left-hand side of the equality. 
Finally, N± are weights depending at most polynomially on j and h. Precise definitions of all 
the elements entering these formulae are given later in the paper.

This result brings to the forefront a new relationship between SL(2, C) Chern–Simons theory 
and 4-dimensional geometry. Indeed, a somewhat similar relationship between SL(2, C) Chern–
Simons theory (with real level) and 3-dimensional geometry is well-studied in the research 
surrounding the so-called “volume conjecture”. In this context, the Chern–Simons expectation 
value of most Wilson-line (knots) [1,2] and of some Wilson-graph [3–6] operators has been 
shown to reproduce, in a double-scaling limit very similar to the one discussed here, the 3-volume 
of certain hyperbolic manifolds [7–11]. Although refined mathematical techniques are being de-
veloped to rigorously study these relationships, the result per se might seem natural to physicists. 
In fact, since the work of Witten [12] and others starting at the end of the 1980’s [13–15], we 
know that three-dimensional quantum gravity [16] can be formulated, modulo some important 
subtleties, as a Chern–Simons theory for different gauge groups, depending on the sign of the 
cosmological constant and on the signature of the spacetime. In particular, SL(2, C) Chern–
Simons with real level is related to Euclidean 3-dimensional quantum gravity. In light of this 
understanding, one can interpret the Wilson lines as topological defects induced by the presence 
of some particles. It follows that the double-scaling limit is nothing more than a semiclassical 
limit in which one selects stationary trajectories of the quantum theory, i.e. the classical solu-
tions of the 3-dimensional Einstein equations. The result is a homogeneously curved hyperbolic 
manifold with particular conical singularities determined by the presence of the particles [7]. 
Certainly, things are more complicated than this physical picture might suggest, however, it has 
the advantage of clarifying why the volume conjecture is reasonable. We will argue that an intu-
ition can also be built for our result, and will try to convey it later in this introduction. For the 
moment we observe that even though our construction bears similarities to the one appearing in 
the context of the volume conjecture, there are also major differences. The most relevant one is 
that the SL(2, C) Chern–Simons theory used in the volume conjecture is the result of an analytic 
continuation [17] of the SU(2) theory, which results in a generic real Chern–Simons level; by 
contrast, we deal with a genuine SL(2, C) Chern–Simons theory whose level has integer real 
part. As a consequence, in the asymptotic regime, we get a purely oscillating behavior, with no 
exponential growth of the amplitude as in the volume conjecture framework.

In order to explain the picture we have in mind, let us start from the result. There, we see the 
emergence of Einstein–Hilbert gravity (with the proper boundary terms included) via its on-shell 
action; this action is Hamilton’s principal function for gravity evaluated on the homogeneous 
solution within a single, curved 4-simplex. Each homogeneous 4-simplex has to be eventually 
thought of as part of a large triangulation that in some continuous limit gives smooth general 
relativity. In this approach curvature is distributionally concentrated in the form of a conical sin-
gularities over the triangles. In three dimensions the picture is similar, except that one is using 
tetrahedra to triangulate the manifold and the curvature is concentrated along the sides of the 
triangulation. This way of dealing with gravity is known as Regge calculus [18,19]. Our result, 
presents a quantum version for the amplitude of a single “building block,” in the spirit of spin-

2 The boundary of the 4-simplex is composed by purely space-like subsimplices.
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foam models [20]. Further work will be needed not only to obtain a completely mathematically 
well-defined 4-simplex amplitude, but also to understand how to obtain a sensible interplay be-
tween different 4-simplices, and, of course, to take the necessary continuum limit. The latter 
problem is particularly complex and there are entire research programs developed to tackle it, 
e.g. [21–23] to mention a few.

In this paper we shall focus on the amplitude for a single 4-simplex. In the body of the pa-
per we will explain in detail why Chern–Simons theory can be expected to implement the bulk 
homogeneity of each building block, the idea being that it is the holographic projection of the 
topological quantum field theory [24,25] given by BF theory plus a cosmological term [26] (once 
the B field has been integrated out). What about the curvature defects concentrated along the tri-
angles, what is their origin? These defects are crucial, since they allow us to convert an otherwise 
homogeneously curved manifold into an approximation of virtually any manifold. At the level 
of the topological quantum field theory, such defects must originate in the breaking of the “trivi-
ality” of the topological dynamics on a given manifold. Here the defects are exactly sourced by 
the Wilson graph. Notice, though, that the defects are geometrically associated to 2-dimensional 
surfaces while the graph defect is intrinsically one-dimensional. Indeed, in our picture, the graph 
corresponds to the dual to the 4-simplex boundary triangulation: each of its five vertices (hence 
the name �5) corresponds to a tetrahedron, and each of its ten edges corresponds to a triangular 
face. In a precise sense, the graph carries quanta of area and should be thought of as carrying 
gravitational degrees of freedom instead of matter-like ones. This is exactly the picture emerging 
from the kinematics of loop quantum gravity [27–29].

In order to better contextualize our work, we shall review very briefly what a spinfoam model 
is [20]. The prototypical spinfoam model is the Ponzano–Regge model [30,31] for 3-dimensional 
Euclidean quantum gravity. In this model one starts from a triangulated manifold, and assigns 
SU(2) representations to the sides of the triangulation and trivalent intertwiners among three such 
representations to its triangles; then one contracts all the intertwiner indices following the com-
binatorics of the triangulation, multiplies the resulting amplitude by some weight factors (which 
have a clear group theoretical, and geometrical, meaning), and finally sums on all possible as-
signments of representations to sides in the bulk of the triangulation. This procedure assigns to 
every tetrahedron a function of the six spins attached to its sides, known as a 6j -symbol. Pon-
zano and Regge noticed a relation with quantum gravity when they realized that in the large spin 
limit j →∞, the 6j -symbol gives the imaginary exponential of the Regge action for the tetrahe-
dron (without cosmological constant). Moreover, 3-dimensional quantum gravity is topological, 
and as such can be argued to be triangulation invariant. This is a property the Ponzano–Regge 
model satisfies morally; it is indeed invariant under Pachner moves, but only up to some infi-
nite volume factors that signal the fact that the model is not completely gauge fixed [32,33]. 
A way to overcome this difficulty is to consider a quantum deformation of the group theoret-
ical ingredients appearing in the model, in particular one can substitute the 6j -symbols with 
q-deformed 6j -symbols, and the dimensions of the representations, (2j + 1), with [2j + 1]q , to 
obtain the so-called Turaev–Viro state sum model [34]. Such models cure the divergences present 
in the Ponzano–Regge model by cutting them off at a maximal spin, related to the parameter q , 
making its triangulation invariance not only formal but mathematically exact. However, this is 
not enough, the deformed model presents an even more interesting asymptotics [35,36]. In the 
limit in which both the spins and the cutoff are taken to be uniformly large, one finds that the 
6jq -symbol gives the Regge action for a homogeneously curved tetrahedron augmented by the 
cosmological term �V3, where the cosmological constant is related to the maximal spin. Finally, 
it also becomes clear that a deep relationship between the Turaev–Viro state sum model and 
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Chern–Simons theory exists, thus giving a beautifully consistent picture of all the forms in which 
3-dimensional quantum gravity can be understood. Several recent and nice papers, that are quite 
complementary to this paper, but which focus on three-dimensional gravity are by V. Bonzom, 
M. Dupuis, F. Girelli, and E. Livine, see [37–40].

This much simplified account of the Ponzano–Regge and Turaev–Viro state sum models 
is not meant to be complete, but rather aims to illustrate why many researchers have dreamt 
that q-deforming spinfoam models for 4-dimensional gravity, could lead to a mathematically 
well-defined version of these ideas with the added feature of automatically incorporating in it 
a cosmological constant. This is exactly what was tried in the context of the Barrett–Crane 
model [41,42], see [43], and more recently the Engle–Pereira–Rovelli–Livine model [44,45], 
see [46–48]. The latter model, often abbreviated as EPRL (or EPRL/FK, for Freidel and Kras-
nov, when referring to its Euclidean version) is to-date the most developed and studied spinfoam 
model of 4-dimensional Lorentzian quantum gravity. It will constitute also our starting point for 
constructing the Wilson-graph operator �5.

Previous efforts to include the cosmological constant have been largely motivated by analogy 
with the 3-dimensional case rather than obtained by means of some constructive principle lead-
ing to the quantum group structure. In this paper we aim for a constructive inclusion and provide 
both heuristic and formal procedures for understanding the construction of a spinfoam model 
including a cosmological constant, which reduces to the usual “flat” spinfoam model in the ap-
propriate proper limit. As a byproduct, we understand that introducing a cosmological constant 
in four dimensions is intimately related to a coupling of the spinfoam model to Chern–Simons 
theory, and as such it may—or may not—lead to a known quantum group structure for the spin 
networks under investigation [49–51].

Indeed, our analysis shows that the introduction of a cosmological constant within the EPRL 
model of 4-dimensional Lorentzian quantum gravity requires the use of SL(2, C) Chern–Simons 
theory with a general complex level h ∈ C, to which no known quantum group structure has 
yet been associated. Therefore, we propose a more general approach which can explain why in 
some situations (e.g. in the case of 4-dimensional Euclidean quantum gravity) quantum groups 
are a relevant tool, but that they are not required as an a priori starting point. Another useful 
consequence of our approach is to replace the algebraic language of quantum groups with the 
field-theoretical language of Chern–Simons theory. In this way we are allowed—at least at the 
semiclassical level we investigate in this article—to talk about quantities such as holonomies, 
which admit a more direct geometric interpretation. This enormously simplifies the study of the 
model’s asymptotics, shedding light on both discrete curved geometries and the way they are 
encoded in the classical solutions of Chern–Simons theory on the graph-complement manifold. 

Nonetheless, because of the asymptotic behavior of eq. (4) our model, ZCS

(
S3;�5

∣∣ �j,�i), can be 
viewed as a generalization of the Turaev–Viro model (and its quantum 6j -symbol formulation) 
that produces 4-dimensional gravity with a cosmological constant in the double-scaling limit of 
a single 4-simplex.

Our work’s connection with SL(2, C) Chern–Simons theory does, however, raise a question of 
mathematical rigor. Chern–Simons theory with a compact gauge group G and its quantization are 
well understood, but the non-compact case is much more involved. In the specific case in which 
the non-compact group is the complexification of a compact one GC, e.g. SL(2, C) = SU(2)C, 
which is the relevant one for our analysis, much more is known and actively investigated. In 
particular, in recent years, progress has been made in this arena, see e.g. [52,53,51,7,17,8,10,9,11,
54]. Incorporating these new results and techniques into our framework is one of our main goals 
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for the near future. For the moment let us just remind the non-expert reader that the differences 
between the theories on the gauge groups G and GC are not just technical, since qualitative 
changes occur. For example the Hilbert space of Chern–Simons theory with a noncompact gauge 
group is infinite-dimensional [51,8], while the Hilbert space of the theory with compact group is 
finite-dimensional.

The idea of an interplay between Chern–Simons theory and loop quantum gravity, or spin-
foams, is not a new one. It can be traced back to the discovery of the Kodama state [55] as a 
(formal) solution to the quantum constraints of canonical gravity with a cosmological constant 
expressed in Ashtekar’s variables. This perspective has been investigated in the intervening years, 
in particular by Smolin [56–61] (see also [62]). This approach gives the same Chern–Simons 
structure that we have found from a covariant perspective, when applied to canonical loop quan-
tum gravity with the Barbero–Immirzi–Holst twist [63–65] and expressed in terms of complex 
selfdual and anti-selfdual Ashtekar variables. Indeed, our construction can also be interpreted 
(even if this is not the interpretation we prefer) as the projection of the Kodama state onto a 
particular spin-network state, i.e. as taking a particular component of the loop-transform of such 
a state. Interestingly, the discovery of such a relationship between Chern–Simons theory and 
4-dimensional loop gravity served in the 1990’s as a further—though not the only—motivation 
to investigate the interplay between topological quantum field theories (with defects) and quan-
tum gravity [66–69,56,26,70]. In the context of quantum deformation of (Euclidean) spinfoam 
models, the coupling with Chern–Simons has been proposed by one of the authors in [47]. Fi-
nally, there is another point of contact between Chern–Simons theory and loops, this is the study 
of quantum black holes and their entropy in loop gravity under the quantum isolated horizons 
paradigm [71–78]. It would be interesting to further investigate how this literature relates to the 
present work.

After this excursus, we return to our calculation and try to give a bird’s-eye view of what we 
will accomplish in the rest of the paper. After constructing the particular graph operator needed 
to implement the geometricity of the boundary of the 4-simplex, we study its asymptotic, semi-
classical, properties in the double scaling regime described at the beginning of this introduction. 
Physically this is equivalent to sending h̄ to zero, while keeping the size of the physical areas and 
of the cosmological constant fixed at finite values. In this way we freeze the fluctuating quantum 
geometries, picking out the most relevant classical solutions. For what concerns Chern–Simons 
theory, these classical solutions are given by flat connections. However, the graph plays the rôle 
of a source for such connections, which are hence flat everywhere but on the graph.

To make mathematical sense of this statement one is lead to consider flat connections on the 
graph-complement manifold M3 = S3 \�5, obtained by removing from the 3-sphere an infinites-
imal neighborhood of the �5 graph. Since �5 is dual to the boundary of a 4-simplex, see Fig. 1, 
it is not too hard to see that M3 is a 3-manifold bounded by a genus-6 surface. All the relevant 
information about the flat connection in M3 can then be repackaged into equations for a set of 
holonomies in M3. We divide these holonomies into two subsets, longitudinal holonomies that 
are computed along the length of the tubes bounding the edges of the thickened graph and trans-
verse holonomies that cycle around these tubes. These equations encode the proper boundary 
conditions for the M3-connection induced by the presence of a graph in the original manifold S3.

The main result of the paper is to show that these very same holonomies can be reinterpreted 
as the holonomies on the boundary of a homogeneously curved 4-simplex. In a sense, we pro-
vide a translation between a connection whose curvature is concentrated along 1-dimensional 
defects carrying quanta of area, and a connection whose curvature is homogeneously distributed 
in the 4-simplex. In the second case, the curvature “defects” are concentrated along the extended 
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Fig. 1. Both panels illustrate the graph �5 with its five 4-valent vertices. (a) This panel explicitly displays the combinato-
rial structure of �5 as the dual to the boundary of a 4-simplex. (b) A topological deformation of �5 illustrates the single 
essential crossing of the graph projection.

2-dimensional submanifolds. (See [79] for a more precise description of this correspondence in 
the flat context. Somewhat similar ideas are also present in [80,81].) Note, that the flat connec-
tions of the graph complement we use to reconstruct the 4-simplex geometry have some very 
peculiar properties, inherited from the specific graph operator. Probably their main property is 
that the four transverse holonomies associated to a single graph vertex, when calculated infinites-
imally close to it, are all in the same SU(2) subgroup of SL(2, C). This property is crucial for 
the interpretation of such holonomies in terms of face holonomies of a homogeneously curved 
tetrahedron that is flatly embedded3 in the ambient de Sitter, or anti-de Sitter, space. An impor-
tant ingredient of this interpretation is the fact that the representation labels (spins) associated to 
the graph edges are interpreted as the areas of the triangles in the 4-simplex (expressed in units 
of the Planck area times the Barbero–Immirzi parameter γ ).

Once a 4-simplex geometry has been built from a specific class of flat connections on the graph 
complement, we can interpret the phase appearing in the semiclassical approximation geomet-
rically. The semiclassical action is composed of two pieces: one coming from the Wilson-graph 
observable, and the other from the Chern–Simons action itself. Analogously to the flat4 EPRL 
model, one can see that the phase contributed by the graph operator corresponds to the i 

∑
t at�t

term in the Regge action. More interestingly, the Chern–Simons term contributes the cosmolog-
ical term, −iλV4, of the Regge action. Though not derived in this way here, this term can be 
seen as originating in the fact that a Chern–Simons theory on the boundary of a 4-dimensional 
region can be interpreted as the holographic projection of an F 2 theory in the bulk, where F
is the curvature of the Chern–Simons connection. If the curvature of F is constant and equal 
to λ

6 e ∧ e, this bulk theory provides exactly the sought after 4-volume term. Another feature 
of this asymptotic approximation is that critical solutions come in pairs of oppositely oriented 
4-simplices, hence the two terms in eq. (4). This is not a new feature, it was present already in 
the flat EPRL and EPRL/FK model, as well as in the Ponzano–Regge–Turaev–Viro state sum. 
It can be seen as due to the fact that one is not quantizing metric gravity, but rather first order 
gravity expressed in vielbein-connection variables, and in such a representation the metric can 

3 A submanifold is said to be flatly embedded in a Riemannian manifold, if its extrinsic curvature vanishes. This turns 
out to be equivalent to the requirement that the surface is totally geodesic, see e.g. [82].

4 By flat we mean without cosmological constant.
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become degenerate and the orientation can flip. The physical reliability of this feature is a matter 
of debate [12,83–85].

Interestingly, Engle’s explanation for the presence of both orientations [75,86,83] gives an 
explanation of why we find geometric sectors associated to both signs of the cosmological con-
stant. He observed that the construction leading to the definition of what we call the EPRL graph 
operator has two sectors of solutions related by a sign flip. This sign appears in the equation 
that classically relates the curvature to the tetrad field when a cosmological constant is present 
effectively changing its sign. More technically, one can say that the linear simplicity constraints 
admit solutions in two Plebanski sectors, corresponding to B = ±e ∧ e, respectively. Because 
the cosmological term is quadratic in B , while the Ricci term is only linear in it, the two sector 
effectively correspond to the Einstein–Hilbert with different signs of the cosmological constant. 
This is reflected in the equation for the curvature F = �

3 B =±�
3 e ∧ e.

To conclude this overview of the work, we would like to acknowledge that other terms come 
out of the asymptotic analysis, which must be added to the Regge action. Their geometrical in-
terpretation is not fully clear for the moment, though it is understood that these terms are parity 
invariant and therefore factorize as a phase common to the two differently oriented critical point 
contributions. At first sight, this may seem to be completely degenerate to an irrelevant phase 
choice of boundary state. However, upon closer analysis this seems not to be the right interpreta-
tion since this extra phase depends on the geometrical and dynamical variables associated to the 
4-simplex (e.g. the spins), and therefore will a priori superpose in a complicated way with the 
dynamics of the model for any 4-simplex in the bulk of the triangulation, where the boundary 
state phase choices are irrelevant. Nonetheless, there are some indications that these contributions 
should add up to zero for a given triangle sitting in the bulk of the triangulation, where the sum 
over its spins is relevant. Therefore, the rôle of these extra phases has not yet been completely 
clarified. We leave the analysis of this issue for future work, when we will study the amplitude 
of simplicial complexes.

For two recent works developing the lines discussed in this paper see [87,88].
The paper is structured as follows. In Section 2 we formally define the expectation value 

ZCS

(
S3;�5

∣∣ �j,�i), while in Section 3 we discuss its relation with 4-dimensional gravity 
and LQG. In Section 4, we introduce the semiclassical (double-scaling) limit and the zero-

cosmological-constant limit of ZCS

(
S3;�5

∣∣ �j,�i). In Sections 5 to 8, we derive the critical point 
equations to study the semiclassical limit just introduced. In Sections 9 to 11 we relate these 
equations to the 3- and 4-dimensional simplicial geometries of constant curvature. We dedicate 

Section 12 to the evaluation of the graph operator �5

( �j,�i∣∣A, Ā
)

and the Chern–Simons action 

functional CS
[
S3
∣∣A, Ā

]
at the critical points. In Section 13 we comment on the fact that to any 

semiclassical solution there always corresponds a second, opposite spacetime with reversed ori-
entations. In Section 14 we discuss the role of the parity-invariant non-Regge contribution to 
the action, while in Section 15 we discuss a subtlety in the geometrical interpretation of the spin 
variables and show that it entails no consequences for the final result. We finally conclude in Sec-
tion 16. In the appendices, we fix notations and conventions, e.g. those of the general relativistic 
action and others in the context of the selfdual and anti-selfdual split of SL(2, C) (Appendices A 
and B); we perform explicit calculations not spelled out in the text in Appendix C; we present 
some relevant details about 4-dimensional discrete geometries in Appendix D; and we calculate 
the Chern–Simons functional at the critical point perturbatively around a flat-geometry solution 
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in Appendix E. We hope that our effort to make the paper self-contained and pedagogical enough 
to be understandable to readers with different backgrounds has been successful.

2. SL(2, CCC) Chern–Simons theory and the �5 graph operator

In this section, we give a brief overview of SL(2, C) Chern–Simons theory and introduce 
knotted graph operators. We study the expectation value of a particular nonplanar, knotted graph 
operator �5( �j, �i|A, Ā), defined below.

Given a compact oriented 3-dimensional manifold M3, the SU(2) Chern–Simons functional 
is5

W [A] := 1

4π

∫
M3

tr

(
A∧ dA+ 2

3
A∧A∧A

)
, (5)

here A = Ajτj is a real su2-valued connection on the 3-manifold M3. Each of the components 
Aj is an R-valued 1-form on M3 and τj = − i

2σj are anti-Hermitian 2 × 2 generators of su2, 
with {σj }j=1,2,3 the Pauli matrices.

This action can be analytically continued to a holomorphic action for the complexified con-
nection AC with value in suC2 , which is in turn isomorphic to sl2C. Thus, in order to define 
Chern–Simons theory for the sl2C-connection A on the manifold M3, one can first decompose 
A into its holomorphic and anti-holomorphic parts, AC and ĀC respectively, and then combine 
their Chern–Simons functional with a complex weight (inverse coupling) h:

CS
[
M3
∣∣A= (AC, ĀC)

]
:= h

2
W [AC] + h̄

2
W [ĀC]. (6)

Henceforth, we refer to A as the sl2C connection, and—dropping the C superscript—to A and 
Ā as the holomorphic and anti-holomorphic sl2C connection, respectively. Sometimes we will 
even drop the adjective (anti-)holomorphic if this is not confusing.

Finally, quantum Chern–Simons theory on M3 is defined via the functional integral6

ZCS(M3)=
∫

DADĀ eiCS[M3 |A,Ā]. (7)

It is expected that the partition function gives an interesting topological invariant of the 
3-manifold. Also, recent progress towards its rigorous definition can be found e.g. in [8,17].

It is common to parametrize the complex Chern–Simons couplings as

h= k + is and h̄= k − is, (8)

with k and s initially arbitrary complex numbers.7 However, requiring the invariance of 
exp
(
i CS[A, Ā]) under finite gauge transformations, restricts k ∈ Z; moreover, s is also con-

strained, by the requirement of unitarity [90,51]. There are two possibilities for a unitary SL(2, C)

5 We use M3 for a general 3-manifold; the graph complement of central importance in this paper will always be 
denoted M3 = S3 \ �5.

6 The path integral measure should be understood to contain all the gauge fixing (ghost) terms needed to make this 
expression meaningful. Since, for the purpose of this paper, we are interested only in the phase resulting from the semi-
classical approximation of the path integral, these terms are not going to play any rôle, and are therefore not considered 
explicitly.

7 An analytic continuation of Chern–Simons theory has been proposed in [17], where both k and s can, in principle, 
be extended to arbitrary complex numbers (so h, h̄ become independent complex numbers). The analytically continued 
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Chern–Simons theory corresponding to s real or purely imaginary, these are: (i) if s ∈ R, then 
h̄ is the usual complex conjugate of h, and A is invariant under the reversal of orientation; the 
theory is unitary in the Lorentzian sense8; and (ii) if s ∈ iR, on the other hand, A 	→ Ā under 
orientation reversal, and the theory is unitary in the Euclidean sense.9 Indeed, Chern–Simons 
theory relates to (2 + 1)-dimensional quantum gravity in de Sitter spacetime in case (i), and to 
Euclidean quantum gravity in 3-dimensional anti-de Sitter space in case (ii).10 Here, we stick to 
the choice (i). Hence, in the rest of the paper, h̄ is the usual complex conjugate of h.

It is well known that quantum Chern–Simons theory with compact gauge group SU(N) and 
level k i related to the representation theory of the quantum group SUq(N), where the quantum 

group deformation parameter q is the root of unity q = q(k, N) = exp
(

4π i
k+N

)
. For Chern–

Simons theory with non-compact gauge group SL(2, C) and couplings k and s the situation 
is more complicated. In [51] it is shown that for the Lorentzian unitary case (i), with s ∈ R, 
and under the restriction k = 0, the quantum SL(2, C) Chern–Simons theory is related to the 

unitary irreps of the quantum group SLq(2, C) with real deformation q = exp
(

2π
s

)
. Moreover, 

a quantum group deformation of SL(2, C) is only known for such a real deformation parameter 
q [49,50]. In this paper, however, we focus on SL(2, C) Chern–Simons with non-vanishing k

due to the interesting relation it bares with 4-dimensional geometry and quantum gravity; we do 
this despite the fact that the theory with non-vanishing k has no known quantum group structure 
behind it. The SL(2, C) Chern–Simons theories with general values of k and s, which exist as 
quantum field theories, might lead to a generalization of quantum group structures to SL(2, C). 
The present work provides additional motivation for a generalization in this direction.

We consider SL(2, C) Chern–Simons theory on S3, the 3-sphere, with Wilson-line operator

G
[A] = P exp
∫



A, G
[Ā] = P exp
∫



Ā (9)

along the (piecewise differentiable) curve 
 embedded in S3. We focus on Wilson-line operators 
in S3 carrying unitary irreps of SL(2, C),

D
(j,ρ)

l,n;l′,n′
(
A, Ā

)= 〈(j, ρ); l, n ∣∣∣ D(j,ρ)
(
G
[A],G
[Ā]

) ∣∣∣ (j, ρ); l′, n′〉 . (10)

The (infinite-dimensional) unitary irreps of SL(2, C) are classified by two parameters (j, ρ) with 
j ∈ Z

2 and ρ ∈ R [91]. A canonical basis in the unitary irrep H(j,ρ) = ⊕l∈j+NHl is denoted 
|(j, ρ); l, n〉, where Hl is the spin-l irrep of SU(2) ⊂ SL(2, C). Note that D(j,ρ)

(
A, Ā

)
depends 

non-trivially on both A and Ā, this will appear explicitly in the formulae of Section 5 (e.g. 
eq. (79), where both G[A], and G†[Ā] appear).

In a major part of the literature on Chern–Simons theory, the curve 
 is taken to be a knot, 
where the Wilson-line operator is a Wilson-loop (e.g. [92,10,9,11,7]). However, we are interested 

SL(2, C) Chern–Simons theory has gauge group SL(2, C) × SL(2, C) (as a complexification of SL(2, C)). Thus, the 
connections A and Ā are treated as independent variables, although the integration contour in eq. (7) is usually chosen to 
be real with Ā the complex conjugate of A. Non-integral values of k in the analytically continued theory imply that the 
integration cycle should belong to a covering space to the space of connections, where two connections are equivalent if 
they are related by an infinitesimal (rather than a finite) gauge transformation. In this paper we restrict ourselves to the 
case with k ∈ Z and s ∈R. A study of analytic continuation will appear in [89].

8 That is, such that its action CSL is real and appears in the partition function in the form exp(iCSL).
9 That is, such that its action CSE is real, but appears in the partition function in the form exp(−CSE).

10 For details on the relation between Chern–Simons theory and 3-dimensional gravity, see e.g. [12–16,7].
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in knotted graphs that admit vertices with valences greater than 2. In particular, the knotted graph 
operator investigated here is the �5 graph of Fig. 1; this is a non-planar, 4-valent graph with a 
single crossing.11 We adopt the same framing convention for the graph as in [93].

The 4-valent knotted graph operator �5( �j, �i |A, Ā) in SL(2, C) Chern–Simons theory is con-
structed through a series of four steps:

(i) SL(2, C) unitary irreps: An SL(2, C) unitary irrep (j
, ρ
) is associated to each edge 

in the knotted graph. We define the ratio γ = ρ
/j
 ∈ R and restrict γ to be a constant 
independent of 
. This restriction12 is important for later geometrical interpretations in 4 di-
mensions, where γ defines a fundamental unit for surface areas. In the context of LQG, γ
corresponds to the Barbero–Immirzi parameter [63,64,44,95]. We will label the edge con-
necting the vertices a and b (a, b ∈ {1, · · · , 5}) by 
ab = 
ba , and fix its orientation from b to 
a when a < b. Thus, the SL(2, C) unitary irrep associated to the edge 
ab is often denoted 
by (jab, γjab).

(ii) Intertwiners: All the vertices of the �5 graph are 4-valent. To maintain gauge invariance, an 
SL(2, C) intertwiner

I (j1,γj1)···(jv,γjv) ∈ InvSL(2,C)

(
H(j1,γj1) ⊗ · · · ⊗H(jv,γjv)

)
, (11)

is associated to each vertex. Here v labels the valency of the vertex (v = 4 for us) and 
H(j,γj) is a carrier space for the unitary irrep of SL(2, C). The space of intertwiners 
InvSL(2,C)

(
H(j1,γj1) ⊗ · · · ⊗H(jv,γjv)

)
is infinite-dimensional when v ≥ 4.13 However, we 

restrict attention to a finite-dimensional subspace of intertwiners that lead to a nice geomet-
rical interpretation. This subspace of SL(2, C) intertwiners is determined via an SL(2, C)

diagonal action on the SU(2) intertwiners ij1···jv , followed by group averaging14

I
(j1,γj1)···(jv,γjv)
j ′1m′1;···;j ′vm′v (i)=

∫
SL(2,C)

dg
∑

m1···mv

i
j1···jv
m1···mv

v∏
l=1

D
(jl,γjl )

jlml,j
′
l m
′
l

(g). (12)

This defines an embedding map from the space of SU(2) intertwiners to the space of 
SL(2, C) intertwiners. Equation (12) can be written abstractly as I (i) = PSL(2,C) ◦Yγ (i). In 
this expression, the EPRL map Yγ is an injection Hj ↪→Hj,γj given by the identification 
of the SU(2) irrep Hj with the lowest subspace in the tower Hj,γj =⊕l∈j+NHl , i.e.

Yγ |j,m〉 = |(j, γj); j,m〉, (13)

and PSL(2,C) is a projector onto the space of SL(2, C) intertwiners. The subspace of 
SL(2, C) intertwiners given by the image I (i) was first introduced by Engle, Pereira, Rov-
elli, and Livine [44] and further developed by Dupuis and Livine [98]. The classical spin 
networks with intertwiners in this image have been shown to relate to simplicial (piecewise-
flat) geometry in 4 dimensions by [94,99,100].

(iii) Contraction: The knotted graph operator �5( �j, �i |A, Ā), as a gauge invariant observable of 
SL(2, C) Chern–Simons theory, is defined by contraction of the Wilson-line operators of 

11 A few quantum group spin networks based on the �5 graph have been proposed and studied in [46,48,47,43].
12 In the flat case such a restriction is redundant in the semiclassical limit, because it happens to be one of the critical 
point equations [94]. This is not the case in the present setting.
13 When v = 3, the space of intertwiners is 1-dimensional, [96].
14 The tensor components of the intertwiner are all finite for v > 2, [97].
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eq. (10) with the intertwiners of eq. (12) at each vertex:

�5

( �j,�i ∣∣A, Ā
)
=
⊗
a<b

D(jab,γjab)
(
A, Ā

) • 5⊗
a=1

I (ia) , (14)

where • stands for contraction of the indices at each vertex following the appropriate 
4-simplex combinatorics. This knotted graph operator is, in the terminology of [98], an 
SL(2, C) projected spin-network function.

(iv) Coherent basis: For the concrete computation we choose a particular class of SU(2) inter-
twiners, the coherent intertwiners introduced by Livine and Speziale in [101]. Given the 
SU(2) unitary irrep Hj , a coherent state |j, ξ 〉 ∈Hj is defined by an SU(2) action on the 
highest-weight state [102],15

|j, ξ 〉 := g(ξ)|j, j〉, g(ξ)≡
(
ξ1 −ξ̄2

ξ2 ξ̄1

)
, (15)

where ξ is a normalized 2-spinor according to the Hermitian inner product 〈ξ, r〉 =
δα̇αξ̄

α̇rα , i.e. 〈ξ, ξ 〉 = 1. The SU(2) group element g(ξ) rotates the 3-vector ẑ = (0, 0, 1)
into the unit vector n̂(ξ) = 〈ξ, �σξ 〉, where �σ is the vector of Pauli matrices. The coherent 
states |j, ξ 〉 form an over-complete basis of Hj and provide a resolution of the identity

Ij = (2j + 1)
∫
S2

dμ(ξ) |j, ξ 〉〈j, ξ |. (16)

Since |j, ξ 〉 	→ eiφ |j, ξ 〉 = |j, eiφξ 〉 leaves the integrand invariant, the domain of integration 
is the coset S2 = SU(2)/U(1), on which dμ(ξ) is the uniform measure. The phase of ξ must 
be fixed conventionally to complete the definition of these coherent states.
A coherent intertwiner i�ξ ∈ InvSU(2)

(
Hj1 ⊗ · · · ⊗Hjv

)
can be defined by group averaging 

the projected tensor product of coherent states, [101],

i�ξ = i
j1···jv
ξ1···ξv :=

∫
SU(2)

dh ⊗v
l=1 Djl (h)|jl, ξl〉. (17)

These form an over-complete basis in the space of SU(2) intertwiners and relate to the quan-
tization of three-dimensional flat polyhedral geometry [103–109]. These coherent intertwin-
ers are mapped by I , eq. (12), to SL(2, C) intertwiners I (i�ξ ); the latter enter the definition of 

the knotted graph operator �5

( �j,�i�ξ ∣∣A, Ā
)

in eq. (14). In the analysis below we often em-

ploy the following convention for labeling the ξ variables. At the vertex a of the graph �5 we 
denote the SU(2) coherent intertwiner by ia = i{ξab}b �=a

= ∫SU(2) dh ⊗b �=a D
jab (h)|jab, ξab〉

and the corresponding SL(2, C) intertwiner by I (ia). The ξab label the coherent intertwiner 
at the vertex a, while the ξba label the coherent intertwiner at vertex b. Thus, we have in 
total 20 spinors ξab with ξab �= ξba ; these two distinct spinors are located at the opposite 
ends of the edge 
ab. The knotted graph operator is finally denoted �5

(
jab, ξab

∣∣A, Ā
)
.

15 See e.g. [45] for a compact introduction to SU(2) coherent state.
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The Chern–Simons expectation value of the knotted graph operator on S3 is the central object 
studied here16:

ZCS

(
S3;�5

∣∣jab, ξab)= ∫ DADĀ eiCS
[
S3 |A,Ā

]
�5
(
jab, ξab

∣∣A, Ā
)
. (18)

In particular, we are interested in the asymptotic behavior of this expectation value when the 
double-scaling limit of eq. (3) is taken uniformly in every spin jab. As discussed in the intro-
duction, in the asymptotic regime of the limit, a relation emerges between the data jab, ξab , A, 
Ā of Chern–Simons theory and four-dimensional, constant curvature geometry. The asymptotic 
behavior of the expectation value in eq. (18) relates to quantum gravity in four dimensions with 
cosmological constant.

3. Relation with loop quantum gravity (LQG)

The Chern–Simons expectation value of the �5-graph operator, eq. (18), is well-motivated by 
non-perturbative, covariant LQG in 4 dimensions, where the idea of path integral quantization 
is adapted to the setting of LQG [20,110,27]. The quantum dynamics is formulated in terms of 
boundary state transition amplitudes. These amplitudes naturally extend the notion of transition 
between initial and final states to the general covariant context [24,25]. In quantum gravity these 
boundary states capture the geometry of the boundary and according to LQG this geometry is 
encoded in spin networks [27–29,107,108,111,112].

In order to calculate such transition amplitudes, in principle one should interpolate using 
all 4-dimensional histories, or bulk (quantum) geometries, compatible with the given bound-
ary states. At present the theory is defined only in terms of successive truncations, relying on 
a specific discretization of the bulk geometry.17 Each of these quantum discrete geometries is 
a spinfoam. The spinfoam building blocks are usually taken to be 4-simplices, and the total 
spinfoam amplitude is then constructed as a product of 4-simplex amplitudes followed by an 
integration over all the bulk data encoding their geometry. In this section, we briefly review the 
motivations and construction of the EPRL 4-simplex amplitude [44], which is one of the leading 
candidate models for covariant four-dimensional LQG. We will then explain why and how the 
Chern–Simons expectation value (18) is a deformation of the EPRL 4-simplex amplitude that 
includes the cosmological constant.

3.1. Lorentzian EPRL 4-simplex amplitude

First order gravity in tetrad-connection variables can be expressed as a constrained topological 
SL(2, C) BF theory in 4 dimensions, which is known as the Plebanski formulation of classical 
gravity [113]. The EPRL 4-simplex amplitude is constructed by imposing constraints on quantum 
SL(2, C) BF theory. The first-order action of SL(2, C) BF theory on a 4-dimensional manifold 
M4 is

SBF := −1

2

∫
M4

≺ B ∧F[A] � , (19)

16 The expectation value of eq. (18) has been normalized by the partition function of Chern–Simons theory on S3. This 
normalization procedure is understood throughout the paper.
17 The question of how to remove the discreteness is a controversial problem beyond the scope of this paper (see e.g. 
[22,23]).
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where F[A] = dA +A ∧A is the curvature of the sl2C connection A := (A, Ā), B is an sl2C
valued two form, and ≺ ·, · � is one of the two invariant, nondegenerate, bilinear forms of sl2C. 
Specifically, it is the one that couples boosts with rotations, i.e. ≺ X, Y �:= 1

2εIJ
KLXIJ YKL

(see Appendix B for some information on these bilinear forms). Notice that B is the momentum 
conjugated to the connection A.

The quantization of BF theory is given by the functional integration∫
DADB e−iSBF =

∫
DA δ (F[A]) , (20)

where the equality implements the integration over the momentum B and defines the associated 
second-order theory. Given a 4-manifold M4 with boundary ∂M4 =M3, let ψ = ψ(A∂ ) be a 
(gauge invariant) wave function of the connection boundary state, where A∂ is the connection A
restricted to M3. Then the BF amplitude of such a state is

〈BF|ψ〉 =
∫

DA δ (F[A]) ψ[A∂ ]. (21)

When a gauge invariant state ψ has support only on a graph � ⊂M3, and it depends on the 
connection A only through the holonomies G
[A], with 
 an edge of the graph �, then we call 
it a spin-network state and write ψ� ,

ψ�[A∂ ] =ψ�

({
G
[A∂ ]

})
. (22)

As normalizable states, the ψ� belong to L2(SL(2, C)⊗L), L being the number of edges 
 in �. 
It is then convenient to use the distributional basis {ψs}� such that the wave functions ψs contain 
only one SL(2, C) unitary irrep (j
, ρ
) on each edge 
, and an SL(2, C) intertwiner In at each 
vertex n of �. In this sense, s can be seen as a collective index labeling these data, s = (j
, ρ
; In).

A special case is that of M4 a 4-simplex with its associated boundary M3 ∼= S3. In this case 
it is natural to consider the graph �5 dual to the 4-simplex boundary. Then a state ψ�5 depends 
on ten SL(2, C) holonomies G
[A∂ ], and is required to be invariant under gauge transformations
at each of its five vertices. The graph18 �5 is represented in Fig. 1, although BF theory is not 
sensitive to the crossing.

The functional integration of BF theory on a triangulated manifold can be written as the 
product of 4-simplex amplitudes followed by a summation over all the intermediate (boundary) 
states of every 4-simplex boundary.

From eq. (21) we see that the amplitude 〈BF|ψ�5〉 is nothing but the integral of ψ�5 over the 
space of flat connections. In particular, since it is already gauge invariant, we immediately obtain

〈BF|ψ�5〉 =ψs(I), (23)

which is the evaluation of the spin-network function ψ�5 on trivial holonomies I.
The classical action of first-order general relativity in the tetrad e and connection A variables 

is19

SGR := −1

2

∫
M

≺ (e ∧ e)∧F[A] � . (24)

18 In this section and the following, we commit a slight abuse of notation; we use the symbol �5, which was already 
introduced for the Wilson-line operator of eq. (14) within Chern–Simons theory, for a particular graph in S3.
19 We work in units where the reduced gravitational constant κ := 8πGN is equal to 1.
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This action can be twisted without altering its equation of motion (at least in the absence of 
fermions) by adding to it the so-called Holst term [65], to obtain what is known as the Holst 
action of general relativity

SH := −1

2

∫
M

≺ (e ∧ e)∧F[A] � + 1

γ
< (e ∧ e)∧F[A]> . (25)

In the last expression we have introduced the Barbero–Immirzi parameter γ , which we shall 
require to be real,20 as well as the second nondegenerate bilinear form < ·,· > on sl2C. This 
bilinear form is related to the first one by < ·,· >=− ≺ � · ,· �, where � denotes the usual Hodge 
star operator; in other words <X, Y >= XIJ YIJ (see Appendix B for details). The interest of 
the Holst formulation is that it twists the phase space of the theory and makes it easier to quantize 
(see [27–29,112]).

Both the standard and Holst’s first order formulation of general relativity can be put in the 
form of a constrained BF theory, where the B field is required to take the simple form

B
!= e ∧ e, (26)

here and below != indicates equality after the imposition of a constraint. In particular, the relevant 
BF action for the Holst formulation is

SHBF := −1

2

∫
M

≺
[(

1− 1

γ
�

)
B

]
∧F � . (27)

Notice that in this action the B field is no longer the momentum conjugate to the connection A. 
Indeed, calling the conjugate momentum �, one finds21

�=
(
�+ γ−1

)
B or equivalently B = γ

γ 2 + 1
(1− γ �)�. (28)

Nonetheless, because B and � are linearly related, integrating over one or the other, as in eq. (20), 
does not make any difference.

Imposing the simplicity constraints of eq. (26) modifies topological BF theory, unfreezing 
local degrees of freedom and yielding general relativity.

The EPRL 4-simplex amplitude is obtained by imposing the simplicity constraint on the BF
amplitude 〈BF|ψ�5〉. In this context the simplicity constraint is quantized to a constraint opera-
tor that acts on the boundary state ψ�5 . Imposing this quantum constraint reduces the available 
boundary states ψ�5 to a proper subspace. Implementation of the simplicity constraint is de-
scribed briefly in the following, however see e.g. [44,45,98,114–116,101,95] for details.

Given a triangulation of the 4-manifold M4, the sl2C-valued 2-form field B can be understood 
as an (anti-symmetric) bivector BIJ associated to each triangle. It turns out that for a simplicial 
decomposition, a more manageable linear version of the simplicity constraints can be employed 
in the quantization. Given any tetrahedron in the triangulation, all the bivectors associated to the 
triangles of the tetrahedron are constrained to satisfy

20 Generalizations to complex Barbero–Immirzi parameter are of interest. Clearly, a very special role is played by 
γ =±i.
21 Notice that the relation between B and � is not invertible if γ =∓i. Indeed, in this case, the (anti-)selfdual part of 
B is projected out of the theory.
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UIBIJ
!= 0, or UI

[
(1− γ �)�

]
IJ

!= 0, (29)

with UI a unit time-like normal, which can be fixed to UI = (1, 0, 0, 0)T by an SL(2, C) gauge 
transformation. Upon quantization, � becomes a derivative operator acting on the connection 
variables. More precisely, the operator associated to � is a right invariant vector field on SL(2, C)

that acts as a derivative on the spin-network functions ψ�({G
}). For this reason, in the quantum 
theory, �IJ acts on ψ� as the sl2C Lie algebra generator J IJ . Hence, by decomposing the 
sl2C generators into boosts and rotations with respect to the frame UI = (1, 0, 0, 0)T , that is, 
Ki = J 0i and J i = 1

2ε
0i

jkJ jk , the linear simplicity constraint can be restated at the quantum 
level as

(Ki − γ J i)
|ψ�〉 != 0. (30)

The constraint operators, however, do not commute among themselves, and thus cannot be 
imposed strongly on the states. One solution to this issue is to impose them weakly, i.e. in expec-
tation value

〈ψs |(J i − γ−1Ki)
|ψs〉 != 0, (31)

another is to use the master constraint technique [117–121,44,95].
Implementation of the quantum simplicity constraint reduces in a nontrivial fashion the 

possible SL(2,C) unitary irreps in ψ� , i.e. after the imposition of the constraints only some 
s = (j
, ρ
; In) are allowed. It turns out that the irreps that survive have a constant ratio between 
ρ
 and j


ρ
 = γj
, (32)

where γ is Barbero–Immirzi parameter that appears in the Holst action of eq. (25). Consequently, 
the allowed SL(2, C) intertwiners are reduced to a finite-dimensional subspace, specifically, to 
those contained in the image of the injection Yγ of SU(2) intertwiners (see eq. (13)). The result-
ing spectrum of SL(2, C) spin-network functions, after the reduction, has the same expression 
as the class of �5-graph operators defined previously, and after the imposition of the constraints 
(notated with the exclamation mark) one has

ψ�5,s

(
G
[A]

) != �5
(
j
, in

∣∣A, Ā
)
, (33)

where s =
(
j
, ρ
 = γj
; In = I

(
i
{j
}
n

))
and A = (A, Ā). Notice, however, that the previous 

equation can be only formal, since its left hand side is defined within BF theory while the right 
one is defined within Chern–Simons theory, nonetheless we will use it as a notational shorthand.

The leitmotiv of the EPRL construction, then, is the treatment of quantum gravity as a con-
strained BF theory, with the constraint imposed after quantization. The simplicity constraint 
imposes geometricity conditions on the boundary state for each 4-simplex, while the BF theory 
dynamics is retained inside the 4-simplex. This is analogous to the Regge calculus of simplicial 
general relativity [18,122,123], where inside each (small) 4-simplex the geometry is trivially flat, 
while the full manifold geometry (e.g. metric, curvature) is reflected both in the shape of the flat 
4-simplices and in the gluing between them. This perspective and the relation with Regge calcu-
lus has been confirmed through large-j asymptotic analysis [94,99,100,124,46,125–127]. Once 
again, the question of how to remove this discreteness is controversial and is beyond the scope 
of this paper.
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Thus, the EPRL spinfoam amplitude of a single 4-simplex σ is given simply by evaluating 

the constrained spin-network functional �5

( �j,�i ∣∣A, Ā
)

at the trivial connection, with the last 
requirement following from the imposition of BF dynamics within each single spin-network 
vertex,

ZEPRL

(
σ
∣∣ �j,�i ) := 〈BF|�5

( �j,�i )〉 = �5

( �j,�i ∣∣0) . (34)

This is effectively a transition amplitude of a boundary SU(2) spin-network state. A substantial 
body of results in LQG shows that three-dimensional quantum geometry is described by SU(2)
spin networks [27–29,107,108,111,112]. Thus, the EPRL spinfoam amplitude is understood as 
a transition amplitude between boundary quantum geometries. The full spinfoam amplitude is 
given by first multiplying all the amplitudes ZEPRL(σ ) of the bulk 4-simplices, and then summing 
over the intermediate boundary states labeled by ( �j, �i).

Before moving on, it is important to notice that the way the simplicity constraint are im-
plemented makes use of the time gauge, in which the frame UI is chosen to have the form 
UI = (1, 0, 0, 0)T . This can be done without loss of generality, since covariance will be restored 
explicitly in the following steps. Nonetheless, it is important to keep this fact in mind, since it 
will turn out to be crucial for the geometrical interpretation of the Wilson graph operator in the 
asymptotic limit.

3.2. Deformation and cosmological constant

The Chern–Simons expectation value of the �5-graph operator, eq. (18), can be understood 
as a deformation of the above EPRL construction of the 4-simplex amplitude, by including a 
cosmological constant in the BF theory. We propose this expectation value as a new spinfoam 
4-simplex amplitude in LQG that properly includes the cosmological constant in the theory.

In this section we repeat the construction of the last section with an extra cosmological term 
inserted in the Holst-twisted BF action,

SH�BF =−1

2

∫
M

≺
[(

1− 1

γ
�

)
B

]
∧F[A] � − �

6
≺
[(

1− 1

γ
�

)
B

]
∧B � . (35)

It is obvious that when the simplicity constraint BIJ = eI ∧ eJ is imposed, SH�BF reduces to the 
Holst action of gravity with the proper cosmological constant term proportional to � det(e) (see 
Appendix A for our conventions). Note, that the term proportional to �/γ drops out once the 
simplicity constraints are imposed. However, the extra term is necessary to obtain the expected 
equations of motion under variations of the B field; indeed, by using the fact that the operator 
(1 − γ−1�) is invertible, one obtains F[A] = �

3 B , which in turn yields for simple B = e∧ e the 
result

F[A] = �

3
e ∧ e. (36)

In standard BF theory, the solution of the equations of motion corresponds to a flat geometry 
if the connection A is viewed geometrically. However, now the solution has been deformed to 
correspond to constant curvature geometry. Next, we employ a methodology similar to that of 
the EPRL model to construct the deformed 4-simplex spinfoam amplitude. The bulk dynamics 
is fixed to that of H�BF within the 4-simplex, while the geometrical simplicity constraint is 
imposed at the quantum level to the boundary state. The construction should relate (in a certain 
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regime) to Regge calculus with constant curvature 4-simplices. This expectation is confirmed by 
the asymptotic analysis in the main body of the paper.

Consider the functional integration of the H�BF theory in a single 4-simplex σ . Let ψ�5 be 
again the SL(2, C) spin-network function on the dual 4-simplex graph �5. The H�BF 4-simplex 
amplitude of the boundary state ψ�5 can then be written in the same way as in eq. (21),

〈H�BF|ψ�5〉 =
∫

DAD� exp (−iSH�BF)ψ�5[A∂ ] . (37)

The integration over � is Gaussian and can be performed straightforwardly, omitting irrelevant 
normalization factors it gives

〈H�BF|ψs〉 =
∫

DA exp

⎧⎨⎩ 3i

4�

∫
σ

≺F ∧
[(

1− 1

γ
�

)
F
]
�
⎫⎬⎭ψ[A∂ ] . (38)

Neglecting for one moment the 1/γ -terms, the resulting action is precisely the evaluation of 
the second Chern form of A on σ . To regain this interesting form even in the presence of the 
Holst contributions, we decompose the curvature into its self-dual and anti-self-dual parts with 
respect to the � operator.

The self-dual and anti-self-dual parts of a Lie algebra element X ∈ sl2C are given by

X± := 1

2
(1∓ i�)X , (39)

respectively. Notice that in the previous equation the imaginary unit is necessary because �2 =
−1; this is due to the Lorentzian spacetime signature. This means that we have to complexify 
sl2C before decomposing it into its self- and anti-self-dual parts. The relations �X± = ±iX±, 
which eq. (39) implies, mean that X± have three complex independent components each; the 
same number as two complex su(2)C algebras. It turns out that this is no coincidence, the self-
and anti-self-dual parts of the complexified (sl2C)C actually form two commuting complexified 
su(2)C algebras:

(sl2C)C = su(2)+
C
⊕ su(2)−

C
, (40)

where ± label the action of � on the two complex subalgebras. Therefore, the self-dual (or the 
anti-self-dual) part of (sl2C)C must be isomorphic to the real sl2C algebra. The real sl2C we 
started from can be regained by requiring X−=X+, where the overbar stands for complex con-
jugation.

Two technical ingredients are needed before continuing. First, note that < X+, X− >=
≺ X+, X− �= 0, since P± := 1

2 (1 ∓ i�) are orthogonal projectors tailored to the action of the 
Hodge �. We also define

T i± :=
1

2

(
J i ± iKi

)
(41)

to be the generators of su(2)±
C

, respectively, and check that

≺ T i±, T
j
± �=±iδij and [T i±, T

j
±] = εij kT

k±. (42)

See Appendix B for full details on the notation and any necessary clarification.
With this decomposition in hand, the Lagrangian density appearing in eq. (38) can be rewritten 

as
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≺F ∧
(

1− γ−1�
)
F �= (γ − i)

γ
≺ F ∧ F �+ (γ + i)

γ
≺ F̄ ∧ F̄ �, (43)

where F = P+F and F̄ = P−F are the self-dual and anti-self-dual parts of the curvature F . 
Moreover, as is well known, they are also equal to the curvature of the self-dual and anti-self-dual 
parts of the (real) connection A, namely of A and Ā, respectively.

The Lagrangian can be recast in terms of traces in the fundamental su(2) representation. We 
set T k± := τ k with τ k := − i

2σ
k and {σk}k=1,2,3 the Pauli matrices (see Appendix B), so that

≺ T i±, T
j
± �=∓2i Tr(T i±T

j
±)≡∓2i Tr

(
τ iτ j

)
=±iδij . (44)

Then, the Lagrangian of eq. (38) reads

≺F ∧
(

1− γ−1�
)
F �=−2i

(γ − i)

γ
Tr (F ∧ F)+ 2i

(γ + i)

γ
Tr
(
F̄ ∧ F̄

)
, (45)

and we have the second Chern form Tr (F ∧ F) appearing explicitly in the action.
According to the Chern–Weil theorem (see e.g. [128]), the integral of the second Chern form 

over the interior of a 4-simplex M4 = σ can be evaluated as the integral of the Chern–Simons 
form on its boundary ∂σ ∼= S3∫

σ

Tr (F ∧ F)=
∫

∂σ∼=S3

Tr

(
A∧ dA+ 2

3
A∧A∧A

)
. (46)

The complex-conjugated relation holds for the anti-self-dual part of the curvature.
In order to simplify notation and agree with common conventions, we introduce the holomor-

phic Chern–Simons functional

W [A] := 1

4π

∫
S3

Tr

(
A∧ dA+ 2

3
A∧A∧A

)
. (47)

The normalization is chosen so that W [A] is SU(2)-gauge invariant modulo 2πZ, and therefore 
the exponential exp (ikW [A]) is gauge invariant provided k ∈ Z.

Finally, we rewrite the H�BF amplitude of the boundary state ψ�5 on a 4-simplex in terms 
of SL(2, C) Chern–Simons theory

〈H�BF|ψ�5〉 =
∫

DADĀ exp

(
−i

h

2
W [A] − i

h̄

2
W [Ā]

)
ψ�5[A, Ā] . (48)

This is the Chern–Simons expectation value of a graph operator ψ�5[A] =ψ�5[A, Ā]. The com-
plex Chern–Simons couplings h and h̄ are related to the cosmological constant � and to the 
Barbero–Immirzi parameter by

h= 12π

�

(
1

γ
+ i

)
and h̄= 12π

�

(
1

γ
− i

)
. (49)

The coupling h̄ is the complex conjugate of h provided γ ∈ R, which we will always assume. 
Note that the action

CS[A, Ā] = h

2
W [A] + h̄

2
W [Ā] (50)

which appears in eq. (48) is always real and equal to �(h W [A]).
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A compact gauge group SU(2) ×SU(2) version of eq. (48) was proposed by one of the authors 
in [47], it covered the quantum deformation of a Euclidean spinfoam model. A similar proposal 
to eq. (48) also appeared in [60], where the Wilson graph operator was different, but the Chern–
Simons action had exactly the same complex weight. In that case the Chern–Simons weight was 
fixed by requiring that exp

(−iCS[A, Ā]) formally solved the Hamiltonian constraint of (Holst) 
general relativity expressed in the complex Ashtekar variables.22 As will become clear later, this 
precise form of the Chern–Simons weight is also necessary for the semiclassical analysis of the 
amplitude to admit a clear geometrical interpretation, and so eventually explains the requirement 
1+iγ
h
∈R, imposed in the subsequent analysis, from a geometrical perspective.

It is sometimes useful to split h into its real and imaginary parts:

h= k + is , where k = 12π

�γ
and s = 12π

�
. (51)

Since the action CS[A, Ā] is gauge invariant only modulo 2π , for exp (i CS) to be gauge invari-
ant, we need

k ∈ Z and s ∈ γZ . (52)

It is now straightforward to deform the EPRL 4-simplex amplitude to one including a cosmo-
logical constant. Indeed, following the recipe of the previous section, we only need impose the 
simplicity constraints on the boundary states ψ�5 . The space of possible boundary states is then 

reduced to the subspace of �5-graph operators �5

( �j,�i ∣∣A, Ā
)

labeled by SU(2) spin-network 

data 
( �j,�i ). Therefore, using eq. (48) to replace eq. (21) and imposing the quantum simplicity 

constraints, we obtain the deformed EPRL 4-simplex amplitude23

Z�EPRL

(
σ
∣∣ �j,�i ) := 〈H�BF|�5

( �j,�i )〉
=
∫

DADĀ exp

(
−i

h

2
W [A] − i

h̄

2
W [Ā]

)
�5

( �j,�i ∣∣A, Ā
)
. (53)

Note that in the last expression the connection in the bulk of the 4-simplex has disappeared, and 
only its values on the boundary, which is isomorphic to S3, play a role (we omit the subscript 
∂ on the connections A, Ā). But, this is precisely the Chern–Simons evaluation of the �5-graph 
operator ZCS(S

3; �5) introduced in eq. (18),

Z�EPRL(σ )=ZCS(S
3;�5). (54)

Because Chern–Simons theory is sensitive to the crossings appearing in the projection of a 
graph to the plane, we need to make a choice for the knotting of the graph �5 used to define 

�5

( �j,�i ∣∣A, Ā
)

. We choose such a knotting as in Fig. 1. This choice turns out to be well moti-

vated geometrically, as will be explained later on.
Importantly, the above construction and the result (54) illustrate the relation between SL(2, C)

Chern–Simons theory and 4-dimensional covariant LQG with cosmological constant at the level 
of a 4-simplex.

Before continuing let us comment briefly on the requirement

22 See also the works [58,59], in turn inspired by [55–57].
23 The papers in which this formula first appeared (basically simultaneously) are [47] and [60].
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12π

�γ
≡ k ∈ Z , (55)

which has indeed a very natural interpretation. To see this let us introduce the cosmological 
radius of curvature R� := √3/|�|. Then, the previous condition reads

4πR2
� = γ |k| ∈ γN, (56)

which says that the area of the cosmological horizon is quantized in units of the quantum of 
area. This is also nicely consistent with the fact that in SU(2) Chern–Simons theory of level k
only observables with spins up to |k|/2 are allowed. Indeed, even if the Chern–Simons theory 
we are using is SL(2, C) Chern–Simons with complex level h = k+ is, as we will show later on, 
it reduces to an SU(2) Chern–Simons with level k close to the vertices of the graph. Hence the 
previous condition just says that the cosmological horizon has (twice) the area associated with 
the maximal allowed spin.24

4. Semiclassical and zero-cosmological-constant limits

Let us reintroduce physical units in the previous formulae, the goal being to distinguish the 
semiclassical and the zero-cosmological-constant limits. It turns out that the semiclassical limit 
corresponds to the double-scaling limit of ZCS(S

3; �5) in eq. (18) (or equivalently of Z�EPRL(σ )

in eq. (53)), which we recall consists in taking jab, h →∞ uniformly and keeping the ratios 
jab/h fixed. On the other hand, the zero-cosmological-constant limit is taken by only sending 
h →∞ while keeping jab fixed.25

We start from the �BF action. In our diffeomorphism invariant treatment, we consider coor-
dinates to be just labels, and therefore dimensionless. Dimensional units are then carried by the 
metric gμν , which has units of length squared. This can be read directly from ds2 = gμνdxμdxν , 
since ds is a physically meaningful and measurable quantity (we will keep c = 1). From this 
starting point, it is most natural to assign units to the tetrad field via gμν = ηIJ e

I
μe

J
ν ; therefore e

has units of length.
The field B will eventually (i.e. after the imposition of the simplicity constraints) turn out to 

be equal to e ∧ e, so it has the units of an area. Because we have chosen dimensionless coordi-
nates, the connection is also dimensionless. One can see this from the formula for the covariant 
derivative D· = d · + [A, ·]. Consequently, the curvature F is dimensionless, too.

From this discussion, it follows that, for the �BF action of eq. (35) to have the correct units, 
it must first be divided by a constant with units of an area, and then multiplied by a constant 
carrying the units of an action. To eventually recover general relativity, as well as the usual path 
integral prescription where the action is weighted by h̄, these constants must be the squared 
Planck length 
2

P = 8πh̄GN and h̄ respectively

1

h̄
S�BF =− 1

2
2
P

∫
M4

≺
[(

1− γ−1�
)
B
]
∧F �− �

6
≺
[(

1− γ−1�
)
B
]
∧B � . (57)

From this formula it is also clear that γ is dimensionless, while � has units of inverse area.

24 Even the factor of 2 can be heuristically explained: a convex spherical triangle has always area less than 2π and at 
least two (“degenerate”) triangles are needed to cover the surface of a sphere.
25 Of course, h is the Chern–Simons coupling here and is not to be confused with Planck’s constant; we will always use 
the reduced form to distinguish the latter, h̄.
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A moment of reflection shows that after the integration of the B field, � being the only 
dimensionful quantity left, units can be restored by simply replacing � 	→ 
2

P�. Therefore, for 
the dimensionless Chern–Simons coupling, the restoration of physical units gives

h= 12π


2
P�

(
1

γ
+ i

)
. (58)

The kinematics of LQG [27–29,112] predicts that γ
√
j (j + 1) are the eigenvalues of the 

quantum area operator in Planck units, where j is the SU(2) irrep label entering the knotted 
graph operator �5(jab, ξab | A, Ā). Therefore jab is related to the physical (dimensionful) area 
aab by√

jab(jab + 1)= 1

γ 
2
P

aab. (59)

The semiclassical limit is obtained by sending h̄→ 0, and accordingly 
2
P → 0, while keeping 

the dimensionful quantities aab and � invariant and finite.26 This limit corresponds exactly to the 
double-scaling limit where jab, h →∞ uniformly with the ratio jab/h fixed. This double-scaling 
provides a generalization of the spinfoam large-j limit (see e.g. [94,124,99,100,129–133,136,
137]) to our deformed EPRL spinfoam amplitude including a cosmological constant.

The other physically interesting limit we consider is that of vanishing cosmological constant. 
It can be obtained by sending � → 0, holding all other quantities fixed. This limit arises for 
h →∞ while keeping all other quantities finite. Therefore, the zero-cosmological constant limit 
of this theory can be obtained by projecting the Chern–Simons sector onto its classical solutions 
on ∂M4. But, the Chern–Simons classical equations of motion simply impose flatness of the 
connection A∂ on the entirety of ∂M4, much as BF theory would do. Therefore, it turns out, 
consistently, that the � → 0 limit of ZCS(S

3; �5) is the usual EPRL spinfoam amplitude.
There is a final limit that would be interesting to consider in more detail, namely, taking 

the Barbero–Immirzi parameter to infinity, γ →∞. On the spinfoam side this limit reduces the 
EPRL graph operator to the Lorentzian Barrett–Crane one [41,42], while on the SL(2, C) Chern–
Simons theory side it approaches the sector of the theory where a quantum-group interpretation 
is available. Interestingly, a quantum deformed version of the Lorentzian Barrett–Crane model 
has been introduced and studied in [43]. It would therefore be intriguing to study the relationship 
between the latter model and the one we propose here. This is left for future work.

5. Integral representation of the knotted graph operator

In this section we begin the analysis of the asymptotic behavior of the Chern–Simons expec-
tation value ZCS(S

3; �5 | jab, ξab) in the double-scaling limit of eq. (3). We rewrite the knotted 
graph operator �5(jab, ξab | A, Ā) of eq. (18) or (53) as an explicit integral; this allows us to 
apply the stationary phase method to the asymptotic analysis. The following derivation is a gen-
eralization of the path integral asymptotics for the EPRL spinfoam amplitude [94,124,99,100,
138].

One of the key ingredients is an expression for the SL(2, C) Wigner matrices of a unitary irrep 
D(j,γj)(A, Ā) in the coherent state basis (see Section 2). The Hilbert space H(j,ρ) of the (j, ρ)

26 The Barbero–Immirzi parameter γ is fixed to be a finite constant here. See, however, [129–135,125–127] where the 
scaling of γ is also involved in the limit.
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unitary irrep can be given [91] in terms of homogeneous functions of two complex variables 
(z0, z1) with degree (−1 + iρ + j ; −1 + iρ − j), i.e. such that for any ω ∈C \ {0}

f (ωzα)= ω−1+iρ+j ω̄−1+iρ−j f (zα), (60)

where zα is a two-component spinor (α = 0, 1). Now, given a general spinor zα , we build the 
SU(2) matrix

g(z) := 1√〈z, z〉
(
z0 −z̄1

z1 z̄0

)
≡ 1√〈z, z〉 (z, J z), (61)

where we have introduced J : (z0, z1)T 	→ (−z̄1, ̄z0)T . We also recall the expression of the 
Hermitian inner product on C2, 〈z, w〉 := δα̇αz̄

α̇wα . The restriction of the canonical basis 
f

(j,ρ)
l,m (z) = 〈z |(j, ρ); l, m〉 of H(j,ρ) to normalized spinors (z such that 〈z, z〉 = 1) is given by

f
(j,ρ)
l,m (z)=

√
2l + 1

π
Dl

m j (u(z)) , (62)

where Dl (u) is the usual SU(2) Wigner matrix of u ∈ SU(2) in the spin-l irrep. Evaluating 
f

(j,ρ)
l,m (z) on an unnormalized spinor by using the homogeneity of eq. (60), we obtain

f
(ρ,j)
l,m (z)=

√
2l + 1

π
〈z, z〉iρ−1−lDl

m j (u(z)) . (63)

The action of g ∈ SL(2,C) on the canonical basis f (ρ,j)
l,m (z) is given by(

g � f (ρ,j)

l′,m′
)
(z)= f

(ρ,j)
l,m (gT z), (64)

where gT is the transpose of g in the fundamental representation. The inner product of H(j,ρ) is 
given by

〈(j, ρ); l,m|(j, ρ); l′,m′〉 :=
∫

CP
1

dμ(z) f
(ρ,j)
l,m (z)f

(ρ,j)

l′,m′ (z)= δj,j ′δm,m′ , (65)

where dμ(z) := i
2 (z0dz1 − z1dz0) ∧ (z̄0dz̄1 − z̄1dz̄0).

Recall that the coherent states |j, ξ 〉 are contained in the knotted graph operator �5(jab, ξab |
A, Ā). There is an important factorization property of these coherent states; for example, when 
we compute the SU(2) irrep matrix element in the coherent state basis we find,

〈j, ξ |h|j, ξ ′〉 = 〈ξ,hξ ′〉2j (66)

for any h ∈ SU(2); here ξ, ξ ′ ∈ C
2 are understood to be normalized 2-spinors. Now, recall the 

injection Yγ of eq. (13). We would like to represent the coherent state Yγ |j, ξ 〉 ≡ |(j, γj), j, ξ 〉 ∈
H(j,γj) by a homogeneous function of two complex variables. By eq. (62), we can write explicitly 
the highest weight state Yγ |j, j〉 ≡ |(j, γj), j, j〉

f
j
j (z)

(j,γj) =
√

dim(j)

π
〈z, z〉iγj−1−j (z0)2j . (67)

Therefore, by definition the coherent state Yγ |j, ξ 〉 ≡ |(j, γj), j, ξ 〉 can be represented using

|(j, γj); j, ξ〉 ≡ f
j
ξ (z)

(j,γj) = f
j
j

(
g(ξ)t z

)(j,γj) =√dim(j) 〈z, z〉iγj−1−j 〈z̄, ξ 〉2j . (68)

π
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Let us introduce notation to describe the quantities living on the �5-graph of Fig. 1. Graph 
vertices are labeled by a, b, . . . ∈ {1, . . . , 5}, and hence, edges are labeled by unordered couples 
of indices (ab). Further, we fix orientation: for all pairs (a, b) with a < b orient the edge from b
to a. The SL(2, C) holonomy along the edge (ab), from b to a, is then denoted Gab; this makes 
it natural to introduce the convention G−1

ab =Gba . The spins for each edge are jab = jba . There 
are two (different) normalized spinors sitting at the two endpoints of edge (ab), ξab and ξba , 
respectively at vertex a and b.27

The knotted graph operator �5(jab, ξab | A, Ā) can then be written (see [94] for details)

�5(jab, ξab |A, Ā)=
∫

SL(2,C)

5∏
a=1

dga
∏
a<b

〈jab, J ξab|Y †g−1
a GabgbY |jab, ξba〉, (69)

where Gab = Gab[A, Ā] denotes the holonomy of the Chern–Simons connection (A, Ā), and 
dga is the Haar measure on SL(2, C). Each factor can be conveniently recast using the above 
expression for Yγ |j, ξ 〉, yielding

〈j, J ξ |Y †gY |j, ξ ′〉j =
∫

CP
1

dμ(z) f
(γj,j)

j,j

(
ξT z
)
f

(γj,j)

j,j

(
(gξ ′)T z

)

= 2j + 1

π

∫
CP

1

dμg(z) exp
[
Sw(z, g, ξ, ξ

′, j)
]
, (70)

an expression valid for all g ∈ SL(2, C). For ease of notation, we have introduced the scale 
invariant measure on CP1

dμg(z) := dμ(z)

〈z̄, z̄〉〈g†z̄, g†z̄〉 , (71)

and the “spinfoam wedge action”

Sw(z, g, ξ, ξ
′, j) := 2j ln

〈Jξ, z̄〉〈g†z̄, ξ ′〉
〈z̄, z̄〉1/2〈g†z̄, g†z̄〉1/2

+ 2iγj ln
〈g†z̄, g†z̄〉1/2

〈z̄, z̄〉1/2
. (72)

Hence, we now have the following integral representation of the �5 knotted graph operator,

�5(jab, ξab |A, Ā)

=
∏
a<b

(
2jab + 1

π

) ∫
SL(2,C)

∏
a

dga

∫
CP

1

∏
a<b

dμ
gaGabg

−1
b
(zab) exp(S�5) (73)

for which we introduce the �5-graph spinfoam action

S�5 =
∑
a<b

2jab ln
〈Jξab, z̄ab〉〈g†

bG
†
ab(g

†
a)
−1z̄ab, ξba〉

〈z̄ab, z̄ab〉1/2〈g†
bG

†
ab(g

†
a)
−1z̄ab, g

†
bG

†
ab(g

†
a)
−1z̄ab〉1/2

+ 2iγjab ln
〈g†

bG
†
ab(g

†
a)
−1z̄ab, g

†
bG

†
ab(g

†
a)
−1z̄ab〉1/2

〈z̄ab, z̄ab〉1/2
. (74)

27 The idea behind these conventions is that Gab can act on ξba because the index b appears in sequence; this guarantees 
that both quantities are defined in the same reference frame. Similarly GabGbc is a valid expression, while e.g. GabGac

or Gabξab are not.
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Note that S�5 is neither a holomorphic nor an anti-holomorphic function of the Chern–Simons 
connection. This follows from the fact it is derived using the unitary irreps of SL(2, C).

To shorten the formulae, we group all the measure factors in eq. (73) into

d�g,z =
∏
a<b

(
2jab + 1

π

)∏
a

dga
∏
a<b

dμ
gaGabg

−1
b
(zab). (75)

Finally, we obtain the Chern–Simons expectation value of the �5 knotted-graph operator ex-
pressed in the path-integral form

ZCS(S
3;�5 | jab, ξab)=

∫
DADĀ

∫
d�g,z exp

(
I�5[jab,A, Ā, ga, zab, ξab]

)
, (76)

where the total action I�5 is

I�5 [jab,A, Ā, ga, zab, ξab] := −i
h

2
W [A] − i

h̄

2
W [Ā] + S�5 [jab,A, Ā, ga, zab, ξab]. (77)

The action I�5 is invariant (modulo 2πZ) under local SL(2, C) gauge transformations of the 
Chern–Simons theory at any point x ∈ S3. In particular, whenever xa ∈ S3 is the position of the 
vertex a of �5, one finds that the ga and Gab are modified

ga 	→G(xa)ga, and Gab 	→G(xa)GabG(xb)
−1. (78)

We can use this gauge freedom at the vertices of the graph to set all the ga to the identity. Through 
this gauge fixing, the (infinite) integral 

∫ ∏
a dga drops out of d�g,z. We will keep referring to 

the gauge-fixed spinfoam and total actions with the same letters S�5 and I�5 ,

I�5 =−iCS[S3 |A, Ā] + S�5[jab,A, Ā, zab, ξab]

= −i
h

2
W [A] − i

h̄

2
W [Ā] +

∑
(ab),a>b

2jab ln
〈Jξab, z̄ab〉〈G†

abz̄ab, ξba〉
〈z̄ab, z̄ab〉1/2〈G†

abz̄ab,G
†
abz̄ab〉1/2

+ 2iγjab ln
〈G†

abz̄ab,G
†
abz̄ab〉1/2

〈z̄ab, z̄ab〉1/2
. (79)

Still there remains an SU(2) gauge symmetry of eI�5

Gab 	→ haGabh
−1
b , ξab 	→ haξab, and zab 	→ hazab, ∀ha ∈ SU(2), (80)

as well as a scaling gauge symmetry of the zab

zab 	→ κzab, ∀ κ ∈C \ {0}. (81)

It is practical to use this last symmetry to fix the norm of the zab to unity.
In the zero-cosmological-constant limit h →∞, the connections A, Ā become trivial on S3. 

Then Gab is purely gauge Gab = g−1
a gb , and I�5 reduces to the usual spinfoam action in [94] by 

a change of variables z̄ab 	→ g
†
azab .

Another interesting property of the knotted graph operator we have just described, that is ∫
d� expS�5 , is that it is essentially invariant under the reversal of any of its edges. Indeed, 

under this operation the graph operator acquires only a sign (−1)2jab . This is a nontrivial fact in 
the present formulation. However, it is true by construction in the formulation of [94].

Importantly the total action I�5 is linear in both the spin jab and the Chern–Simons cou-
plings h and h̄. The double-scaling limit can be conveniently carried out by uniformly rescaling 
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jab → λjab and h → λh, and sending λ →∞.28 The total action scales as I�5 → λI�5 . Thus 
the asymptotic behavior of the Chern–Simons expectation value ZCS(S

3; �5 | jab, ξab) can be 
studied using stationary phase methods.

For ease of notation, in what follows we will drop the subscript �5 from the action functionals.

6. Stationary phase analysis

The stationary phase method studies the asymptotic behavior of the following type of integral 
as λ →∞ (Theorem 7.7.5 in [139])

f (λ)=
∫

dx r(x) eλS(x), (82)

where S(x) and r(x) are smooth, complex valued functions, and ReS ≤ 0. For large parameter 
λ the dominant contributions to the integral come from the critical points xc of S(x) that satisfy 
�S(xc) = 0. The asymptotic behavior of the above integral for large λ is then given by

f (λ)=
∑
xc

(
2π

λ

) rnk(xc)
2 eiIndH ′(xc)
√|detH ′(xc)| r(xc)e

λS(xc)

[
1+O

(
1

λ

)]
(83)

for isolated critical points xc. Here rnk(xc) is the rank of the Hessian matrix Hij (xc) = ∂i∂j S(xc)

at the critical point xc and H ′(xc) is the invertible restriction onto kerH(xc)
⊥. Finally IndH ′(xc)

is a Maslov index, generalizing the π/4 one finds in the standard stationary phase analysis of a 
one variable function (see [140] for a recent discussion of Maslov indices and their computation). 
If S(x) does not have any critical points, f (λ) decreases faster than any power of λ−1.

In the last section the Chern–Simons expectation value ZCS(S
3; �5 | jab, ξab) was put in a 

form adapted to the stationary phase analysis. The asymptotic behavior in the doubling scaling 
limit j, h →∞ and j/h fixed, (or λ →∞) is obtained, at the leading order, by finding all the 
critical points of the action and evaluating the integrand eλI�5 at each critical point. (Though, 
we do not attempt to calculate the scaling of the “amplitude determinant” associated to the de-
terminant of the reduced Hessian.) In ZCS(S

3; �5 | jab, ξab) there are two types of integration 
variables, (A, Ā) and zab . The critical equations are given by the variational principle with re-
spect to these variables δA,ĀI = δzab I = 0, and the requirement that the real part of the action 
�(I ) is at its maximum (which will shortly be shown to be zero). The data jab and ξab are not 
involved in the integral, so they are consider fixed, external data, or from the LQG point of view, 
the boundary data of this (basic) spinfoam amplitude.

6.1. Real part of the action

The total action I�5 is generally a complex number. Nonetheless, its Chern–Simons part is 
equal to i�(hW [A]) and is therefore purely imaginary. The only real contributions come, there-
fore, from the knotted graph operator S. A quick inspection of S in eq. (74) shows that the only 
real contribution comes from the first term of this equation and is equal to

�(I )=�(S)=
∑
a<b

jab ln
|〈Jξab, z̄ab〉|2|〈G†

abz̄ab, ξba〉|2
〈z̄ab, z̄ab〉〈G†

abz̄ab,G
†
abz̄ab〉

. (84)

28 Note that λ →∞ here is just a dimensionless way to speak about the 
2 → 0 limit of the previous section.

P
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The Cauchy–Schwarz inequality, together with the normalization of the spinors ξab, proves that 

�(I�5) ≤ 0. Therefore, the critical equation �(I�5) 
!= 0 gives

Jξab
!= αa

b z̄ab and ξba
!= αb

aG
†
abz̄ab (85)

for some complex numbers αab, αba ∈C. The above equations imply relations among the spinors 
ξab . Using JgJ−1 = g†−1 ∀g ∈ SL(2,C), along with J−1 =−J , one finds

ξab
!= −e−ψab−iϕabGab(J ξba), (86)

where e−ψab := |αa
b/α

b
a | ∈R

+ and ϕab := arg(αa
b/α

b
a) ∈ [0, 2π).

6.2. Variation of the CP1 variables zab

Next, we consider variations with respect to the CP1 variables zab. For definiteness, we fix 
the scaling symmetry of eq. (81) by choosing the section of CP1 given by normalized spinors 
〈zab, zab〉 = 1. A general variation of z ∈ C

2 is given by δz= ωz+ ε(J z), with ε, ω ∈ C. Since 
we work at linear order, the ε- and ω-variations are independent and do not influence each other. 
The rescaling of the zab variables has been gauge-fixed, so the ω-variation is not allowed, and can 
be discarded. Thus, we need only consider the ε-variation. A short calculation, in analogy with 

[99,100], shows that δzabI�5

!= 0, on the �(I�5) = 0 hypersurface, translates into the requirement

Jξab
!= eψab+iϕabGabξba . (87)

The proportionality constants of eqs. (86) and (87) are inverses of one another. This fact is a con-
sequence of the orthonormality and completeness of the two bases {ξab, Jξab} and {ξba, Jξba}, 
as well as the fact that Gab has unit determinant.

6.3. Variation of Chern–Simons connection

It is well known that the variational principle of Chern–Simons theory gives F(A) != 0 !=
F(Ā), i.e. that A and Ā are flat connections on the 3-manifold M3 on which the theory is defined. 
In the presence of Wilson-lines, e.g. Wilson-loops and knotted graph operators, the variations 
with respect to A and Ā give flat connections on the graph complement.29 The critical equation 
we obtain here is then

F(A)
!= 0

!= F(Ā) on M3 := S3 \ �5, (88)

where M3 is the �5-graph complement on S3.
When Wilson-lines are included in the theory, the on-shell Chern–Simons connection usually 

gives a singular curvature on the Wilson-lines. As an equivalent description of the same fact, 
the flat connection (A, Ā) on the graph complement M3 is nontrivial, since M3 has nontrivial 
topology. There is a nontrivial holonomy along the transverse cycles that go around each tube 
surrounding a Wilson-line. This fact can be viewed as an analog of the Aharonov–Bohm effect 
[141]. The holonomy around each tube can be thought of as the boundary data for the equation 

29 Given a general, knotted graph embedded in M3 it can be thickened to a region including a tubular neighborhood of 
the graph; the graph complement 3-manifold is obtained by removing this tubular neighborhood from M3 .
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of motion (88), implemented on ∂M3, which is a genus-6 Riemann surface (see Fig. 3). These 
boundary data, for the flat connection, are determined by the knotted-graph operator. They are 
derived from the variational principle of the coupled system I including both the Chern–Simons 
action and the contribution S of the knotted-graph operator.

The above argument is implemented concretely in our context by the following derivation. To 
begin with we calculate the variation of the Chern–Simons part of the action with respect to the 
connection, yielding30

δW [A]
δAi

μ(x)
=− 1

8π
εμρσF i

ρσ [A](x) . (89)

For what concerns the knotted-graph-operator part of the action S, its dependence on the 
connection A :=Ai

μτidx
μ is limited to the holonomies Gab,

Gab[A] := P exp
∫

ab

A. (90)

Hence, we first calculate δGab[A]/δAi
μ(x)

δGab[A]
δAi

μ(x)
=
⎛⎝ 1∫

0

δ(3)(x − 
(s))
d
μab
ds

ds

⎞⎠Ga,sabτiGsab,b , (91)

with sab now understood to be the (supposedly) unique solution of the condition given by the 
delta-function argument, i.e. 
ab(sab) = x. We will often write the two-dimensional distribution 
appearing in this equation symbolically as

δ
(2) μ

 (x) :=

1∫
0

δ(3)(x − 
(s))
d
μ

ds
ds . (92)

For the variation of the hermitian conjugate holonomy G†

 with respect to Ā, we find

δ(Gab)
†[Ā]

δĀi
μ(x)

=
⎛⎝ 1∫

0

δ(3)(x − 
−1
ab (s))

d(
−1
ab )

μ

ds
ds

⎞⎠ (Gsab,b)
†τi(Ga,sab )

† . (93)

Note that δG†/δA = δG/δĀ= 0, where A and Ā are considered independent.
Using the previous equations, we can compute the variation of the total action I�5 with respect 

to A (
δI

δAi
μ(x)

)
�(I )=0

=+i
h

16π
εμρσF i

ρσ (x)

+ (1+ iγ )
∑

(ab),a>b

jab 〈ξba,
[
(Gsab,b)

−1τ iGsab,b

]
ξba〉 δ(2) μ
ab

(x) . (94)

Once again in our notation Gs,b = G−1
b,s . Note that eq. (85) has been used to simplify the final 

expression. Similarly, we find

30 In Appendix C the reader can find the main calculations of this section spelled out in some detail.
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(
δI

δĀi
μ(x)

)
�(I )=0

=+i
h̄

16π
εμρσ F̄ i

ρσ (x)

− (1− iγ )
∑

(ab),a>b

jab 〈
[
(Gsab,b)

−1τ iGsab,b

]
ξba, ξba〉 δ(2) μ
ab

(x) . (95)

Comparison of the two variations, shows that they are minus the complex conjugate of one an-
other, once Ā is taken to be the complex conjugate of A:(

δI

δĀi
μ(x)

)
�(I )=0

=− c.c.

(
δI

δAi
μ(x)

)
�(I )=0

. (96)

Finally we find the following on-shell expression for the curvature F as a distribution on S3

(the critical equation for F̄ is obtained by complex conjugation)

ih

16π
εμρσF i

ρσ (x)
!= −(1+ iγ )

∑
(ab),a>b

jab 〈ξba,
[
(Gsab,b)

−1τ iGsab,b

]
ξba〉 δ(2) μ
ab

(x) (97)

which is singular on the �5-graph and vanishes on the graph complement M3 = S3 \ �5. This 
distributional curvature results in nontrivial holonomies Hab, H̄ab along the non-contractible 
cycles transverse to each edge 
ab of �5. Their definition and calculation is part of the next 
section.

7. Flat connections on graph complements

In this section, we want to recast eq. (97) expressing its information content in terms of 
holonomies. To do this, we introduce the graph complement M3 = S3 \ �5. The complement 
is obtained by removing an (infinitesimally) thickened graph �5 from S3. Geometrically this cor-
responds to removing a solid cylinder for each edge and a 3-ball for each vertex of �5; this leaves 
a set of hollow tubes and spheres in S3 that make up an inner boundary of M3.

Within the graph complement M3 there are two different types of holonomies: those transverse 
to one of the tubes, call them Hab, and the longitudinal holonomies along the tubes, call them 
Gab . Note that the transverse holonomies Hab are non-contractible loops of M3, and therefore 
can take nontrivial values. This is the case here, since according to eq. (97), they do acquire a 
non-zero contribution from the presence of distributional curvature along �5 itself.

Before delving into explicit calculations, we need to define the transverse and longitudinal 
holonomies precisely, that is, we need to fix the set of paths along which they are calculated. 
This is crucial because the paths defining the longitudinal holonomies cannot run naively along 
the graph defect, but need to be (infinitesimally) displaced from it and a precise prescription 
is needed. We shall see that the longitudinal holonomies must satisfy constraints that heavily 
depend on the specific graph one studies, and in particular on the number and nature of its cross-
ings.31 For this reason, we first briefly go one step back and justify our particular choice of 
graph.

31 The graph crossings are a property of the projection of the graph onto the plane, and not a direct property of the graph 
itself. However, we will see that such a projection naturally fixes a set of paths for the longitudinal holonomies, and—
more intrinsically—it is these paths that are sensitive to the topology of the graph and that satisfy relations intuitively 
associated with the crossing.
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Fig. 2. (a) The stereographic projection of �5 ⊂ S3 to R3. The point from which the projection has been performed is 
mapped onto the 2-sphere at infinity. Point 3 is visually in the interior of the tetrahedron (1245). However, this picture 
should be more precisely thought of as a triangulation of the whole R3 ∪ {∞}  S3; therefore, the interior of tetrahedron 
(1245) is actually what appears to be its exterior in the picture. Because the stereographic projection has been performed 
from the interior of this tetrahedron, it is consequently “blown up” to infinity. (b) The graph �5.

We have chosen the specific prescription for �5 that corresponds to the two-dimensional pro-
jection of the 1-skeleton of the dual to the boundary of a 4-simplex triangulating a 3-sphere. 
This is because, as will be clear shortly, we eventually identify the vertices of the graph with the 
five tetrahedra on the boundary of the 4-simplex, and the ten edges with its ten triangular faces. 
To understand the graph structure, first note that the dual of a 4-simplex is again a 4-simplex. 
Thus, to understand how �5 comes about we just need to see how the 1-skeleton of a 4-simplex 
projects into the plane R2. The first step is to project the 3-sphere containing the 1-skeleton of 
the 4-simplex onto R3. This is easily done by stereographic projection from a general point of 
the 3-sphere (i.e. not one which belongs to the 4-simplex skeleton). The result of this is depicted 
in Fig. 2 (a), which represents a tetrahedron with an extra vertex on the inside, this vertex is then 
connected to the four other vertices.32 From this picture it is not hard to see that there is a way 
to project onto the plane such that this is only one crossing—this last crossing is impossible to 
eliminate. The result is the graph �5 shown again in Fig. 2 (b).

The next step consists in slightly thickening the graph, and choosing a set of paths running 
along the exterior of the tubes along which one will eventually calculate the transverse (Hab) and 
longitudinal (Gab) holonomies. This amounts to a choice of graph framing and is essential to 
the definition of the longitudinal holonomies.33 The simplest choice is the blackboard framing, 
where the paths are picked to run along the top of the tubes, as in the left panel of Fig. 3. 
The transverse path used to calculated the transverse holonomy at the vertex a around the edge 
(ab), named Hab(a), is constructed as follows. First of all, it is based at vertex a, the point 
where the longitudinal paths meet; then, it follows the longitudinal path towards vertex b an 
infinitesimal amount and winds once around the tube (ab) in a right-handed sense with respect 

32 To visualize that this is the result of the stereographic projection, one can proceed as follows. Qualitatively, the stere-

ographic projection can be understood as the identification of a point of the 3-sphere with the two sphere at infinity in R
3. 

In this sense the vertex on the inside of the tetrahedron of Fig. 2 (a) is just a regular vertex of the 4-simplex connected 
to the other four vertices, and similarly the four tetrahedra sharing this vertex correspond to the four tetrahedra on the 
boundary of the original 4-simplex. The last tetrahedron is actually the exterior of the outer tetrahedron of Fig. 2 (a). 
That is, the point from which the stereographic projection proceeded was in the interior of this tetrahedron.
33 See e.g. [142] for an introduction to these concepts.
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Fig. 3. A top view of the fattened �5-graph. The two-dimensional boundary ∂M3 of the graph complement M3 is a 
genus-6 Riemann surface. The left panel depicts the longitudinal holonomies running along the tops of the tubes. The 
right panel is a zoomed in inset of vertex 5 and shows the structure of the transverse paths.

to the outgoing direction from the vertex; finally, it goes back to the base point again along a piece 
of the longitudinal path. We are now ready to express the equations of motion of the connection 
(eq. (97)) in terms of the holonomies Gab and Hab(a).

Longitudinal holonomies. Equation (97) states that the curvature of (A, Ā) vanishes on the graph 
complement manifold M3 = S3 \ �5. This means that all the holonomies defined along paths 
contractible within M3, must be trivial. The longitudinal paths are generated by the following six 
independent cycles: (125), (235), (345), (124), (123), and (234). All these cycles, except (234), 
are homotopically trivial in the R3 complement of the fattened graph.34 This means that they are 
trivial also in M3. Hence, introducing the natural notation Gba :=G−1

ab , we have

GabGbcGca = I for a, b, c such that {a, b, c} �= {2,3,4} and a �= b �= c . (98)

The path associated to the cycle (234), however, cannot be contracted without winding around 
some of the tubes. In particular, within M3 this path can be shrunk around the tube (13). Taking 
vertex 3 as the base point for this cycle, we then immediately obtain the relation

G34G42G23 =H13(3) . (99)

The previous two equations can equivalently be expressed as the requirement that there exists 
a set of {ga}a=1,...,5 ∈ SL(2, C) such that the longitudinal holonomies Gab are

Gab = g−1
a gb , except G42 = g−1

4

[
g3H13(3)g

−1
3

]
g2 . (100)

Note that these equations pick out a preferred couple of edges (the pair that crosses), from a 
configuration originally symmetric in all the edges. In a sense, this is just a matter of representa-
tion and eventually we will see that it is due to our choice of framing (see footnote 31).

Transverse holonomies. The paths transverse to the tubes enclose the curvature singularity lo-
cated on the graph edge. Thus, they acquire a nontrivial value:

34 Imagine pulling these paths away from the graph from above; then they can be continuously deformed into trivial 
loops.
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Hab(b)= P exp
∫

Dab

F (a)

= exp

[
−8π

ih

(
1

γ
+ i

)
γjab

〈
ξba, τ

j ξba

〉
τj

]
= exp

[
+4π

h

(
1

γ
+ i

)
γjab

〈
ξab, σ

j ξab

〉
τj

]
= exp

[
+4π

h

(
1

γ
+ i

)
γjabn̂

j
baτj

]
, (101)

where the first equality is a statement of the non-Abelian Stokes theorem [143,144], and the 
transverse surface Dab , bounded by the loop around the edge (ab), is taken infinitesimally close 
to the node; the second equality follows from eq. (97), which says that the only non-trivial con-
tribution to Hab(b) comes from the singularity at the graph itself (we evaluate this expression at 
s = 0); and the last equality is just a consequence of the definition of the unit vector

n̂ba := 〈ξba, �σξba〉 . (102)

As a consequence of the equations of motion (86) and (87), which state how the spinors 
(ξba, Jξba) are parallel transported by the longitudinal holonomies Gab, one finds that

GabHab(b)G
−1
ab = exp

[
+4π

h

(
1

γ
+ i

)
γjab

〈
ξba, σ

j ξba

〉
GabτjG

−1
ab

]
= exp

[
+4π

h

(
1

γ
+ i

)
γjab

〈
ξba,G

−1
ab σ

jGabξba

〉
τj

]
= exp

[
+4π

h

(
1

γ
+ i

)
γjab

〈
Jξab, σ

jJ ξab

〉
τj

]
= exp

[
−4π

h

(
1

γ
+ i

)
γjabn̂

j
abτj

]
. (103)

Here we used the mathematical identities (G†)−1 =−JGJ for all G ∈ SL(2, C), 〈Jξ, �σJξ〉 =
−〈ξ, �σξ〉, and 

∑3
i=1 σ

i
αβσ

i
α′β ′ = 2δαβ ′δα′β − δαβδα′β ′ , as well as the definition (102). Now, note 

that the holonomy GabHab(b)G
−1
ab Hab(a) is associated to a contractible cycle within M3, and 

must therefore be trivial. Thus,

Hab(a)= exp

[
+4π

h

(
1

γ
+ i

)
γjabn̂

j
abτj

]
, (104)

which is perfectly consistent with the previous definition of Hab(b).
Henceforth, we will use the following lighter notation

Gba :=G−1
ab , Hab :=Hab(a), and Hba :=Hab(b). (105)

In this way, the previous results can be rewritten as

Hab = exp

[
−4π

h

(
1

γ
+ i

)
γjabn̂ab.�τ

]
, (106)

and GabHbaGba =H−1, (107)
ab
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for any a and b, such that a �= b. The last equation could alternatively have been deduced from 
the fact that the particular composition of paths defining the holonomies Gab, Hab , and Hba that 
it uses is contractible in the graph complement.

Since most of the Gab factorize into g−1
a gb , it is also useful to introduce another set of vari-

ables,

H̃ab := gaHabg
−1
a , (108)

in terms of which the parallel transport equations take the form{
H̃ba = H̃−1

ab for (ab) �= (24)

H̃42 = H̃−1
13 H̃−1

24 H̃13,
(109)

where the different rôle played by the edge (24) is inherited from eq. (100). We will sometimes 
refer to the latter equation as the crossing relation, since it is due to the crossing in �5.

There is one last set of equations that can be deduced from the vanishing of the curvature 
in the graph complement M3. At each vertex the transverse loops can be composed to form a 
contractible path; this path must be associated to a trivial holonomy. Therefore one obtains the 
five constraints

Hab4Hab3Hab2Hab1 = I ∀a, (110)

where the indices bi are all different and range in {1, . . . , 5} \ a. Crucially, the order in which 
these holonomies appear is completely determined by the choice of framing of the graph. This 
equation is also permutation invariant in the bi (this will be of some importance later). With our 
choice of framing the five constraints that we obtain are35⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H12H13H14H15 = I

H23H24H21H25 = I

H34H31H32H35 = I

H41H42H43H45 = I

H54H53H52H51 = I

(111)

In what follows, we will refer to these equations as closure equations, closure conditions, or 
simply closures.

Before proceeding further, a couple of remarks. First, note that, when (1 + iγ )h−1 ∈ R as 
we propose, the transverse holonomies become SU(2) holonomies if they are evaluated close 
to the vertices, where they take the form given in eq. (101).36 This fact, which will play an 
important rôle in the geometric reconstruction of the following sections (see also Section 13), 
is a consequence of the specific Wilson-graph operator we are using, and in particular of the 
properties of the map Yγ involved in its definition. More precisely, it is a consequence of the fact 
that in the construction of the graph operator, we solved the simplicity constraints in time gauge 
(see Section 3.1). Finally, note also that in the calculation of Hab we ignored any contribution of 
the parallel transport from the graph (where the divergent curvature is located) to the base point 
of the holonomy. This can be heuristically interpreted as a gauge fixing of the holonomy from the 
vertex of the graph to the base point of the transverse loops. However, one should be more careful 
in devising appropriate regularization procedures if one wanted to be mathematically precise.

35 These equations can be read off by circling counterclockwise from edge to edge around every vertex in the graph �5 , 
as drawn in Fig. 3 (the composition of the holonomies in our notation reds from right to left).
36 Though, if they are parallel transported between the vertices, they are genuine SL(2, C) holonomies.
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8. Summary of critical equations

We briefly summarize the results of Sections 6 and 7. These results specify the stationary 
phase points dominating the asymptotics of ZCS(S

3; �5 | jab, ξab), eq. (76).

Parallel transports: From δzabS = 0 and �(S) = 0, we have obtained the following parallel 
transport equations relating the spinors ξab and ξba at opposite ends of the edge 
ab

ξab =−e−ψab−iϕabGabJ ξba, and Jξab = eψab+iϕabGabξba. (112)

Transverse holonomies: The variation with respect to the Chern–Simons connection (A, Ā)

yields a distributional curvature on S3 with support on the graph �5

ih

16π
εμρσF i

ρσ (x)

!= −(1+ iγ )
∑

(ab),a>b

jab 〈ξba,
[
(Gsab,b)

−1τ iGsab,b

]
ξba〉 δ(2) μ
ab

(x) (113)

where the complex conjugate equation holds for the curvature of Ā, F̄ . From this one 
deduces that the holonomy transverse to each edge 
ab is nontrivial and has the form

Hab = exp

[
+4π

h

(
1

γ
+ i

)
γjabn̂ab · �τ

]
∈ SU(2)⊂ SL(2,C). (114)

Note that jab = jba but n̂ab �= n̂ba , since these unit vectors are defined by n̂ab :=
〈ξab, �σξab〉 ∈R

3 and generally ξab �= ξba .
From the parallel transport equations it follows that

GabHbaGba =H−1
ab , ∀a, b with a �= b. (115)

These parallel transport conditions are weaker than those for the spinors {ξab, Jξab}.
Again, the complex conjugate equations hold for the holonomies of the connec-

tion Ā.
Flat connection on M3: Another consequence of eq. (113) is that the Chern–Simons connection 

must be flat on the graph complement M3. This forces constraints on the transverse 
and longitudinal holonomies. In particular, the transverse holonomies must satisfy the 
closure equations

Hab4Hab3Hab2Hab1 = I, (116)

where the convention is that the bi can be read off �5 by circling counterclockwise 
around each vertex. The longitudinal holonomies can all be trivialized, except for G13,

Gab = g−1
a gb, except G42 = g−1

4

[
g3H31g

−1
3

]
g2, (117)

for some ga ∈ SL(2, C). These equations will henceforth be called the crossing condi-
tions.

When expressed in terms of the H̃ab := gaHabg
−1
a ∈ gaSU(2)g−1

a ⊂ SL(2, C), the parallel 
transport equations, and the crossing condition read

H̃ba = H̃−1 except H̃42 = H̃−1H̃−1H̃13 , (118)
ab 13 24
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while the closure equations maintain their form

H̃ab4H̃ab3H̃ab2H̃ab1 = I. (119)

We stress once more the importance of the non-trivial fact that the {H̃ab}b,b �=a at each vertex are 
in specific SU(2) subgroups of SL(2, C). This will be crucial for the geometrical interpretation 
of the critical equations.

9. Geometry from critical point equations I: the idea

In this section, we start the core analysis of the paper, which will continue in the following 
two sections where we will deal with all the technical aspects. These three sections are dedicated 
to the correspondence between the (non-degenerate) solutions of the critical point equations 
just discussed and an essentially unique 4-dimensional 4-simplex geometry of constant curva-
ture �. This result is crucial, since it paves the way to showing that, in the semiclassical limit, 
the expectation value of the graph operator associated to a given simplicial complex is peaked 
around configurations corresponding to meaningful 4-dimensional simplicial geometries. This is 
an important step towards a definition of a path integral for (discrete) quantum gravity with a cos-
mological constant.37 Moreover, the missing step—at least at the level of a single 4-simplex—of 
showing that the oscillatory weight of the given simplicial complex reproduces in the proper 
limit (a discretized version of) the Einstein–Hilbert action is the subject of the last sections of the 
paper.

Before delving into all the details, we will give a brief summary of the correspondence be-
tween the spinfoam critical data and the simplicial geometry using purely qualitative arguments. 
We hope this will be a useful guide to follow the technical constructions of the next sections.

Define the spinfoam critical data to be a set of 
{
jab, ξab, Gab, Hab(a)

}
that fulfills the crit-

ical point equations summarized in the last section. What is the geometrical content of these 
variables?

Spins jab As you might expect from the loop quantization, these variables correspond to the 
areas of the triangular faces of the 4-simplex. To be more precise, the physical area 
of one such triangle is aab/
2

P = γ
√
jab(jab + 1), which is approximately γjab in the 

semiclassical limit considered here (see Section 4). This happens because spins are as-
sociated to the eigenvalues of the angular momentum operator J i , which in turn relates 
to the quantization of the discretized area density field B = e ∧ e (see Section 3).

Spinors ξab First, recall that the normalized spinors ξab have a (conventionally) fixed phase, and 
therefore have just two, rather than three, real parameters. Indeed, they map to the space 
of 3-dimensional unit vectors, via

n̂ := 〈ξ, �σξ 〉 . (120)

To see what these vectors geometrically correspond to, let us start by taking the 
vanishing-cosmological-constant limit (flat limit) of one of the closure equations, say at 
vertex 5:

H51H52H53H54 = I
�→0−−−→+�

3

4∑
b=1

γj5bn̂5b · �τ =O(�2) . (121)

37 Once again, in this paper we do not try to tackle the difficult question of the continuous limit.
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With the previous interpretation for the spins, this gives at lowest order in �: ∑4
b=1 a5bn̂4b = �0, which can be interpreted via Minkowski’s theorem [145] as the 

equation defining the unique geometric tetrahedron (up to rotations and parity inver-
sion) having face areas a5b and outgoing face normals n̂ab. For brevity we will call �aab
the area vector of the face (ab). Now, we claim that the n̂ab’s are still interpretable as 
(spacial) normals to the triangular faces also in the curved case. This is made possi-
ble by the natural condition that all the subsimplices of the curved 4-simplex are flatly 
embedded (have vanishing extrinsic curvature).

The interpretative framework for the spins and the spinors just discussed is part of the rigor-
ous geometric quantization of the space of shapes of polyhedra (see e.g. [103–109,111] for the 
quantization of flat polyhedra).

Holonomies Hab In light of the previous discussion and eq. (114) it is clear that we want to 
assign to the holonomies Hab the rôle played by the area vectors in the flat case. This 
is indeed possible, and in both the following section and a companion paper [146] we 
discuss these results in detail. However, the basic idea is very simple: in a curved ge-
ometry one can get non-trivial information about a surface just by going around its 
boundary. This is a consequence of the (non-Abelian) Stokes theorem [143,144], which 
enormously simplifies in the case in which (i) the space has constant curvature λ,38 and 
(ii) one considers only flatly embedded surfaces. Under conditions (i) and (ii) it is not 
hard to show that—in three dimensions—the (torsionless) parallel transport U∂s around 
a surface s is given by

O∂s = exp

(
+λ

3
asn̂s · �J

)
, (122)

where as is the area of s, n̂s is its spacial normal39 parallel transported to the base point 
of O∂s, and the {J i} are the generators of SO(3). This is exactly the form the Hab have 
in their vector representation Oab.40 We see that it is important that the holonomies 
{Hab}b,b �=a at one vertex are all in the same SU(2) subgroup of SL(2, C): this means 
that the surfaces they are associated with all have a common timelike normal, and hence 
define a spacelike frame.

Holonomies Gab Finally, the holonomies Gab are to be interpreted as the parallel transport 
holonomies between different reference frames. Specifically, the holonomy Gab allows 
one to parallel transport any geometrical quantity from the frame of tetrahedron b to that 
of tetrahedron a. This is manifest from the parallel transport equations for the spinors 
ξab , ξba , eq. (112), which also imply those for the Hab, Hba , eq. (115). Notice that the 
gauge-invariant information carried by the Gab must then have the geometrical inter-
pretation of hyper-dihedral angles between the two boundary tetrahedra a and b. Notice 
also the meaning of the crossing equation (eq. (117)): if all the Gab could have been 
trivialized into products of the type gag

−1
b it would have meant that the 4-simplex was 

38 It will become clear later why we have not used the symbol �.
39 The sign of n̂s is related to the direction in which the boundary of the surface is circulated via a right-handed 
convention.
40 We could have considered the holonomy of the spin connection around s to obtain an expression analogous to that of 
the Hab . We have avoided this for technical reasons that will be clarified later.
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flat, since the composition of changes of reference frame would be trivial, i.e. indepen-
dent of the path chosen. This is not the case, since a nontrivial cycle exists (going around 
vertices 3, 2, 4, and back), and therefore the reconstructed geometry must be curved.

For a relationship (in the flat 4-simplex context) between the continuous-geometry picture and 
discrete data of the type above, see e.g. [79].

9.1. Framing of �5 and its dual geometry

In this section we show how to translate the paths defining the holonomies Hab and Gab in 
M3 = S3 \ �5 into paths on the one-skeleton of the 4-simplex. This is an essential preliminary 
step for the reconstruction theorem. In particular, we will show that a choice of graph framing, 
like ours, completely fixes these paths in a consistent way.

The strategy is well illustrated by the transverse holonomies Hab. We would like to interpret 
these as the holonomies resulting from parallel transport along the edges bounding a face of a 
curved tetrahedron. But, if this interpretation is to hold, what is the appropriate order to circuit all 
four tetrahedral faces such that the closure equation (116) holds, with the appropriate ordering of 
the Hab? Surprisingly, these path orderings are completely encoded in a refined understanding 
of the �5 graph. This section explains the relevant structure of �5 in detail, proceeding from the 
four-dimensional down to the three-dimensional geometry.

In order to understand which path one is supposed to follow on the 4-simplex 1-skeleton, one 
has to recall the origin of the �5 graph itself: this graph is the dual of the 4-simplex boundary, 
which means that its vertices are dual to tetrahedra and its edges to triangular faces. In principle 
the dual of the 4-simplex sides are given by the ten faces of the dual 4-simplex of which �5 is the 
1-skeleton. These are given by the ten 2-surfaces bounded by three-edge-long closed sequences 
of edges in �5. In spite of the fact that the graph per se does not contain any explicit information 
as to what these surfaces concretely are, we shall show that, once a graph framing (of the type 
discussed above) has been picked, there exists a natural prescription that uniquely fixes these 
2-surfaces. The prescription states that the 2-surfaces should not intersect each other, except 
along their boundary edges. It will be useful to refer to Fig. 4 as the construction proceeds.

To see how this prescription fixes the 2-surfaces, let us start by fixing without loss of gener-
ality the faces (125), (235), and (345) to lie in the 2-plane in which their boundary edges are 
drawn, henceforth called the blackboard plane. This can be visualized as simply “filling in the 
holes” these triples of edges form. Consider now face (145), and think of it as also lying in the 
blackboard plane, but now extending out to infinity.41 In order not to intersect any of the faces 
we have already fixed, faces (135) and (245) must be contained on either the upper or the lower 
half-space with respect to the blackboard plane. Obviously they cannot lie in the same half-space, 
and the framing fixes face (135) to lie in the upper part, and face (245) in the lower one. The 
same reasoning applies consistently to faces (134) and (124). Finally, faces (123) and (234) are 
fixed to be transverse to the blackboard plane, each on one side of it. Clearly, what we have just 
described should be understood up to smooth deformations.

The paths defining the transverse holonomies are also picked out by the choice of framing. 
Let us focus on a single vertex, and consider a small sphere around it (see Fig. 5, where vertex 5 
is used as an example). This sphere is pierced by the edges of �5, which therefore identify four 

41 Recall that the three-space in which the graph is embedded is actually compactified by the identification of the sphere 
at infinity with a point. Therefore this face is forming a dome above—or, equivalently, below—the graph.
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Fig. 4. Top view of the fattened �5-graph. The faces of the dual 4-simplex are constructed by appropriately “filling in the 
holes” bounded by triples of edges.

Fig. 5. A close-up of the region close to the fifth vertex of the thickened �5 graph. The paths along which the transverse 
holonomies Hab are calculated are represented with thick solid lines. All of them follow a right-handed outward-pointing 
path around the edges of the graph. We have also depicted a virtual sphere around the vertex of the graph in both panels. 
The sphere is pierced by the graph edges, these punctures are represented by ×’s. The right panel shows the intersections 
of the faces of the graph with the sphere around the vertex (dashed lines), as deduced from our choice of framing for 
�5. The line connecting punctures (52) and (54) traverses the hidden back side of the sphere. The intersection pattern of 
these lines with the paths defining the transverse holonomies allows the reconstruction of the full path structure on the 
tetrahedron, shown in the next figure.

punctures on its surface. The tubes around each edge cut out circles on the sphere around each 
puncture. The paths of the transverse holonomies can be chosen to live on the surface of the 
sphere, and simply go around the punctures along the aforementioned circles.

The final missing ingredients are the duals to the tetrahedron’s sides; since they are non-
intersecting surfaces joining at the graph vertex, and in its neighborhood bounded by couples of 
graph edges, their intersections with the sphere are given by non-intersecting lines connecting 
couples of punctures (dashed lines in the right panel of the figure). We have just seen that these 
lines are also uniquely determined by the choice of graph framing.

Now, the lines connecting the punctures on the sphere form a tetrahedron dual to the one we 
want to associate to the vertex: its vertices, the punctures, should correspond to the tetrahedron’s 
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Fig. 6. The “simple” path on tetrahedron 5, dual to vertex 5 (see the previous figure). The images display the path around 
faces 1 to 4, as reconstructed from the framing of �5. Notice, that the path around the fourth face is necessarily different 
from the preceding ones.

faces, and conversely, its faces correspond to the tetrahedron’s vertices, and finally the sides cor-
respond to the tetrahedron’s sides themselves (though in an “orthogonal” sense42). Therefore, we 
see that each path going around a puncture corresponds to a path on the tetrahedron which starts 
at one vertex (the same for all of them) and visits some other vertices, in a precise order, before 
coming back to the original one. A moment of reflection shows that this set of paths corresponds 
to what we have called a “simple path” on the 1-skeleton of the tetrahedron in [146]; for clarity 
and completeness, a simple path is illustrated in Fig. 6, which should be self-explanatory.

Observe that in the simple path of Fig. 6 a special role is played by the “special side” 24
of the tetrahedron 5, and that this statement is independent of the position of the base point: 
had we moved it somewhere else on the sphere, this would amount to adding extra segments at 
the beginning and at the end of all four face paths, which would correspond to a global gauge 
transformation (i.e. to conjugation by an SU(2) or SL(2, C) element of all the H5b). Such a global 
transformation has no effect on the reconstruction we are going to perform.

Notice that we have drawn right-handed paths on the tetrahedron. In this manner all the faces 
are circulated counterclockwise, and using a right-hand rule one can assign outgoing normals to 
each face. Had we used a left-handed tetrahedron, and at the same time stayed with a right-hand 
rule for assigning the normals, we would have obtained ingoing normals. We work with the 
right-handed convention. It will be important to keep this arbitrary choice in mind for the last 
part of the paper.

With a little bit of work, e.g. by choosing all the tetrahedra to be oriented subsimplices of a 
right-handed 4-simplex [1̄2̄3̄4̄5̄], one finds that all of the faces of all the tetrahedra are circulated 
in a right-handed sense, and that the “special sides” of the five tetrahedra are respectively:

24 for tetrahedra 1,3,5,

45 for tetrahedron 2,

and 25 for tetrahedron 4. (123)

It then becomes clear that every face is circulated in opposite directions when considered from 
each of the two tetrahedra sharing it. This is in agreement with the parallel transport equation

Hab =GabH
−1
ba Gba. (124)

However, since we want to understand the paths on the 4-simplex, and not just within each 
tetrahedron, we have to be slightly more careful than this. First, notice that all the {Hab}b,b �=a

42 For example, at tetrahedron 5, the line joining punctures 1 and 3 is dual to the side in the 4-simplex shared by the 
triangular faces (51) and (53), and therefore is dual to the 4-simplex side connecting the 4-simplex vertices 2̄ and 4̄.
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Fig. 7. A depiction of the oriented 4-simplex. All tetrahedra can be interpreted as having outward pointing normals, 
except the external tetrahedron (i.e. tetrahedron 4). Indeed, the interior of tetrahedron 4 is actually the region of R3

extending to infinity. This was also discussed when justifying the particular form of the graph �5.

share the same base point, and so do Hab and GabH
−1
ba Gba (otherwise the closure and paral-

lel transport equations would not be gauge covariant). It is then immediate that the {H̃ab :=
gaH̃abg

−1
a } must all share the same base point. Now the parallel transport equations together 

with the crossing relations give

H̃ba = H̃−1
ab except H̃42 = H̃−1

13 H̃−1
24 H̃13 . (125)

This equation says that the paths associated to all the triangular faces in the 4-simplex, except 
those of face (24), do not depend on the tetrahedron they are associated to. This is a quite natural 
consequence of the pattern of special sides discussed here.43 Indeed, we see that the 4-simplex 
vertices 2̄ and 4̄ play a completely symmetric rôle, and that either of the two vertices is part of all 
the special sides but one. Let us pick the 4-simplex vertex 4̄ to be the base point of all the paths on 
the 4-simplex, and suppose that the “special paths” of tetrahedra 1, 3, 5, and 2 all start there (as in 
Fig. 6). We immediately see that eq. (125) is automatically verified for all faces {(ab)}a,b �=4 not 
involving tetrahedron 4. Now, consider tetrahedron 4; it cannot be naturally based at vertex 4̄ like 
the others, and by looking at its special side, we see that its “internal” base-point should be either 
vertex 2̄ or 5̄. Vertex 2̄ is the choice which ensures consistency with the crossing relation. Indeed, 
in this way every face path associated with tetrahedron 4, must start at vertex 4̄, go through the 
side 42 and then go along the usual sequence of sides, to finally come back to 4̄ along side 24. In 
this way the side 42 plays in the 4-simplex a rôle similar to that of a tetrahedral special side, and 
allows eq. (125) to be valid for faces (4b) with b �= 2.

Finally, since every path has now been fixed, one just has to check that H̃42 = H̃−1
13 H̃−1

24 H̃13

(see Fig. 7). The sequence of sides defining H̃42 is (read from right to left)44:

42
{
25
[
53 31 15

]
52
}

24 , (126)

while that defining H̃24 is

45
[
51 13 35

]
54. (127)

It is clear that to equate the inverse of the first to the second, one has to conjugate the latter by

43 This is not a logical consequence, instead it relies on a hypothesis of simplicity.
44 We have tried to highlight the rôle played by the special sides with the bracket notation.
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45 52 24 , (128)

which is nothing but the path defining H̃13.
This set of paths allows us to geometrically interpret the holonomies Hab, and especially the 

H̃ab , in terms of parallel transports along the 1-skeleton of the 4-simplex.

10. Geometry from critical point equations II: curved tetrahedra

In this and the following sections we show how, using the critical point equations, together 
with the interpretation of the holonomies Hab just sketched (and soon to be made more rigorous), 
one can reconstruct a curved-tetrahedral geometry at every vertex of the graph. In this paper, we 
will just show how to recover the tetrahedral geometry from the holonomies in a constructive 
way, and skip the rigorous proof of the consistency of this reconstruction.45 Anyway, this result 
follows from the reconstruction theorem for the 4-simplex geometry. We present, in some detail, 
the tetrahedral result because it is more intuitive, it proceeds constructively, and it offers most of 
the features of the 4-simplex reconstruction.

The key equation is the closure condition (since for the moment we work at a fixed vertex, we 
simplify the labeling of our variables)

H4H3H2H1 = I, (129)

however, in the following we will focus on the derived equation

O4O3O2O1 = I, (130)

where Ob ∈ SO(3) is the vectorial (spin 1) representation of Hb ∈ SU(2). We leave the discussion 
of the relation between the SU(2) group elements Hab and their SO(3) counterparts for the last 
part of the paper. As we explained in the previous section the Ob are interpreted as parallel 
transports along specific, simple paths on the tetrahedron 1-skeleton. The ordered composition 
of all the paths associated to a tetrahedron is equivalent to the trivial path, hence the identity on 
the right-hand side of the closure equation.

10.1. Flatly embedded surfaces

First we discuss some of the claims of Section 9. Consider a 4-dimensional spacetime 
(M4, gαβ), with no torsion, constant curvature λ, and tetrad eIα . In this spacetime, consider a 
bounded 2-surface s that is flatly embedded in M4, i.e. such that the wedge product of its space-
and time-like normal fields, nα and uα respectively, is preserved by parallel transport on the sur-
face s.46 Then, the holonomy around s of the torsionless spin connection ωIJ

α := eIβ∇αe
J
β , is

45 In particular, one needs to show that the tetrahedron reconstructed with the procedure presented here has areas com-
patible with those appearing in the holonomies. This is a priori nontrivial.
46 This requirement is equivalent to asking that the extrinsic curvature of s vanish, and generalizes the concept of planes 
in R3 to curved spaces. Further examples of flatly embedded surfaces are equatorial (great) spheres in S3 and great 
hyperboloids in H3. It is not too difficult to show that the vanishing of the extrinsic curvature on s is equivalent to asking 
that s be totally geodesic, see e.g. [82].
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given in the spinor representation by47

U∂s[ω+] = exp

[
+λ

3
as
(
�u∧ n

)k
+ τ k

]
, (131)

where the subscript + indicates the self-dual part of an object, as is the area of s, and we have 
defined nI := eIαn

α and uI := eIαu
α to be the internal spacelike and timelike normals to the 

surface, respectively. Notice that the latter are understood to be evaluated at the base point O ∈ ∂s

of the holonomy U∂s. In the (future pointing) time gauge uI = δI0 and nI = δIk n̂
k , and therefore 

(see also Appendix B for details on the notation)(
�u∧ n

)k
+ = i εkiju

[inj ] + 2u[0nk] = u0nk = n̂
k
, (132)

where the last two equalities hold in time-gauge (more specifically, the last one holds for a future 
pointing time-gauge; see Appendix D).

Finally, by henceforth dropping the underscore, n̂ 	→ n̂, we obtain (in future pointing time 
gauge)

U∂s[ω+] = exp

(
+λ

3
asn̂ · �τ

)
, (133)

and hence in the vectorial representation

O∂s[ω+] = exp

(
+λ

3
asn̂ · �J

)
. (134)

We clearly see that the functional dependence of the holonomies Oab on 
(
n̂, γj,

− 12π
h

(γ−1 + i)
)

is completely analogous to that of the parallel transports O∂s on 
(
n̂, as, λ

)
. 

However, all these variables are mixed with one another, and it is possible to distinguish them 
only up to some ambiguities. As we have already emphasized, a physically well-motivated candi-
date for a spinfoam analogue of the area exists, and is as↔ γj . This identification also fixes the 

magnitude of λ to 12π
h

(
1
γ
+ i
)

, since the vectors n̂ and n̂ are both normalized. However, things 
are slightly more complicated than this, since the signs of the cosmological constant and of the 
unit vector cannot be distinguished a priori. Moreover, there is also a sign ambiguity arising 

47 This formula follows from the non-Abelian Stokes theorem P exp
∮
∂sω=P exp

∫
sR(ω), where R is the curvature 

2-form of ω, and the fact that on constantly curved manifolds and flatly embedded surfaces, the integrand appearing in 
the previous formula is actually a constant. To see this last point, notice that for a constantly curved manifold one has

RIJ [ω] = λ

3
e
[I
α e

J ]
β dxα ∧ dxβ

which, when restricted to s and after some manipulation, becomes

RIJ [ω]∣∣
s
= λ

3
e
[I
α e

J ]
β

∂xα

∂s1

∂xβ

∂s2
ds1 ∧ ds2 = λ

3

[
� (u∧ n)

]IJ√
detg(2)ds

1 ∧ ds2

where (s1, s2) are two coordinates parameterizing the surface, and g(2) is the metric restricted to it. Now, using the fact 
that the surface is flatly embedded one sees that under the parallel transport needed for the P exp of the non-Abelian 
Stokes theorem, the term in parentheses is transported onto itself within the surface. Hence, the result follows just by 
integrating the area of s, introducing the notation u[I nJ ] = 1

2

(
u∧ n

)IJ , and finally taking the self-dual part in the 
internal indices.
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from the area, since there is no way of telling apart λ3 as ∈ (0, 2π) and 
(
2π − λ

3 as
) ∈ (0, 2π) at 

the outset.
Beyond the (partly ambiguous) properties of area, curvature, and orientation, the shape of s is 

not better defined for the moment. The best we can do to define its shape with the limited data at 
our disposal, is to further constrain its geometric degrees of freedom; for example, by requiring 
each vertex of the graph to be identified with the simplest curved geometrical object with four 
faces, a homogeneously curved tetrahedron. The viability of this requirement is a consequence 
of a theorem reviewed in the following section (details can be found in the companion paper 
[146]). At this stage, the fact that all the previous ambiguities are consistently solved throughout 
the whole 4-simplex is very surprising, nonetheless it will be a consequence of the equations of 
motion.

Before continuing, notice that in particular the sign of the cosmological constant (or equiv-
alently the curvature) is a priori totally free at each face. The aforementioned theorems cure 
this problem, at the level of each tetrahedron and also at the level of the whole 4-simplex. An 
important consequence of this discussion is that our model cannot be considered a quantization 
of gravity with a fixed-sign cosmological constant: it is rather a quantization of gravity with a
cosmological constant, the sign of which is determined dynamically, and only semiclassically, 
by the imposed boundary conditions (in this case the external jab and ξab).

10.2. Constant curvature tetrahedra

According to our requirements, the faces of the curved tetrahedron are spherical or hyperbolic 
triangles, with a radius of curvature equal to R =√3/|�|. This means that their areas must lie in 
the interval [0, 6π/|�|], or [0, 3π/|�|], respectively.48 The spherical case is no problem, since 
SU(2) group elements have the right periodicity in their argument. Even more compellingly, by 
looking at the deformed SU(2)q representations with q = exp 4π i

k+2 , and k = �(h) = 12π
γ�

, one 

only finds spins up to |k|/2, which translates into γj ≤ 6π/|�|.49 The hyperbolic case, on the 
other hand, is more subtle. We do not try to deal with all the subtleties here, since a thorough 
discussion can be found in [146]. Nonetheless, we anticipate the fact that these subtleties can 
give rise—in certain cases determined by the choice of the spins—to non-standard geometries 
that extend across the two sheets of the two-sheeted hyperboloid.

In any event, care is needed in identifying γj with the face area even in the spherical case, 
since the ambiguity γj � (

2πR2 − γj
)

may arise. We will come back to this point later on.
From now on, we will consider the reconstruction at the vertex 5 of �5. As previously shown, 

the closure equation in the vector representation is

O4O3O2O1 = I (135)

and the special side is 24. We will take the base point to be vertex 4̄. Because all the holonomies 
are based at vertex 4̄, all the n̂b are defined there, which we notate n̂b(4). However, recall that 
the property of being flatly embedded means having vanishing extrinsic curvature, and so this 

48 On the sphere we always consider the triangle to be the smaller of the two portions in which the sphere is subdivided 
by three points connected by geodesic arcs. We also require this region to be convex.
49 Still, the need to quantize gravity and Chern–Simons simultaneously, which leads to a deformation of the gauge 
group and hence of its representations, raises the interesting question of whether the construction of the EPRL amplitude 
is still justified in this setting or if it needs to be modified. A hint at an answer comes from the modified phase space of 
LQG suggested by the new closure condition. The classical phase space is investigated in the companion paper [146].
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makes the normal to a face well-defined at any of its points. The faces 1, 2 and 3 (faces are 
labeled using the opposite vertex) contain vertex 4̄, and this means that n̂1(4), n̂2(4), n̂3(4) can 
be directly interpreted as normals to their respective faces, while n̂4(4) is the vector obtained 
after parallel-transporting n̂4 from its face to vertex 4̄, via the edge 24 (see Fig. 6). That is,

n̂4(4)= o42n̂4(2), (136)

where ocb is the vector representation of the holonomy from vertex b̄ to vertex c̄, along the side 
cb. Notice that this is not part of our critical data and is highly gauge dependent. As we will 
see, this will not pose any problem to the reconstruction, it is just an intermediate step towards a 
well-defined expression.

From this understanding of the normals we can find the (cosine of the external) dihedral angles 
along the edges 41, 42, and 43. They are

cosφbc = n̂b(4) · n̂c(4), for (b, c) �= (2,4). (137)

For the dihedral angle along the edge (24), more care is needed. Certainly, we have

cosφ24 = n̂2(1) · n̂4(1)= n̂2(3) · n̂4(3) . (138)

The problem is that n̂4 when based at vertices 1 or 3 does not relate to the critical data in a gauge-
independent way. However, we can relate, e.g., n̂2(1) and n̂4(1) with their values at vertex 4,50

cosφ24 = n̂2(1) · n̂4(1)=
[
o14n̂2(4)

] · [o12o24n̂4(4)
]
. (139)

Bringing o14 across the dot product and using the group orthogonality property we obtain,

cosφ24 = n̂2(4) ·
[
O−1

3 n̂4(4)
]
. (140)

Similarly, starting at vertex 3, one finds

cosφ24 = n̂2(4) ·
[
O1n̂4(4)

]
. (141)

The fact that these two equations are consistent with one another follows immediately from the 
closure condition and the fact that the surfaces are flatly embedded, which gives Obn̂b = n̂b .

It is also possible to give an expression of the cosines of the dihedral angles directly in terms 
of the holonomies, the data actually specified by the critical point equations,

cosφbc =±b ±c

1
2 Tr (ObOc)− 1

4 Tr (Ob)Tr (Oc)√
1− 1

4 Tr2 (Ob)

√
1− 1

4 Tr2 (Oc)

, for (b, c) �= (2,4) (142a)

cosφ24 =±2 ±4

1
2 Tr
(

O2O−1
3 O4O3

)
− 1

4 Tr (O2)Tr (O4)√
1− 1

4 Tr2 (O2)

√
1− 1

4 Tr2 (O4)

, (142b)

which are a sort of normalized, connected two-point functions of the holonomies. The signs 
±b are exactly those appearing in the relation between the geometrical and spinfoam data: 
n̂b = ±bn̂b. When the tetrahedron is known, the signs can be fixed by knowing the signs of 
sin
(
λ
3 ab
)
, which fixes the branch of the square root. However, when the tetrahedron is not known 

a priori, as when one is given only the spinfoam data, this ambiguity is due to the fact that given 

50 Note that, since the surface is flatly embedded O2n̂2 = n̂2, and therefore o13o34n̂2 = o14n̂2.
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a holonomy we are unable to distinguish between a rotation of θ around an axis and a rotation 
of 2π − θ around the opposite axis. This means that we cannot initially decide whether γjb or (
2πR2

λ − γjb
)

will be the geometrical area of the face. Nonetheless, this ambiguity can be fixed 
by requiring that the tetrahedron be convex; this is easily accomplished by imposing positivity 
on the triple product n̂1(4) ·

[
n̂2(4)× n̂3(4)

]
, and its like. Indeed, these triple products can be 

expressed as normalized connected three-point functions of the holonomies, similar to the two-
point functions above. These expressions present analogous sign ambiguities that can therefore 
be fixed by the convexity requirement (again, see [146] for details). In what follows we will 
largely proceed as if this ambiguity was not present, however we will come back to it toward the 
end of the paper, in Section 15.

Once we have unambiguously fixed the cosines of the dihedral angles, these can be used to 
construct the Gram matrix of the tetrahedron(3Gram

)
bc
=− cosφbc. (143)

The determinant of 3Gram determines whether the tetrahedron is hyperbolic or spherical [147], 
therefore providing the crucial information

sgn det
(3Gram

)= sgnλ. (144)

This fixes the sign of the cosmological constant at a given vertex. Consequently, there is no 
freedom, within a vertex, to change this sign, and a unique correspondence between the spinfoam 
and geometric data can finally be established. Note that flipping the sign of the cosmological 
constant does not change the Gram matrix, since it corresponds to flipping all the ±b. This fact 
is crucial, since it means that sgn (λ) can actually be calculated.

Finally, from the Gram matrix one can fully reconstruct the curved tetrahedron. In practice this 
amounts to repeatedly applying the spherical (and/or hyperbolic) law of cosines to first calculate 
the face angles of the tetrahedron and then its side lengths. The fact that this algorithm leads to a 
tetrahedron actually consistent with the initial data is non-trivial. This fact is proved for a single 
tetrahedron in the companion paper [146], but can also be seen as a consequence of the more 
general reconstruction theorem for the whole 4-simplex proved later in this paper.

11. Geometry from critical point equations III: curved 4-simplex

As in the three-dimensional case, the first step is to clarify the topology of the paths on the 
four simplex given the equations of motion for the holonomies Hab and Gab calculated in a cer-
tain graph framing. This was done at the end of Section 9.1. We recall here the results of that 
discussion.

The equations of motions can be written in terms of the variables H̃ab, which all share the 
same base-point in the 4 simplex. They take the following form:{

H̃ba = H̃−1
ab except H̃42 = H̃−1

13 H̃−1
24 H̃13

H̃ab4H̃ab3H̃ab2H̃ab1 = I.
(145)

Modulo gauge transformations (that is, global parallel transports), the base point of the H̃ab

can be understood to be vertex 4. The first of these equations tell us that all faces (ab) �= (24)
are traversed along the same path (though in opposite directions) when considered as part of 
tetrahedron a or tetrahedron b. The relation between the holonomies H̃24 and H̃42 tells us that the 
net difference in their paths, is given by face (13). This difference is due to two facts about face 
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(24): (i) from the perspective of tetrahedron 2, this is the face opposite to the base point 4, and 
must be reached via a special edge, here this is edge 45; (ii) from the perspective of tetrahedron 4
it is also the face opposite to the tetrahedron’s base point, vertex 2. Moreover, tetrahedron 4 is 
itself opposite to the global base point 4, and must be reached via the “4-simplex special edge”, 
that is, edge 42. See Fig. 7.

Now that the paths have been clarified, we begin to analyze the geometry in detail. The strat-
egy we adopt is as follows: First we show that one can associate to a solution of eq. (145) a set of 

five 4-dimensional hyperplanes in R5 equipped with the metric 
5
η (ε)αβ := diag(−1, 1, 1, 1, ε), 

where the sign ε =±1 is determined by the specific values of the holonomies. To given hyper-

planes and signature of 
5
η (ε) one can easily associate a set of 25 different curved 4-simplices, 

with the same sign of the curvature as ε. Antipodal 4-simplices are related by a flip in orientation, 
which might be a parity-inversion (for de Sitter) or time-reversal (for anti-de Sitter). Nonetheless, 
as discussed in Section 13, these two transformations are degenerate with respect to our bivec-
torial description. To each of these 4-simplices one can then associate the holonomies along the 
paths described above, and the “reconstructed” holonomies necessarily satisfy eq. (145).

Thus, the question is whether among the reconstructed 4-simplices there exists one (and only 
one) that produces the same holonomies with which we began. We show this fact indirectly. 
That is, we show that there are at most 25 sets of holonomies that reproduce the same set of 
4-dimensional hyperplanes in R5 (up to rotations and boosts). We also show that within each 
such set, holonomies come identified in pairs related by an orientation changing transformation. 
In the following we will show one by one the previous claims in order to complete the proof.

11.1. Determination of the hyperplanes and of the sign of the curvature

The closure relations for the tetrahedra can be expressed as SU(2) closure equations. This 
means that at each vertex the four {Hab}b,b �=a , when seen as elements of SO(1, 3), stabilize the 
unit timelike normal u = (1, 0, 0, 0)T , and can therefore be thought of as defining a spacelike 
frame in which the tetrahedron lives. Notice that if the tetrahedron is not degenerate, as we 
shall suppose, this is the only 4-vector which is invariant under the action of all of them. As 
a consequence, the parallel transported closure equations, i.e. those involving the {H̃ab}b,b �=a , 
uniquely identify the future-directed, unit timelike normals Na :=�au, where �a represents the 
ga ∈ SL(2, C) action on R1,3. In summary, there exists a unique Na ∈R

1,3 such that: it has norm 
equal to −1, it is future pointing, and it is stabilized by all {Õab}b, b �=a , where Õab ∈ SO(1, 3)+↑
is the representation of H̃ab ∈ SL(2, C) acting on R1,3. This condition on the H̃ab implements 
the non-trivial facts that the Hab are in the SU(2) subgroup of SL(2, C) (existence), and define a 
non-degenerate tetrahedron (uniqueness).

The 4-vector Na is then interpreted as the timelike normal to the a-th tetrahedron when ex-
pressed in the common frame in which all the H̃ab are defined. Thus, if this interpretation is 
valid, it follows that the hyper-dihedral angle �ab between the a-th and b-th tetrahedra on the 
boundary of the 4-simplex must be given by

− cosh�ab := ηIJN
I
a N

J
b ≡ ηIJ (�

−1
b �au)

I uJ , for (ab) �= (24), (146a)

where ηIJ := diag(−1, 1, 1, 1) is the Minkowski metric. We have excluded the case (ab) = (24)
for similar reasons as in the three-dimensional case of eq. (138); the two normals experience 
incompatible parallel transports before arriving at their common point of definition, as observed 
at the beginning of this section. Another, maybe more transparent, way to state this fact is by 
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observing that G42, which is the parallel transport between the frames of tetrahedra 2 and 4, does 
not factorize, i.e. it is not simply given by g−1

4 g2. In the 4-vector representation, this means—with 
obvious notation—that �42 �=�−1

4 �2. In fact, the correct formula is

− cosh�24 := ηIJ (�42u)
I uJ ≡ ηIJ (Õ31N2)

INJ
4 . (146b)

Importantly, this is exactly the same equation one would have written by just looking at the 
“simple” paths on the 4-simplex described in the previous section, and is a perfect analogue of 
eq. (138).51 Also, notice that the first equality in the previous formula holds for the dihedral angle 
at any face, not just for the one at face (24).

As in the tetrahedral case this set of data is enough to reconstruct the curved 4-simplex, in-
cluding the sign of its curvature. Let us show this by embedding the problem in one dimension 
more, in such a way that the homogeneous space in which the 4-simplex is defined becomes 
the “unit sphere” of the embedding space. That is, if the 4-simplex is of positive curvature we 
consider a de Sitter (dS) space embedded in R1,4, conversely if it is of negative curvature we con-
sider an Anti-de Sitter (AdS) space embedded in R2,3. Now, the three dimensional subspaces52 in 
which the tetrahedra on the boundary of the 4-simplex live pick out a 4-dimensional hyperplane 
through the origin of the embedding space. Observe that the converse is also true; given five such 
4-dimensional hyperplanes one can easily reconstruct the 4-simplex. More precisely, the latter 
statement is true up to a 25-fold ambiguity originating from the five binary choices needed to 
fix which side of the hyperplanes the 4-simplex lies on.53 This discussion shows that once we 
are given the hyperdihedral angles we can determine the curved 4-simplex (and the sign of its 
curvature) up to rotations (and boosts) and a discrete number of ambiguities.

To see how this works concretely, consider R5 with the metric

5
η (ε)αβ := diag(−1,1,1,1, ε), (147)

and the sign ε =±1 to be determined by the specific values of the holonomies, and consider the 
following four 5-vectors

N α
a := (NI

a ,0), for a �= 4. (148)

Each vector has norm −1 with respect to the metric 
5
η (ε), irrespective of the sign of ε. So, the 

fifth 5-vector N4, as well as the sign of ε, are determined by the requirements

5
η (ε)αβN α

4 N β
a =− cosh�4a, (149a)

5
η (ε)αβN α

4 N
β

4 =−1, (149b)

N 5
5 > 0. (149c)

51 Explicitly, to compare N2 and N4 one has to parallel transport them to their common face via the appropriate paths 
contained in tetrahedra 2 and 4; if the comparison is made at vertex 5 (any other choice would give the same result), one 
has to take the inner product between the two time normals only after parallel transporting them respectively along the 
4-simplex sides (42) and then (25) in the case of N2, and side (45) in the case of N4. Eventually, this amounts to taking 
N2 around face (31) before comparing it to N4.
52 These are either 3-spheres S3 or 3-hyperboloids H 3, depending on whether one is dealing with dS or AdS spaces.
53 For more details, and some subtleties arising in the hyperbolic (AdS) case, see the companion paper [146]. We just 
mention here that one has to consider a two-sheeted AdS space in order to be deal with all possible solutions to the 
critical point equations. By this, we mean that the spacelike hyperboloid foliating AdS are two-sheeted. Nevertheless, by 
limiting the boundary data considered, one can always restrict to the more familiar case.
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(The last equation is only needed to obtain a unique solution for N4, and is otherwise irrelevant.) 
The 5-vectors Na are then precisely the normals to the five 4-dimensional hyperplanes discussed 
a moment ago. The second condition can be fulfilled for one sign of ε only, and therefore fixes 
whether the 4-simplex is positively or negatively curved. Note that with these choices for the Na , 
vertex 4 lies at the “North (or South) pole” of dS (or AdS, respectively), i.e. at (±1, 0, 0, 0, 0).

11.2. Counting the sets of holonomies satisfying the critical equations

At this point we need to count how many sets of holonomies satisfy the critical equations. To 
do so, the strategy is to show that eqs. (145), (146a) and (146b), along with the uniqueness prop-
erty of the Na discussed in the first paragraph of the last subsection, have at most 25 solutions, 
with parity transformations relating them in pairs.54

First, consider eq. (146a). These equations have exactly 4 solutions in terms of the Na , up 
to a global SO(1, 3)+↑ symmetry. To see this, let us consider the two square submatrices of the 
4-simplex Gram matrix(4Gram

)
ab
=− cosh�ab, (150)

given by a, b ∈ {1, 2, 3, 5} and a, b ∈ {1, 3, 4, 5}. Call them 4Gram4̂ and 4Gram2̂, respectively. 
These matrices do not contain the “twisted” entry associated to the hyperdihedral angle �24 (see 
eq. (146b)). All their entries are given by Lorentzian scalar products as in eq. (146a). Hence, we 
are trying to solve the equations

4Gram4̂ =NT

4̂
ηN4̂ (151a)

4Gram2̂ =NT

2̂
ηN2̂ (151b)

for the five future-pointing 4-vectors Na ∈ R
4. The notation is as follows: N4̂ := (N1, N2,

N3, N5), and N2̂ := (N1, N3, N4, N5) are 4 × 4 matrix whose columns are given by 4 out of 5 
of the 4-vectors Na , and η = diag(−1, 1, 1, 1) is the 4-dimensional Minkowski metric. To solve 
each of the previous equations, start by observing that 4Gramâ is symmetric, and can therefore 
be put in a diagonal form by conjugation via an orthogonal matrix Oâ: 4Gramâ =OT

â
DâOâ . At 

this point, by Sylvester’s theorem one has that Dâ = ηE2
â
, where Eâ can be taken to be a positive 

diagonal matrix. Thus, we find that Nâ must be of the form VâEâOâ , where any Vâ ∈ O(1, 3)
is equally viable. Now, time reversal symmetry is broken by the requirement that the Na’s are 
future pointing. Therefore, considering Nâ to be defined only up to an SO(1, 3)+↑ gauge, one 
is left with two solutions related by a parity inversion symmetry for each entry of eq. (151).55

54 Observe that in the tetrahedral case we could make use of the triple products to fix exactly which solution we were 
interested in. In the present case this is not possible. The reason is that all the normals to the tetrahedra are taken as 
future pointing, and therefore some of them will be inward- and others outward-pointing with respect to the 4-simplex. 
Clearly this problem is related to the fact that it is not possible for a vector to cross the light-cone by means of SL(2, C)

transformations.
55 A more pedestrian proof goes as follows. Clearly, we are interested in solutions up to gauge, that is up to the action 
of an element of SO(1, 3)+↑ , acting diagonally on all the Na . We can use this freedom to gauge fix N1 to be (1, 0, 0, 0)
and the plane N3 ∧ N5 to be the same as (and have the same orientation of) the plane �x̂ ∧ ŷ, with the spacial part of 
N3 being parallel to x̂ , that is NI

3 ŷI =NI
3 ŷI = 0 and NI

3 x̂I > 0. Here, x̂ := (0, 1, 0, 0)T , and so on. After such a gauge 
fixing, a moment of reflection shows that the solution to each one of the previous two equations is unique up to reflection 
with respect to the N3 ∧N5 plane. In fact, the equation is characterized by a full O(1, 3) symmetry, rather than just by 
an SO(1, 3)+ one.
↑
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Because we are not yet imposing any relation between N2 and N4, we see that there are at this 
level exactly 4 different solutions for the five 4-vectors Na.

We now move on, to consider the missing information provided by 
(

4Gram
)

24 =− cosh�24
(eq. (146b)). This clearly imposes a relation between N2 and N4. Nevertheless, this relation 
is mediated by a new variable, namely Õ13. Therefore the extra information provided by the 
knowledge of cosh�24 will be used to put constraints on ̃O13 (alone). Observe that ̃O13 stabilizes 
N1 and N3, and therefore by choosing a gauge in which N1 = u = (1, 0, 0, 0)T , Õ13 is a pure 
rotation around the axis �N3. Hence, for each solution of eqs. (146a) and (146b) one has at most 
two solutions in terms of Õ13.

We can obtain a similar result for Õ53. Indeed, by using eq. (111) relative to vertex 3, one gets 
the identity

Õ31 = Õ43Õ53Õ23 , (152)

and by using the fact that Õab stabilizes Na and Nb, one obtains

− cosh�24 = ηIJ (Õ31N2)
INJ

4 = ηIJ (Õ53N2)
INJ

4 . (153)

Therefore, for any solution of eqs. (146a) and (146b) thus far considered, there are two additional 
solutions for Õ53.

We can follow the same reasoning using the closure at vertex 1, obtaining two more solutions 
for Õ15.

Now, consider the closure equation for vertex 3.

Õ31Õ32Õ35Õ34 = I. (154)

At this point we have fixed both Õ31 and Õ35. We claim that this equation has a unique solution 
compatible with the fact that Õ32 and Õ34 must respectively stabilize N2 and N4, as well as N3. 
Indeed, since all the Õ3a stabilize N3, we can reduce the problem to SU(2). In a gauge where 
N3 = u, one has that Õ3a is a rotation around �Na ; for added clarity rewrite eq. (154) as

Õ31R2 =R4Õ53, (155)

where R2 and R4 are rotations of unknown angles around �N2 and �N4, respectively. Contract this 
equation with �N2 and the result is

R4�v = �w, (156)

where �v and �w are known vectors (recall that R2 ≡ Õ32 stabilizes N2). Some thought shows that 
this equation has at most one solution. Therefore, one can in this way completely fix Õ32 and 
Õ34.

Using analogous argument at vertex 1, it is possible to fix uniquely Õ12 and Õ14. Hence, there 
are only three holonomies left to be fixed: Õ25, Õ54, and Õ24. This is readily done in a unique 
way by applying the above arguments at vertices 2 and 5.

We are finally left with a total of at most 4 × 2 × 2 × 2 = 25 solutions, where the factor of 
4 comes from the fixing of the Na , and the factors of 2 come from the fixing of Õ13, Õ53, and 
Õ15. Notice that one can determine the Na only up to a reflection in their spacelike components, 
that is, up to parity.56 (The fact that the time direction is preserved is due to our hypothesis 
that the time normals are always future pointing, irregardless of whether they are inward- or 

56 This symmetry was taken into account in the preceding counting.
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outward-pointing with respect to the 4-simplex.) These new solutions can be easily seen to be 
related to the transformation A 	→ Ā, i.e. H̃ab 	→ (H

†
ba)

−1 (see also Section 13). This comes as no 
surprise, since also the five hyperplanes in R5 subdivide dS, or AdS respectively, in 25 sectors, 
with a two-fold “redundancy” due to parity. We can finally conclude, that any solution to the 
critical-point equations corresponds to one of the 25 4-simplices obtained in the way described 
above.

11.3. Concluding remark

One of the main consequences of what we have just shown, is that, in order to solve the 
critical-point equations, all the tetrahedra must be characterized by the same sign of the cos-
mological constant, hence fixing all the νa at each vertex to be equal.57 Hence, the sign of the 
cosmological constant is a dynamically determined quantity that takes—on shell—a consistent 
value throughout the whole 4-simplex.

12. Critical value of the action

In the previous section we showed how the critical points of the �5 Wilson graph operator 
obtained in the double scaling limit are related to a curved 4-dimensional simplicial geometry. 
In this and the following section we turn our attention to the evaluation of the spinfoam and 
Chern–Simons actions at the critical point. We will find that the first corresponds to the Regge 
action associated to the curved 4-simplex (see Appendix A), while the second corresponds to the 
relevant cosmological term.

12.1. The Wilson graph operator

A straightforward calculation shows that by inserting the critical point equations of Section 6
into the spinfoam action S�5 of eq. (79), one obtains

S
∣∣
0 = i

∑
a<b

−2jabϕab − 2γjabψab. (157)

Equation (112) clearly shows that the phases ϕab appearing in this equation are related to the 
choice of phase for the spinors ξab. These phases can be interpreted in the context of “framed 
polyhedra” [148], where they represent the direction of a unit vector lying on the face (ab) of the 
tetrahedron a. In our context, these frames are part of the boundary data, and might be chosen 
so that the first term in the previous expression is zero (the boundary states with this property 
are called “Regge states” in [94]). This choice depends on the geometry of the four simplex, see 
Section 14. In order to keep track of all the dependencies on the geometry, we do not make this 
choice here, and work with the most general formulae. Anyway, we postpone further discussion 
of these phases to Section 14.

Here, we focus on the second term of eq. (157), the one involving the face areas γjab and the 
variables ψab. We turn to giving a geometrical meaning to the latter variables. Let us start from 
the parallel transport equations (112) recast in the more compact form

57 Contrary to the last section, we here indicate with νa , the sign of λ at the vertex a.
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(J ξab,−ξab)=Gab(ξba, J ξba)

(
eψab+iϕab 0

0 e−ψab−iϕab

)
, (158)

where (ξ, Jξ) is a 2 ×2 matrix with the spinor ξ as the first column and spinor Jξ as the second. 
This matrix is the SU(2) rotation mapping the spinor (1, 0)T to ξ . In vectorial language, it maps 
the ẑ-axis to n̂(ξ). Introducing the shorthand D(ξ) := (ξ, Jξ) ∈ SU(2), the previous equation 
can be written

Gab =D(Jξab)

(
eψab+iϕab 0

0 e−ψab−iϕab

)−1

D(ξba)
−1

≡D(Jξab)e
−(ψab+iϕab)σzD(ξba)

−1, (159)

where we used the fact that J 2 =−1. In this form the interpretation of the Gab is transparent: in 
vectorial language, it first rotates the frame of face (ab), contained in tetrahedron b and defined 
by its normal −n̂ba , onto the z-axis. Then it boosts this frame in the ẑ-direction (orthogonal to 
the face) and rotates it around ẑ (along the plane of the face), and finally it takes the ẑ-axis into 
the unit normal n̂ab of the face (ab), contained in tetrahedron a. Importantly, we can both rec-
ognize the significance of the phase ϕab as a rotation angle, and characterize the boost parameter 
between the frames of the two tetrahedra a and b, as being 2ψab. To make this claim completely 
explicit, it is enough to write eq. (159) in the vectorial representation, yielding

�ab =R(J ξab)e
2ψabKz+2ϕabJzR(ξba)

−1, (160)

where R(ξ) ∈ SO(3) ⊂ SO(1, 3) is the vectorial representation of D(ξ) ∈ SU(2) ⊂ SL(2, C). 
Note that R(ξ) stabilizes the four vector UI = (1, 0, 0, 0)T . Finally, by contracting this equation 
with U itself, one finds

− cosh�ab = ηIJ (�abU
I )UJ =− cosh 2ψab , (161)

and hence

|�ab| = 2 |ψab|. (162)

Therefore, 2 |ψab| is the magnitude of the hyper-dihedral angle hinged at the face (ab).
Fixing, in geometrical terms, the sign ψab is more subtle.58 From the previous discussion, it 

should be clear that �ab is a Lorentz transformation sending the timelike direction of tetrahe-
dron b into the timelike direction of tetrahedron a. Moreover, because �ab is an element of the 
vectorial representation of SL(2, C), �ab ∈ SO(1, 3)+↑ (the proper orthochronus Lorentz group), 
it sends future-pointing vectors into future-pointing vectors. All of this said, generically it re-
mains the case that the oriented geometric time-normals of the tetrahedra on the boundary of the 
4-simplex are not all future pointing.

So, consider the transformation Lab ∈ SO(1, 3)+↑ , defined as a function of the future directed 
4-vectors Na and Nb

Lab := exp

(
|�ab|ς(Nb ∧Na)

|Nb ∧Na|
)
, (163)

58 We could just take the result of [94], obtained in the context of the flat EPRL model, corresponding to an infinite 
Chern–Simons coupling (i.e. to a vanishing cosmological constant). Indeed, their result must be valid also in our case: 
since one can imagine to take the flat limit continuously without letting the dihedral angle ever vanish, by continuity 
the sign calculated in the flat case must coincide with the one in the curved case. Nonetheless, in order to keep our 
presentation completely self-contained, we provide an alternative argument.
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where ς(Nb ∧Na) := (Nb)[I (Na)J ]JIJ ∈ so(1, 3). It is easy to check that LabNb =Na . Let Ñb , 
and Ña be the oriented geometric normals to the tetrahedra b and a, respectively. One then has, 
Ñb =±Nb, with the sign being determined by whether the tetrahedron is future or past pointing. 
Similar considerations hold for tetrahedron b. Define also

sgn �ab =−sgn ηIJ Ñ
I
b Ñ

J
a . (164)

This definition fits well with the geometrical requirements of a discrete Lorentzian geometry 
[149,94]. Then,

Lab = exp

(
�ab

ς(Ñb ∧ Ña)

|Ñb ∧ Ña|
)
. (165)

Geometrically, the wedge product Ñb ∧ Ña is orthogonal to the triangle shared by tetrahedra 
a and b, and must therefore be proportional, when calculated in the frame of tetrahedron b, 
to −u ∧ nba , where u = (1, 0, 0, 0)T and nba = (0, n̂ba)

T . In Appendix D it is shown that
(Ñb ∧ Ña)(b) =−u ∧ nba for all orientations of the normals Ñb and Ña . Hence,

Lab(b) := exp

(
−�ab

ς(u∧ nba)

|u∧ nba|
)
= exp

(
−�abn̂ba

�K
)
. (166)

Now, observe that both Lab(b) and �ab have the property of sending u into the future pointing 
normal Na(b). This means that, when written in the form of a rotation in the source space times 
a pure boost, their boost parts must agree. The group element Lab(b) has already been written in 
the form of a pure boost, while �ab can be expressed in the form

�ab =
[
R(J ξab)e

2ψabKzR(J ξab)
−1
][

R(J ξab)e
2ϕabJzR(ξba)

−1
]

= e2ψab(−n̂ba) �KR′, (167)

where we used the fact that R(J ξab)ẑ = −n̂ba , and that Kz commutes with Jz. Finally, R′ is 
given by the second bracket in the first line and is a pure rotation in the source space. From this 
decomposition, we can immediately conclude that

exp
(
−�abn̂ba

�K
)
= exp

(
−2ψabn̂ba

�K
)

(168)

and hence

2ψab =�ab, (169)

which fixes the sign of ψab.
This allows us to give the following expression for the spinfoam action at the critical point

S
∣∣
0 =−

i


2
P

∑
a<b

aab�ab − 2γ−1aabϕab. (170)

We will comment later on the rôle of the ϕab variables.

12.2. The Chern–Simons functional

In this section we evaluate the Chern–Simons functional at the critical point. The calculation 
is analogous to those performed in the case of knot complements, see e.g. [150]. The strategy 
consists of evaluating the variation of the Chern–Simons functional due to a small change in 
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the boundary geometry (encoded in the spins and coherent-state spinors, see Section 10), and 
showing that this change is the same one would obtain by varying the volume functional. The 
Schläfli identities (see e.g. [151], and for a recent symplectic proof [152]) state how the volume 
of a curved 4-simplex responds to any variation δ of the geometry of the simplex59

λδV4 =
∑
t⊂σ

at δ�t , (171)

where λ is the value of the geometrical cosmological constant, and V4 is the 4-volume of the 
4-simplex σ , at is the area of the triangle t and �t is the dihedral angle hinged by the triangle t . 
Note that the sign of the cosmological constant on the left-hand side is simply given by the 
character of the 4-simplex, that is, it is positive (or negative) provided the simplex is embedded 
in dS (or AdS).

Therefore, let us start by considering the solution (A, Ā) of the critical point equations with 
boundary data given by (jab, ξab) and its small variation (A + δA, Ā+ δĀ) due to the change 
(jab + δjab, ξab + δξab) in the boundary data. The Chern–Simons functional depends explicitly 
only on the connection (A, Ā), thus

δW [A] :=W [A+ δA] −W [A] =
∫
S3

d3x
δW [A]
δA(x)

δA(x)+O(δA2). (172)

Henceforth every equality between small variations is meant up to an O(δA2) unless otherwise 
stated.

Using

δW [A]
δAi

μ(x)
=− 1

8π
εμνρF i

νρ[A](x) (173)

and the equation of motion for the curvature, eq. (113)

εμρσF i
ρσ (x)

!= −16π

ih
(1+ iγ )

∑
(ab),a>b

jab 〈ξba,
[
(Gsab,b)

−1τ iGsab,b

]
ξba〉 δ(2) μ
ab

(x), (174)

we obtain the following expression for δW [A]
δW [A]
= 1

8π

∫
S3

d3x
16π

ih
(1+ iγ )

∑
(ab),a>b

jab〈ξba,
[
(Gsab,b)

−1τ iGsab,b

]
ξba〉 δ(2) μ
ab

(x)δAi
μ(x)

=−2i

h

(
i+ 1

γ

)∑
a<b

γjab

∫

ab

〈ξba,
[
(Gsab,b)

−1δA(
ab(sab))Gsab,b

]
ξba〉. (175)

It is easy to see that 
∫


G−1

sb δA(s)Gsb =G−1

 δG
, where δG :=G[A + δA] −G[A] signifies 

a difference between SL(2, C) matrices. Indeed, by first writing G
 as

G
 = lim
n→∞

⎡⎣I+ 1∫
sn

A(s)

⎤⎦ · · ·
⎡⎣I+ s1∫

0

A(s)

⎤⎦ , (176)

59 Analogous Schläfli identities hold in all dimensions.
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where 0 < s1 < · · · < sn < 1 is a partition of the interval (0, 1), one can directly compute the 
variation G−1


 δG
:

G−1

 δG
 = lim

n→∞

n∑
k=1

⎡⎣I+ s1∫
0

A(s)

⎤⎦−1

· · ·

· · ·
⎡⎣I+ sk+1∫

sk

A(s)

⎤⎦−1 sk+1∫
sk

δA(s)

⎡⎢⎣I+ sk∫
sk−1

A(s)

⎤⎥⎦ · · ·
⎡⎣I+ s1∫

0

A(s)

⎤⎦

= lim
n→∞

n∑
k=1

sk+1∫
sk

G−1
sk+1b

δA(s)Gskb =
∫



G−1
sb δA(s)Gsb. (177)

In these last equations b denotes the source of the curve 
. We therefore find that

δW [A] = −2i

h

(
i+ 1

γ

)∑
a<b

γjab

〈
ξba,G

−1
ab δGabξba

〉
. (178)

The parallel-transport equations can be recast as in eq. (159), where ψab and ϕab must be 
understood as a function of the boundary data (jab, ξab). Therefore the variation δGab can be 
expressed as

δGab = δD(J ξab)D(J ξab)
−1Gab +GabD(ξba)δD(ξba)

−1

−D(Jξab)δ(ψab + iϕab)σze
−(ψab+iϕab)σzD(ξba)

−1. (179)

Recall that D(ξ) := (ξ, Jξ), and therefore D(ξ + δξ) = D(ξ) + D(δξ), from which one im-
mediately deduces that D(ξ + δξ)−1 = D(ξ)−1 − D(ξ)−1D(δξ)D(ξ)−1 at first order. On the 
other hand, because ξ is normalized, its variations can only be orthogonal to the spinor itself, 
that is δξ = εJ ξ + iδφξ , for some small ε ∈ C and δφ ∈ R. Now, consider the contribution of 
the second term in the previous equation to the variation δW [A], it reads〈

ξba,G
−1
ab

[
GabD(ξba)δD(ξba)

−1
]
ξba

〉
=−

〈
ξba,D(δξba)D(ξba)

−1ξba

〉
=−〈ξba,D(δξba)+z〉
= −〈ξba,D(εbaJ ξba)+z〉 − 〈ξba,D(iδφbaξba)+z〉
= εba 〈ξba, J ξba〉 − iδφba 〈ξba, ξba〉
= −iδφba, (180)

where |+z〉 := (1, 0)T ∈ C
2, and |−z〉 := J |+z〉 ≡ (0, 1)T ∈ C

2. To make the final part of the 
calculation more explicit notice that in bra–ket notation D(ξ) ≡ |ξ 〉〈+z| +|Jξ 〉〈−z|, from which 
one finds D(ξ)−1 ≡D(ξ)† = |+z〉〈ξ | + |−z〉〈Jξ |, and also D(Jξ) = |Jξ 〉〈+z| − |ξ 〉〈−z|.

With the help of the parallel transport equations and the properties of the complex structure 
J , and in a manner analogous to that just used, one can show that the first term of eq. (179)
contributes to δW [A] a quantity proportional to
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〈
ξba,G

−1
ab

[
δD(Jξab)D(J ξab)

−1Gab

]
ξba

〉
=
〈
r−1
ab e−iϕabJ ξab, δD(J ξab)D(J ξab)

−1
(
rabe−iϕabJ ξba

)〉
= 〈Jξab,D(δJ ξab)+z〉
= 〈Jξab,−ε̄abξab − iδφabJ ξab〉
= −iδφab. (181)

Therefore, the first order variation of δW [A] is

δW [A] = −2i

h

(
i+ 1

γ

)∑
a<b

γjab

[
− iδφab − iδφba − δ(ψab + iϕab)

]
. (182)

Now, define

�ab := 2(ϕab + φab + φba). (183)

Later, we will show that this is a function of the spins, independent of the (arbitrary) choice of 
the phases φab associated to the spinors ξab.

Hence, the variation of the Chern–Simons part of the action is

δCS[A, Ā] := �
(
hδW [A]

)
=−

∑
a<b

γjab(2δψab + δ�ab). (184)

At this point we can use the results of the 4-simplex reconstruction performed in the previous 
sections, stating that aab = 
2

P γjab and 2ψab =�ab , to find how the Chern–Simons functional 
evaluated at the critical point responds to a change in the geometry (encoded in the boundary 
data (jab, ξab) 	→ (jab + δjab, ξab + δξab)). According to the Schläfli identities it varies just like 
the volume functional does,

δCS[A, Ā]∣∣0 =− 1


2
P

∑
a<b

aabδ�ab + aabδ�ab

=− 1


2
P

λδV4 − 1


2
P

∑
a<b

aabδ�ab. (185)

In the last expression we have reintroduced a subscript zero on the left-hand side to emphasize 
that the variation is taken on-shell. Notice that the sign of the cosmological constant in the previ-
ous equation is the one determined by the reconstruction theorem (while its magnitude is equal to 
|�|). Unfortunately, for the moment we do not have enough control on the phases �ab to be able 
to give a geometrical meaning to the variation appearing in the second term. We introduce for 
purely notational purposes the real function C� such that δC� =∑a<b aabδ�ab . This is possible 
in principle since, as we shall argue later on, the �ab are functions of the geometry only.

At this point it is enough to integrate the variations to find that

CS[A, Ā]∣∣0 =− 1


2
P

λV4 − 1


2
P

(C� +Cint), (186)

where Cint ∈ R is some integration constant of a topological nature, that is, it is independent of 
the geometry of the solution (i.e. of the boundary data (jab, ξab)). In particular, it is expected 
to depend on the gauge (recall that the Chern–Simons functional W [A] is gauge invariant only 
modulo 2π ) and also on the choice of framing for the graph (for example on whether one decides 
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to replace the path defining Gab with a path winding once more around the edge 
ab, i.e. on 
whether one decides to perform a Dehn twist on the tube (ab)). A more thorough characterization 
of this term is left for future work.

In Appendix E, we perform a perturbative evaluation of the Chern–Simons invariant around a 
flat solution. This helps to determine what kinds of terms, other than the 4-volume, appear in the 
evaluation.

12.3. The total action

Putting together the results from the last two sections, we can finally state the main result of 
this paper: the total action for the Chern–Simons plus Wilson-graph operator, evaluated at the 
critical point (A, Ā, jab, ξab) of the double scaling limit j→∞, h →∞, j/h ∼ const, is given 
by the Regge action of the curved 4-simplex augmented by a cosmological term:

I
∣∣
0 ≡ S

∣∣
0 − iCS

∣∣
0

=− i


2
P

[∑
a<b

aab�ab − λV4

]
− 2i

γ 
2
P

∑
a<b

aabϕab + i


2
P

(C� +Cint) . (187)

13. Parity-reversal symmetry

Because of the symmetry between the equations involving the selfdual and the anti-selfdual 
parts of the SL(2, C) connection, it is not hard to realize that the transformation

P : A= (A, Ā) 	→ Ā= (Ā,A), (188)

is actually a symmetry of the equations of motion. The main consequence of this transformation 
is that

P : G
[A] := P exp
∫



A 	→ G
[Ā] = P exp
∫



Ā≡ (G[A]†)−1, (189)

where G
[A] stands for an arbitrary holonomy along a path 
, not necessarily a longitudinal one. 
In terms of the parameters ψab, this translates into:

P : ψab 	→ −ψab . (190)

Therefore, P changes the sign of the Regge part of the action evaluated at the critical point:

P :
[∑
a<b

aab�ab − λV4

]
	→ −

[∑
a<b

aab�ab − λV4

]
, (191)

while the rest of critical action is left unchanged. This transformation can therefore easily be 
interpreted as a change in the orientation in the reconstructed spacetime. This is a common 
feature of all the flat spinfoam models starting from the Ponzano–Regge one (see [94,99,100,
83]), but also of the minisuperspace cosmological models where both the wave functions of the 
expanding and contracting universe appear as solutions of the dynamical equations [153].

What might seem puzzling at this point is the fact that in the previous sections we obtained a 
clear-cut result on the relation between the sign of ψab and that of �ab. The point is that in the 
derivation of that result an implicit hypothesis was used; the hypothesis that the reconstructed 
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geometry had the same orientation as that induced by the choice of paths defining the transverse 
holonomies. We mean that the “simple” paths were supposed to circulate around the faces of 
the tetrahedra in a right-handed, outward-pointing fashion. This was a natural assumption, but 
not quite a necessary one. Indeed, by changing the parity of the tetrahedra while keeping the 
same closure equations, one would have found a consistent description by interpreting the n̂ab

as right-handed, inward-pointing normals. This would correspond to taking the mirror image of 
Fig. 6. This new construction alters the results of Appendix D by a sign, and consequently the 
same sign change would appear in the equation relating ψab and �ab.

From the face-bivector perspective, flipping the spacial normal to the face is the same as 
flipping the timelike one. Hence, a roughly equivalent description of this change in parity, can 
be obtained by thinking of it as a change in the time orientation. These two descriptions of the 
orientation change are equivalent, or maybe it is better to say “degenerate”, since no actual gauge 
(Lorentz) transformation connects these two indistinguishable geometries.

14. Parity invariant non-Regge terms

In this section we want to comment briefly on the extra terms appearing in the asymptotic 
formula of eq. (187). We need to understand the phases ϕab, and in particular how they can be 
calculated, and what geometrical meaning they bear.

The first observation one can make is that the transformation P leaves the ϕab invariant. 
At this stage, it is easy to convince oneself that the contribution to the critical action from the 
non-Regge terms

NR[ξab, jab] := − 2i


2
P

∑
a<b

jabϕab + i


2
P

(C� +Ctopo) (192)

must be P-invariant. (To this end, note that the variations δφab depend only on the choice of the 
boundary state and are therefore independent of the connection (A, Ā).) This tells us that these 
terms have different symmetry properties, compared to the Regge contribution to the critical 
action, and can therefore be isolated.

The formulae that fix the values of the ϕab (and of the ψab) are essentially the crossing rela-
tions, in one of their forms these are as in eq. (98). Let us consider for example the equation for 
the cycle (125)

G52G21G15 = I. (193)

By using eq. (159), this equation can be given the form

D(ξ51)
−1D(Jξ52)e

−(ψ52+iϕ52)σzD(ξ25)
−1 ·

D(Jξ21)e
−(ψ21+iϕ21)σzD(ξ12)

−1D(Jξ15)e
−(ψ15+iϕ15)σz = I. (194)

To simplify this expression one can then transform the spinors

ξab 	→ ξ ′ab = eiφc
abξab (195)

in such a way that

D(ξab)
−1D(Jξbc) 	→ exp

(
2θacb τy

)
. (196)

This transformation requires a change in the phases ϕab
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ϕab 	→ ϕ′ab = ϕab + φc
ab + φc

ba. (197)

This transformation is always possible for a given cycle, but it is not possible to put all the 
eqs. (98) into this form at the same time. We shall come back to this limitation momentarily. 
Now, the equation for the cycle (125) reads

e−iθ12
5 σy e−(ψ52+iϕ′52)σze−iθ52

2 σy e−(ψ21+iϕ′21)σze−iθ25
1 σy e−(ψ15+iϕ′15)σz = I. (198)

This equation can be solved explicitly for the phases ψab+ iφab as functions of the θab (see [85]). 
The result is that 2ψab is again exactly related to the hyper-dihedral angles (to see this, one has to 
realize that the θabc are the dihedral angles between the faces (ca) and (cb) within tetrahedron c), 
and the ϕ′ab ∈ {0, π}. Note the prime on the variable. Hence, the final result is

ϕab + φc
ab + φc

ba ∈ {0,π}. (199)

The phases φc
ab depend on the geometry of the 4-simplex. Explicitly one finds

φc
ab =

1

2

(
arg〈ξab, J ξac〉 + arg〈ξab, ξac〉

)
= 1

2
arg
(
〈ξab, J ξac〉〈ξab, ξac〉

)
. (200)

Notice, also, that the expressions ϕab + φc
ab + φc

ba are independent of the initial (arbitrary) 
choice of phase of the ξab and therefore eq. (199) is meaningful.

Finally, one can, at least in principle, deal similarly with the equation for the cycle (234), 
where H31 makes its appearance.

As a last remark, the phase appearing in the Chern–Simons functional evaluation is �ab :=
2(ϕab + φab + φba), and this is also independent from the arbitrary phase of the spinors ξab. 
This feature comes as no surprise, since the connection curvature is sourced by a function of the 
spinors that is completely independent from their overall phases.

We leave a complete treatment of these parity-invariant terms for future work. But, before do-
ing this, we want to point out that they are related to what has been called in [148] the “framing” 
of the triangles. This name comes from the fact that the phase of the spinors can be seen as an 
arrow in the plane of the triangles, which the holonomies should consistently parallel transport 
from one triangle and one tetrahedron to the next. If the 4-simplex is flat, after coming back to 
the starting point, the framing should not change, while a precession could be present if some 
curvature is present. This is the meaning of the “crossing” equation

G34G42G23 =H31. (201)

To conclude, we draw the interested reader’s attention to Appendix E, where by performing 
a perturbative evaluation of the Chern–Simons functional, we shed some light on the nature of 
these non-Regge terms. In particular, these results show that the whole non-Regge term, including 
the contribution from Ctopo, is parity invariant up to an integer multiple of 2π
2

P .

15. Areas and spins: a subtlety

Because the reconstruction of the geometry is performed using the vectorial representation, it 
treats holonomies associated to triangles of area a and 

(
2πR2

λ − a
)

in the same way

O = exp

[
λ

an̂ �J
]
= exp

[
λ (

2πR2
λ − a

)(−n̂
) �J ] ; (202)
3 3
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this comes at the price of simultaneously reversing our interpretation of n̂. This is due to the fact 
that the trivial SO(3) holonomy and that along the equator of a sphere are both associated to the 
identity. Therefore, the holonomy around a triangle T ′ obtained by taking the equatorial comple-
ment of one side of a given triangle T , is the same as the holonomy around T itself. Clearly, one 
of the two is a non-convex triangle and cannot belong to the reconstructed 4-simplex.60 As was 
made explicit in the discussion of 3-dimensional reconstruction theorem, “the sign” of n̂ is fixed 
by the convexity requirement. This choice, then, has consequences for the interpretation of the 
area of the triangle, too.

This might appear to be an issue for the calculation of the action at the critical point. Indeed, 
the quantities that directly appear in the calculation are the spins jab, which might or might 
not encode the physical area of the triangle, as a consequence of the ambiguity just described. 
However, an intriguing coincidence saves the result.

Let us start by studying the spinfoam action associated to a given face, where not 
2
Pγj but (

2πR2
� − 
2

P γj
)

is the physical area of the corresponding triangle. Then, the spinfoam action of 
this face becomes at the critical point

−2iγjψ =− i


2
P

(
2πR2

� − a
)
(−�)=− i


2
P

a�+ 6π i

|�|�, (203)

where we have also used the fact that the relation between 2ψ and � must be corrected by a 
minus sign, because the interpretation of the direction n̂ is modified whenever the interpretation 
of the physical area in terms of the spin is.

However, the evaluation of the Chern–Simons functional also gets modified, and the contri-
bution of this face to the variation −iδCS

∣∣
0 is

2iγjδψ = i


2
P

(
2πR2

� − a
)
δ(−�)= i


2
P

aδ�− i
6π

|�|δ�, (204)

where we neglected the contribution coming from the phase ϕ. Note that the only difference 
with the “standard” case, is the last term, which can easily be integrated without interfering with 
the Schläfli identities; this is because the area of the triangle does not appear in this term at all. 
Hence, when combining the spinfoam and the Chern–Simons contribution as in eq. (187), we 
obtain absolutely no modification of the Regge part of the action when it is expressed in terms of 
geometrical quantities.

This result, which appears here as a coincidence, deserves in our opinion further investiga-
tion, since it might point toward a more unified and geometrical treatment of the spinfoam and 
Chern–Simons parts of the total action. In this direction, we already have some hints related to 
a WKB analysis of the holomorphic 3D block structure hidden behind our construction. We are 
actively working to make this construction precise [89].

16. Conclusions and outlook

16.1. Summary and result

In this paper we have studied the expectation value of the non-planar graph operator 
�5
( �j, �i∣∣A, Ā

)
in SL(2, C) Chern–Simons theory with complex level h = 12π�−1(γ−1 + i),

60 This non-convex triangle T ′ looks like a cake missing a slice.
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ZCS

(
S3;�5

∣∣ �j,�i)= ∫ DADĀ eiCS
[
S3 |A,Ā

]
�5

( �j,�i ∣∣A, Ā
)
, (205)

where

CS[S3 |A, Ā] = h

8π

∫
S3

tr

(
A∧ dA+ 2

3
A∧A∧A

)

+ h̄

8π

∫
S3

tr

(
Ā∧ dĀ+ 2

3
Ā∧ Ā∧ Ā

)
. (206)

This study has been performed in the double scaling limit

j , |h| →∞ with j/|h| ∼ const and arg(h)= const, (207)

corresponding to the semiclassical (h̄→ 0) limit of the quantum amplitude of a 4-simplex in 
quantum gravity including a cosmological constant. We showed that the critical point equa-
tions obtained in this limit can be interpreted as describing the geometry of a constant curvature 
4-simplex flatly embedded in (3 + 1)-dimensional de Sitter or anti-de Sitter spacetime, depend-
ing on the details of the spins j and intertwiners i. To obtain this result, we showed that there 
exists a precise correspondence (when neglecting some “degenerate” configurations) between 
(i) the moduli space of SO(3) flat connections on the 4-punctured sphere and a homogeneously 
curved Euclidean tetrahedron, and (ii) a particular subclass of the moduli space of SO(1, 3)+↑
flat connections on the graph complement manifold M3 = S3 \ �5 and a homogeneously curved 
Lorentzian 4-simplex. More precisely this holds up to an orientation-flipping transformation of 
the geometry. Notice that to state the second correspondence, we needed to specify a particular 
subclass of the moduli space of the SO(1, 3)+↑ flat connections on M3. This subclass, is ex-
actly specified by the boundary condition on ∂M3 induced by the specific form of the graph �5. 
The most important characteristic of these boundary conditions is certainly the fact that at each 
vertex of �5 the four holonomies transverse to the edges meeting at that vertex are contained 
in the same SO(3) subgroup of SO(1, 3)+↑ . Geometrically, this specifies a three-dimensional 
spacelike frame for the boundary tetrahedra. Algebraically, this condition can be understood 
as constraining arg(h) = arctanγ . Once these correspondences have been drawn, we calculated 
the asymptotic behavior of the amplitude in the double scaling limit (d.s.l.), obtaining

ZCS

(
S3;�5

∣∣ �j,�i )
d.s.l.−−→ eNR[�i, �j ] [N+ei

(∑
t at�t−λV4

)
+N−e−i

(∑
t at�t−λV4

)] [
1+O(j−1, h−1)

]
. (208)

To write this formula we have taken into account the fact that whenever the connection A =
(A, Ā) is a solution of the equation of motion, also Ā= (Ā, A) is, hence the two branches. Each 
branch contributes the Regge action for a curved 4-simplex including the cosmological constant 
(the two branches coming with opposite orientations),61

SR =
10∑
t=1

at�t − λV4 , (209)

61 In units where c= h̄= 
2 = 1.

P
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where at , �t are the areas and dihedral angles associated to the ten triangles of the 4-simplex, 
and V4 is its curved 4-volume. Both the areas and the 4-volume are considered to be positive 
independently of the 4-simplex orientation. This result is closely analogous to what happens 
in the Ponzano–Regge and Turaev–Viro state sum models of three-dimensional gravity, where 
the tetrahedron amplitude, considered in the appropriate limit, gives the two branches of the 
3-dimensional Regge action. However, the above formula also contains a new overall phase that 
we have called the “non-Regge” phase NR[�i, �j ]. We will discuss this phase briefly in the next 
subsection.

At this point we want to stress one feature of this result relating to the origin of the 4-volume 
term in the asymptotic formula above. This term stems from the evaluation of the purely 
3-dimensional Chern–Simons functional on a connection solving the equation of motion dis-
cussed above. Unfortunately, this evaluation also produces extra terms, which we were not able 
to fully interpret geometrically. However, to get rid of these extra terms, one can use the fact that 
the solutions always come in pairs characterized, after having interpreted them as 4-dimensional 
simplicial geometries, by opposite spacetime orientations. In fact, the extra terms happen to be 
orientation invariant. Hence,

2λV4 = CS[A, Ā]∣∣0 −CS[Ā,A]∣∣0 ≡�(hW [A])∣∣0 −�(hW [Ā])∣∣0 , (210)

where the subscript “0” simply emphasizes the on-shell evaluation of the functionals.
Before moving to the issues this work has left open, we want to put forward an important 

feature of the model that is strongly suggested by the results we have just summarized. The 
space of dynamical vacua of spinfoam loop quantum gravity, that is, the space of solutions of 
its equations of motion, is a subspace of the moduli space of a class of SL(2, C) flat connec-
tions on some graph complement 3-manifold. This type of vacuum is very different from the 
Ashtekar–Lewandowski kinematical vacuum (and also from the Kodama state proposal). In this 
approach the graph encodes departures from flatness, i.e. departures from the topological phase 
of gravity, which is essentially given by (�)BF theory. This is much closer in spirit to the family 
of alternative dual62 vacua recently revived by Dittrich and Geiller [80,81], and also bares strong 
similarities with the framework proposed in the nineties by Crane.

16.2. Open issues and outlook

The present paper can be read as a preliminary test for the proposal of using Chern–Simons 
theory as a fundamental tool in spinfoams. Having shown that a geometrical analysis of the 
would-be 4-simplex amplitude is not only possible but also rich and insightful, elevates both our 
interests and expectations in this line of research. As with any preliminary test, this paper has left 
many questions unanswered.

One issue that definitely needs to be addressed is how to rigorously define our starting point, 

that is the path integral formula for ZCS

(
S3;�5

∣∣ �j,�i ). We think that this is not a hopeless task, 
since a lot of recent progress has been made in understanding SL(2, C) Chern–Simons theory. 
In particular, following the work of Witten, Dimofte, Gukov, Andersen and others [17,8,10,9,
11,54], we intend to construct a path integral using holomorphic 3D blocks and a state integral 

62 Dual here refers to the fact that it is the connection variable, instead of the flux one, to acquire a definite—though 
trivial—value.
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model. This is in principle possible for the manifold we are interested in, that is M3 = S3 \ �5, 
since it can be triangulated by ideal tetrahedra.

A rigorous definition of the path integral should also eventually clarify the rôle quantum 
groups play in our construction. To this end, another point that needs clarification is how the 
phase-space structure of gravity reduces to that of Chern–Simons theory, and in particular how 
the standard SL(2, C) spin-connection is substituted by the non-commutative Poisson connection 
of Chern–Simons theory. Answering this question should help in understanding the rôle of the 
new closure relation and of the new deformed spin networks that can be defined starting from the 
model (as explained in [146] the deformed closure in terms of the transverse holonomies is the 
classical analogue of q-deformed intertwiners).

From the perspective of the dynamics of quantum gravity, we have already emphasized how 
our result bares similarities with the asymptotic behavior of the Ponzano–Regge–Turaev–Viro 
state sum model of 3-dimensional gravity. However, it is of the utmost importance to bare in 
mind that three-dimensional gravity is topological, and thus the Ponzano–Regge and Turaev–Viro 
models are—completely consistently—triangulation invariant. In order to claim that we actually 
have a full-fledged model of 4-dimensional quantum gravity, with its propagating degrees of 
freedom, there is still a long way to go, and the most critical issue is definitely how to take the 
continuum limit of our discrete model. A problem that in 3 dimensions is simply not present. 
A very preliminary step in this direction, is to consider a manifold triangulated by more than a 
single 4-simplex. This is a step we plan to take soon in a subsequent publication. This problem 
is also intimately related to the question of what rôle graphs other than �5 might play in the 
construction. For the moment we just observe that dealing in full generality with closures among 
more than four holonomies, which would correspond to polyhedra with more than four faces, 
though attractive, is a priori a lot more complicated than the case considered here (see [109] for 
progress on the flat pentahedron).

Another issue that we leave for future investigations is that of the non-Regge phase

NR[ξab, jab] := − 2i


2
P

∑
a<b

jabϕab + i


2
P

(C� +Ctopo). (211)

This object depends on the phase convention of the boundary state, which is physically harmless, 
and also on some of the geometric data. The latter is potentially a dangerous feature for the 
model, since these data might interfere uncontrollably with the dynamics of the model once 
one considers more complicated complexes involving bulk triangles whose geometrical data are 
integrated over (here we refer to the sum over the spins appearing in the spinfoam models). 
Therefore, the effects of these phases must be studied in the context of an extended triangulation. 
The hope is that in this context the phases associated to a given triangle add up essentially to 
zero, in the relevant asymptotic regime. The above discussion applies to all the terms in the 
previous equation except the very last one, Ctopo. This term contains what can be referred to 
as the topological ambiguities (or choices) that one must make to define the amplitude. As an 
example we cite the choice of a specific graph framing, which raises in particular the following 
questions: how would the amplitude change under a change of the graph framing? Can this 
change be made irrelevant once exponentiated by, for example, quantizing γ ? These are also 
fundamental questions we will need to address in the future.

To conclude, we add a final aspect we think would be interesting to investigate in the future. 
We would like to explore the physical properties of the new vacuum suggested by our result, and 
in particular the nature of its perturbations. See [125] for a first step in this direction in the case 
of the zero-cosmological constant EPRL spinfoam model.
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Appendix A. General relativity: notation and conventions

In this paper the signature of the metric is

η := diag(−1,1,1,1). (A.1)

The conventions for the completely antisymmetric symbols are

ε0123 = 1 thus ε0123 =−1. (A.2)

The Einstein–Hilbert action with a cosmological constant reads

SEH := 1

2κ

∫
M

(R − 2λ)
√−gd4x + 1

κ

∫
∂M

K
√
q3d3x (A.3)

where κ := 8πG =: 
2
P /h̄ (and c= 1).

The Einstein–Hilbert action can be discretized on a 4D simplicial complex with 4-simplices 
of constant curvature λ. This discretization results in the Regge action, [18,154,149,19,155,156,
151],

SR := 1

κ

⎡⎣− ∑
t internal

a(t) ε(t)−
∑

t boundary

a(t)�(t)+
∑
σ

λV4(σ )

⎤⎦ , (A.4)

here t and σ denote the triangles and 4-simplices in the simplicial complex and a(t) is the area of 
the triangle t . V4(σ ) is the 4-volume of the 4-simplex σ . The Lorentzian deficit angle hinged by 
the internal triangle t is ε(t), and �(t) is the Lorentzian, four-dimensional hyper-dihedral angle 
hinged by the boundary triangle t .63 We have,

63 Here we follow the same convention of hyper-dihedral angles �t (σ ) and deficit angles ε(t) as [149]. Note that in 
Fig. 6 of that reference the deficit angle ε(t) is negative.
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ε(t)=
∑
σ,t⊂σ

�t (σ ) for internal t,

�(t)=
∑
σ,t⊂σ

�t (σ ) for boundary t, (A.5)

where �t(σ ) is the hyper-dihedral (boost) angle in a 4-simplex σ hinged by t , and is the same 
as �ab in the main text. All the quantities entering SR are functions of the edge lengths of 
the simplicial complex. The first and second terms in SR are the discretizations of the scalar 
curvature bulk term 

∫
MR and the extrinsic curvature boundary term 

∫
MK . The third term is 

the cosmological constant term.
For a single 4-simplex, the bulk term of the Regge action is absent. Thus, the Regge action 

reduces to

SR(σ ) := − 1

κ

[∑
a<b

aab�ab − λV4

]
, (A.6)

where a, b = 1, · · · , 5 labels the five tetrahedra forming the boundary of 4-simplex. Here aab , 
�ab are the area and hyper-dihedral angle of the triangle shared by tetrahedra a and b.

The Einstein–Hilbert action in the Palatini–Cartan formulation reads

SPC := − 1

2κ

∫
M

(
1

2
εIJKLe

I ∧ eJ ∧FKL − λ

12
εIJKLe

I ∧ eJ ∧ eK ∧ eL
)

+ 1

2κ

∫
∂M

εIJKLe
I ∧ eJ ∧ nKdωn

L (A.7)

Define the 2-forms

BIJ := eI ∧ eJ , (A.8)

implying that

1

4
εμνρσBIJ

μνB
KL
ρσ = det(e)εIJKL. (A.9)

In terms of BIJ , the Einstein–Hilbert action in the Plebanski formulation reads

SPle := − 1

2κ

∫
M

(
1

2
εIJKLB

IJ ∧FKL − λ

12
εIJKLB

IJ ∧BKL + 1

2
ϕIJKLB

IJ ∧BKL

)

+ 1

2κ

∫
∂M

εIJKLB
IJ ∧ nKdωn

L (A.10)

where ϕIJKL = −ϕJIKL = −ϕIJLK = ϕKLIJ is a tensor in internal space satisfying
εIJKLϕ

IJKL = 0. This tensor field serves as a Lagrange multiplier for the imposition of the 
quadratic form of the simplicity constraints:

1

4
εμνρσBIJ

μνB
KL
ρσ

!= ||e||εIJKL, (A.11)

where ||e||d4x := − 1 εIJKLB
IJ ∧BKL. The nontrivial solutions of these equations are
4!
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B
!= ±(e ∧ e) and B

!= ± � (e ∧ e). (A.12)

The first set of solutions reduces the Plebanski action to the Palatini–Cartan action.
Using the SL(2,C)-invariant bilinear forms ≺ ·, · � and < ·, · > (see Appendix B), this gives

SPle := − 1

2κ

∫
M

(
≺ B ∧F �− λ

6
≺ B ∧B �+< (ϕ �B)∧B >

)

+ 1

κ

∫
∂M

≺ B ∧ (n⊗ dωn)� (A.13)

where (ϕ �B)IJ = 1
2ϕIJ

KLBKL.

Appendix B. Self-dual and anti-self-dual decomposition

In our notation for the basis J IJ in the Lie algebra sl2C:

J 0i =Ki and J ij = εij kJ
k (B.1)

where J i , Ki satisfy

[J i, J j ] = εij kJ
k , [Ki,Kj ] = −εij kJ

k and [Ki,J j ] = εij kK
k. (B.2)

Given X in the complexification of sl2C, we define its self-dual and anti-self-dual parts X+
and X− by

X± := 1

2
(1∓ i�)X or (X±)IJ = 1

2

(
XIJ ∓ i

2
εIJ

KLXKL

)
, (B.3)

so that

�X± =±iX± and X =X+ +X−. (B.4)

We compute

X± = 1

2
(X±)IJJ IJ = (X±)0kK

k + (X±)ij
1

2
εij kJ

k

= 1

2

(
X0k ∓ i

2
ε0k

ijXij

)
Kk + 1

2

(
Xij ∓ i εij

0k′X0k′
) 1

2
εij kJ

k

= 1

2

(
X0k ± i

2
εk

ijXij

)
Kk + 1

2

(
1

2
εij kXij ∓ iX0k

)
J k

=± i

2

(
1

2
εij kXij ∓ iX0k

)
Kk + 1

2

(
1

2
εij kXij ∓ iX0k

)
J k

=
(

1

2
εij kXij ∓ iX0k

)(
J k ± iKk

2

)
=: (X±)kT k± (B.5)

where we have defined

(X±)k :=
(

1

2
εij kXij ∓ iX0k

)
and T k± :=

J k ± iKk

2
. (B.6)

A real element X ∈ sl2C satisfies X̄k+ =Xk−.
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The complexification of sl2C is the same as two copies of complexified su2, i.e. suC2 × suC2
is the self-dual and anti-self-dual decomposition of complexified sl2C. The generators T i+ or T i−
form a basis in each copy of suC2 , satisfying

[T i±, T
j
±] = εij kT

k± and [T i±, T
j
∓] = 0 (B.7)

The space of real symmetric invariant bilinear forms on sl2C is a 2-dimensional vector space. 
We choose two independent non-degenerate bilinear forms < , > and ≺, � defined by

< T i±, T
j
± >= δij , < T i±, T

j
∓ >= 0 ; (B.8)

≺ T i±, T
j
± �=±iδij , ≺ T i±, T

j
∓ �= 0 . (B.9)

It is also useful to specify the spinor representation of sl2C basis. In Weyl’s left-handed ( 1
2 , 0)

representation the generators are represented by

J k .=− i

2
σk , Kk .=−1

2
σk %⇒ T k+

.=− i

2
σk =: τ k. (B.10)

In Weyl’s right-handed (0, 12 ) representation the generators are represented by

J k .=− i

2
σk , Kk .= 1

2
σk %⇒ T k−

.=− i

2
σk =: τ k. (B.11)

In both left- and right-handed Weyl representations,

<X±, Y± >
.=−2Tr(X±Y±) and ≺X±, Y± � .=∓2i Tr(X±Y±). (B.12)

Finally, notice that the right- and left-handed Weyl representations are related at the level of 
the algebra by the operation

X± 	→X∓ =−X± , (B.13)

where the overbar stands for complex conjugation. At the level of the group this reads

G± 	→G∓ = [(G±)†]−1 (B.14)

where † stands for Hermitian conjugation, i.e. for transposition followed by complex conjuga-
tion.

Appendix C. Variation of the action with respect to the connection

In this appendix we perform the explicit calculation of the variation of the total action I�5

with respect to the connections Ai
μ(x) and Āi

μ(x).

We start by discussing the functional derivative of the holonomies Gab[A] and G†
ab[Ā]. These 

holonomies are defined by

G
[A] := P exp
∫



A≡ P exp

1∫
0

Aj
ν(
(s))τj

d
μ

ds
ds, (C.1a)

(G
)
†[Ā] = P exp

∫
−1

Ā≡ P exp

1∫
Āj

ν(

−1(s))τj

d(
−1)μ

ds
ds, (C.1b)

 0
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where we have dropped the edge indices (ab), and introduced 
−1(s) := 
(1 − s). Note that 

Ā≡ Ā
j
ν(x)τjdxν :=A

j
ν(x) τjdxν , and the sign difference in the path-ordered exponential comes 

from the fact that τ †
j =−τj .

Clearly, if x /∈ 
, then δG
/δA
i
μ(x) = 0. Suppose then that there exists an s0 ∈ (0, 1) such that 


(s0) = x. In this case we can write

G
[A] = lim
ε→0

G1,s0+ε

⎛⎝I+ s0+ε∫
s0−ε

Aj
ν(
(s))τj

d
μ

ds
ds

⎞⎠Gs0−ε,0, (C.2)

and therefore

δGab[A]
δAi

μ(x)
= lim

ε→0
G1,(s0+ε)

⎛⎝ s0+ε∫
s0−ε

δ(3)(x − 
(s))δ
j
i δ

ν
μτj

d
ν

ds
ds

⎞⎠G(s0−ε),0

=
⎛⎝ 1∫

0

δ(3)(x − 
(s))
d
μ

ds
ds

⎞⎠G1,s0τiGs0,0 . (C.3)

We will often write the two-dimensional distribution appearing in this equation symbolically as

δ
(2) μ

 (x) :=

1∫
0

δ(3)(x − 
(s))
d
μ

ds
ds . (C.4)

For the variation of the hermitian conjugate holonomy (G
)
† with respect to Āi

μ(x), we find

δ(G
)
†[Ā]

δĀi
μ(x)

=
⎛⎝ 1∫

0

δ(3)(x − 
−1(s))
d(
−1)μ

ds
ds

⎞⎠ (Gs0,0)
†τi(G1,s0)

†

= δ
(2)μ

−1 (x) (Gs0,0)

†τi(G1,s0)
† . (C.5)

Note the absence of a minus sign on τi .
With this equations we can immediately compute the variation of the spinfoam part of the 

action S with respect to the connection. For this recall

S =
∑

ab,a>b

2jab ln〈Jξab, z̄ab〉 + 2jab ln〈z̄ab,Gabξba〉

+ jab(iγ − 1) ln〈z̄ab,GabG
†
abz̄ab〉, (C.6)

here we have used the rescaling symmetry of the variables z̄ab to fix their norms to one. Then(
δS

δAi
μ(x)

)
�(I�5 )=0

=
∑

ab,a>b

jab

{
2
〈z̄ab, [Ga,sabτiGsab,b]ξba〉

〈z̄ab,Gabξba〉

+ (iγ − 1)
〈z̄ab, [Ga,sab τiGsab,b]G†

abz̄ab〉
〈z̄ab,GabG

†
abz̄ab〉

}
δ
(2) μ

ab

(x)

= (1+ iγ )
∑

jab〈ξba, [(Gsab,b)
−1τ iGsab,b]ξba〉 δ(2) μ
ab

(x), (C.7)

ab,a>b
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where the variables z̄ab have been eliminated using the equation of motion �(I ) = 0, that is 
ξba ∝C G

†
abz̄ab . Similarly, one finds(
δS

δĀi
μ(x)

)
�(I )=0

=
∑

ab,a>b

jab(iγ − 1)
〈z̄ab,Gab[(Gsab,b)

†τi(Ga,sab )
†]z̄ab〉

〈z̄ab,GabG
†
abz̄ab〉

δ
(2) μ


−1
ab

(x)

= (1− iγ )
∑

ab,a>b

jab〈[(Gsab,b)
−1τiGsab,b]ξba, ξba〉 δ(2) μ
−1

ab

(x)

=−(1− iγ )
∑

ab,a>b

jab〈[(Gsab,b)
−1τiGsab,b]ξba, ξba〉 δ(2) μ
ab

(x), (C.8)

where in the last step we used δ(2) μ

−1
ab

(x) =−δ
(2) μ

ab

(x), since the tangent vector fields along 
−1

and 
 have opposite directions.
We now calculate the variation of the Chern–Simons functional W [A] with respect to Ai

μ(x),

W [A] := 1

4π

∫
Tr

(
A∧ dA+ 2

3
A∧A∧A

)
=− 1

8π

∫
ενρσ

(
δjkA

j
ν∂ρA

k
σ +

1

3
εjklA

j
νA

k
ρA

l
σ

)
dx3 (C.9)

hence

δW [A]
δAi

μ(x)
=− 1

8π
εμνρ

(
∂νA

i
ρ − ∂ρA

i
ν + εijkAj

νA
k
ρ

)
=− 1

8π
εμνρF i

νρ[A]. (C.10)

Clearly δW [Ā]/δĀi
μ(x) =

(
δW [A]/δAi

μ(x)
)
.

Putting all the pieces together, one finally finds that(
δI

δAi
μ(x)

)
�(I )=0

=−i
h

2

(
δW [A]
δAi

μ(x)

)
�(I )=0

+
(

δS

δAi
μ(x)

)
�(I )=0

=+ ih

16π
εμνρF i

νρ[A] + (1+ iγ )
∑

ab,a>b

jab〈ξba, [(Gsab,b)
−1τ iGsab,b]ξba〉 δ(2) μ
ab

(x)

(C.11)

and (
δI

δĀi
μ(x)

)
�(I )=0

=−i
h̄

2

(
δW [Ā]
δĀi

μ(x)

)
�(I )=0

+
(

δS

δĀi
μ(x)

)
�(I )=0

=+ ih̄

16π
εμνρF̄ i

νρ[Ā] − (1− iγ )
∑

ab,a>b

jab〈[(Gsab,b)
−1τ iGsab,b]ξba, ξba〉 δ(2) μ
ab

(x).

(C.12)
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Fig. 8. The gluing of two future-pointing simplices. One spacial dimension has been suppressed for clarity, and the 
subsimplex along which the gluing happens is dashed. Note the Lorentzian nature of the geometry in the way the normals 
“rotate” under the action of boosts.

Appendix D. Lorentzian gluing

In this section, we discuss some details of Lorentzian simplicial geometries. In particular, how 
one should treat the gluings of the various tetrahedra to one another in a way consistent with the 
critical point equations discussed in the main text of the paper. We will assume throughout this 
section that the reconstructed (i.e. geometrical) cosmological constant is positive.

The first observation is that the holonomy going around a face of a tetrahedron depends only 
on the bivector u ∧ n, where u is the timelike and n the spacelike normal to the triangle. In 
future-pointing time gauge, i.e. when the tetrahedron is contained in the spacial slice t = 0, we 
obtain u = (1, 0, 0, 0) and n = (0, n̂). We have learned that n should be thought as the outgoing 
normal to the tetrahedron if we want the closure equations to be consistent with the structure of 
the 4-simplex and its orientation. Nonetheless, it is a simple observation that u ∧ n = (−u) ∧
(−n) =−u ∧ n−, which tells us that if the tetrahedron is past pointing, we should interpret the 
normal n′ appearing in the equation as the inward pointing one.

To convince ourselves that this is consistent with all the equations, let us focus on the parallel 
transport equations Jξ ′ ∝C Gξ and ξ ′ ∝C GJξ (the complex proportionality constants are auto-
matically inverses to one another because detG = 1). These equations, once read in the vectorial 
representation, tell us that the proper orthochronus Lorentz transformation associated to G sends 
the direction n̂(ξ) := 〈ξ, �σξ 〉 into the direction n̂(J ξ ′) ≡ −n̂(ξ ′), where n̂(ξ) and n̂(ξ ′) are the 
spacelike normals to the same triangle as “seen” from two neighboring tetrahedra.

Before starting, note that an oriented 4-simplex necessarily contains at least one future-
pointing and one past-pointing tetrahedron as part of its boundary. Moreover, by convexity, when 
all the boosts are smoothly sent to zero, two future pointing (or two past pointing) tetrahedra must 
be glued on opposite sides of the common face, while a couple of oppositely pointing tetrahedra 
must be glued on the same side of the common face. This is a consequence of the fact that proper 
orthochronus transformations cannot cross the light-cone.

Let us consider first the case in which both tetrahedra are future-pointing. In this case, the 
claim above mirrors the usual Euclidean result that to glue two neighboring simplices across a 
face, while preserving orientations, their normals should be in opposite directions. This can be 
seen particularly clearly in the limit in which G goes to the identity, see Fig. 8.

Let us consider the analogous case in which both tetrahedra are past pointing. In this case, 
as we have already argued, both spacelike normals should be considered to be inward pointing. 
Furthermore, the boost G sends one normal into minus the other.
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Fig. 9. The gluing of a future-pointing simplex to a past-pointing one. One spacial dimension has been suppressed for 
clarity, and the subsimplex along which the gluing happens is dashed. Note the Lorentzian nature of the geometry in the 
way the normals “rotate” under the action of boosts.

We are finally left with the case in which one tetrahedron is future pointing and the other is 
past pointing. In this case there is clearly no proper orthochronus Lorentz transformation sending 
one timelike normal into the other. Similarly, one cannot start with two tetrahedra glued to the 
exterior of one another to then boost them into their final position, see Fig. 9. However, the fact 
that the two tetrahedra lie on the same side of the common face, is in perfect agreement with the 
facts: (i) that one spacelike normal points outwards and the other one inwards, and (ii) that one 
must have in the limit in which G is the identity n̂(ξ ′) =−n̂(ξ).

Another way to see that all of this is consistent, is the following. Instead of speaking about the 
normal vectors associated to the faces of the tetrahedra, in 4 dimensions it is more appropriate to 
talk about the bivector associate to them. Call the bivector associated to the face (ab) Bba when 
it is written in the frame of tetrahedron b, and Bab when it is written in the frame of tetrahedron
a. Now, to match the orientations, we should glue the two tetrahedra together across the common 
face and require Bab = −Bba . However, Bba = Ñb ∧ nba , where Ñb is the timelike normal to 
tetrahedron b and nba is the normal to the face (ab) as seen from tetrahedron b. Therefore if Ñb

and Ña have the same time direction, nba and nab must have opposite space directions. Similarly, 
if Ñb and Ña have opposite time directions, nba and nab must have the same space direction.

As a last step in this discussion, we want to relate two different ways of writing the bivector 
associated to a triangle. The first way to write the bivector Bba is

Bba = Ñb ∧ Ña

|Ñb ∧ Ña|
, (D.1)

where Ñb is the oriented timelike normal to tetrahedron b. When expressing this in the frame of 
tetrahedron b, we find

Bba(b)= (±b)u∧ Ña(b)

|Ñb(b)∧ Ña(b)|
, (D.2)

where ±b corresponds to whether tetrahedron b being future or past pointing respectively. Now, 
the time component of Ña(b) does not matter, because the wedge product is antisymmetric and 
u = (1, 0, 0, 0)T has no spacelike component. For what concerns the spacelike part, since Ña(b)

is orthogonal to the triangle (ab), it must be proportional to nba . The question is whether it is 
parallel or antiparallel to it. We see that in both Fig. 8 and Fig. 9, when Ñb(b) =+u, the spacial 
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part of Ña(b) is always antiparallel to n̂ba . It is not hard to see that when Ñb(b) =−u, the spacial 
part of Ña(b) is always parallel to n̂ba . Hence, the following equality holds

Bba(b)= Ñb(b)∧ Ña(b)

|Ñb(b)∧ Ña(b)|
= − u∧ nba

|u∧ nba | , (D.3)

where in the last equality nba is understood to be (0, n̂ba).

Appendix E. Perturbative evaluation of the critical Chern–Simons invariant

In this appendix we perform a perturbative evaluation of the Chern–Simons invariant at the 
critical point. This calculation has the advantage of being completely explicit, and moreover 
gives a flavor of what the non-Regge contributions might be.

The idea is to treat the graph as a weak source, in the sense that j/h ∼ �j ∼ const ( 1, 
and to expand the Chern–Simons invariant in a formal power series in j/h around the (vanish-
ing) value it has on the trivial flat connection. Geometrically, this corresponds to evaluating the 
Chern–Simons functional for a 4-simplex whose physical size is very small with respect to the 
radius of curvature. We are, in other words, expanding around a flat solution to the equations of 
motion.

At leading order, the transverse holonomies are all trivial, and can be replaced (at the first 
non-trivial order) by elements of the Lie algebra, the usual loop quantum gravity fluxes,

Hab = I+ 4π

h

(
1

γ
+ i

)
γjabn̂ab · �τ +O(j2/h2). (E.1)

Thus, the closure equations (at the first non-trivial order) can be expressed as linear relations 
amongst Lie algebra elements,∑

b,b �=a

γjabn̂ab · �τ =O(j2/h2). (E.2)

The latter equation can be interpreted as a consistency condition involving the boundary data 
only, which should be imposed also at the purely flat level.

The equations for the longitudinal holonomies also trivialize, and at the leading order they 
encode the fact that these holonomies are pure gauge and therefore come from a connection that 
is pure gauge:

Gab = g−1
a gb for all (ab) except

G42 = g−1
4 g2 + 4π

h

(
1

γ
+ i

)
γj42 g−1

4 g3n̂42 · �τg−1
3 g2 +O(j2/h2). (E.3)

For notational clarity, let us introduce the pure-gauge connection (A0, Ā0) defined on the 
whole of S3. Its transverse holonomies H 0

ab :=Hab[A0] ≡ I are trivial, and the longitudinal ones 
G0

ab :=Gab[A0] are pure gauge, i.e. G0
ab = (g0

a)
−1g0

b . This connection clearly solves the leading 
part of the previous equations. We also introduce a notation for the solution of the flat closure 
equations (j0

ab, ξ
0
ab).

64

64 In principle we should also deal with the parallel transport equations for the ξab and therefore with the CP1 variables 
zab . Since these will not enter the following calculations explicitly, we leave them aside.
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Clearly, the contribution of these leading order solutions to the Chern–Simons invariant 
W [A0] is not very interesting, since it is just zero modulo 2π . To consider the first non-trivial 
contribution, we introduce the notation,

(A, Ā, jab, ξab)= (A0, Ā0, j0
ab, ξ

0
ab)+ (δA, δĀ, δjab, δξab). (E.4)

Clearly the “δ-variations” should be considered small, with respect to the leading order solutions, 
in the sense that such variations are of order j/h ( 1,

(δA, δĀ, δjab, δξab)∼O(j/h). (E.5)

Now, evaluated on the connection A, the Chern–Simons functional can be formally developed 
in powers of the small parameter (j/h),65

W [A] = 1

4π

∫
S3

Tr (δA∧ F [A])+O(j3/h3). (E.6)

Notice that in the previous expression, F ∼O(j/h) since it is sourced by the graph, and therefore 
there is no term of order O(j/h). This should be expected, since we are perturbing around one 
of the solutions of the equations of motion of W [A] itself. Explicitly the curvature F [A] is given 
by

εμνρF i
νρ[A(x)] = −16π

ih
(1+ iγ )

∑
a>b

jab〈ξba,
[
(Gsab,b)

−1τ iGsab,b

]
ξba〉 δ(2) μ
ab

(x), (E.7)

and by inserting this expression into the perturbative equation for W [A], one obtains66

W [A] = − 1

ih
(1+ iγ )

∑
a>b

jab〈ξba,
[
G−1

ab δGab

]
ξba〉. (E.8)

Let us now evaluate what δGab is in this context. First of all δGab should be understood as 
δGab := Gab[A] −Gab[A0], where the equality holds between 2 × 2 complex matrices. From 
the equations of motion, we have

δGab = (g0
a)
−1(δgb − δga)g

0
b for all (ab), except (E.9a)

δG42 = (g0
4)
−1(δg2 − δg4)g

0
2 + (g0

4)
−1g0

3

[
4π

h

(
1

γ
+ i

)
γj31n̂31 · �τ

]
(g0

3)
−1g0

2 . (E.9b)

To obtain these expressions, we have parametrized the variations in the ga ∈ SL(2, C) by ga =
(I + δga)g

0
a . Again to simplify notation, we abbreviate the term appearing in square brackets in 

the expression of δG42 by F31. Hence,

W [A] = − 1

ih

(
i+ 1

γ

)∑
a>b

γjab〈ξba,
[
g−1
b (δgb − δga)gb

]
ξba〉

− 1

ih

(
i+ 1

γ

)
γj24〈ξ24,

[
g−1

2

(
g3F31g

−1
3

)
g2

]
ξ24〉 +O(j3/h3). (E.10)

65 We have W [A0 + δA] =W [A0] + 1
4π

∫
S3 Tr

[
δA∧D0δA

]
+O(δA3), where D0 denotes the covariant derivative 

with respect to A0. Neglecting the contribution of W [A0] which vanishes modulo 2π , we obtain the stated result by 
observing that 1

4π

∫
S3 Tr

(
δA∧D0δA

)
= 1

4π

∫
S3 Tr (δA∧ F [A])+O(δA3).

66 The mathematical manipulations used to obtain the following formulae are the same as in the main text, and are 
therefore skipped.
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Now, we claim that the first term, in spite of appearances, is also of order O(j3/h3). The reason 
for this hides in the linearized closure equation (E.2). Indeed, by means of the parallel transport 
equations we obtain

1

h

∑
a>b

γjab〈ξba,
[
g−1
b (δgb − δga)gb

]
ξba〉

= 1

h

∑
a>b

γjab

{
〈ξba, g−1

b δgbgbξba〉 − 〈Jξab, g−1
a δgagaJ ξab〉

}
. (E.11)

The second term on the right-hand side can be manipulated by using the following identi-
ties: 〈Jw, z〉 = −〈Jz, w〉, and −JgJ = (g−1)†, for any g ∈ SL(2, C), from which one can 
deduce −JxJ = −x† for any x ∈ sl2C.67 Therefore, recalling that δg ∈ sl2C, one obtains 
〈Jξab, g−1

a δgagaJ ξab〉 =−〈ξab, g−1
a δgagaξab〉, and hence

1

h

∑
a>b

jabγ 〈ξba,
[
g−1
b (δgb − δga)gb

]
ξba〉

= 1

h

∑
a

∑
b,b �=a

γjab〈ξab, g−1
a δgagaξab〉

= − i

2h

∑
a

�kj (ga)δg
i
a

∑
b,b �=a

γjabn̂
k
ab =O(j2/h2), (E.12)

where we used the fact that δga = δgk
aτ

k =− i
2δg

k
aτ

k , and the relation between spinors and face 
vectors n̂ab = 〈ξab, �σξab〉. Also, we made use of the following relation g−1σkg = �(g)kj σ

j , 
which simply follows from the fact that the Pauli matrices are a basis of the complex vector 
space of 2 × 2 complex matrices of zero trace.

In the end, we are left with a quite compact expression for the leading order contribution to 
the Chern–Simons invariant at the critical point:

W [A] = − 1

ih

(
i+ 1

γ

)
γjabj24〈ξ24,

[
g−1

2

(
g3F31g

−1
3

)
g2

]
ξ24〉 +O(j3/h3). (E.13)

Notice that this term is actually associated to the presence of a crossing in the graph �5. By 
reinserting the explicit expression for F31 one immediately obtains

W [A] = − 4π

ih2

(
i+ 1

γ

)2

(γj24)(γj31)n̂
k
31〈ξ24,G

−1
32 τkG32ξ24〉 +O(j3/h3)

= 2π

h2

(
i+ 1

γ

)2

(γj24)(γj31)�(G32)kj n̂
k
31n̂

j

24 +O(j3/h3). (E.14)

Thus, the full Chern–Simons invariant relevant for the asymptotics reads

CS[A] = h

2
W [A] + h̄

2
W [Ā]

= π

h

(
i+ 1

γ

)2

(γj24)(γj31)�(G32)kj n̂
k
31n̂

j

24 + c.c. (E.15)

67 Indeed, let g = expx, then (g−1)† = (exp−x)† = exp−x†.
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At this point, one can start drawing a connection with the geometry of a flat 4-simplex. In 
order to do this, consider a flat 4-simplex, whose sides {S5̄1̄, S5̄2̄, S5̄3̄, S5̄4̄} all start at vertex 5̄
and end at vertex {1̄, . . . , ̄4} respectively. The volume of the four simplex can be calculated via

4! V4 = det(S5̄1̄, S5̄2̄, S5̄3̄, S5̄4̄), (E.16)

where a certain topological orientation of the 4-simplex has been assumed. This formula can be 
equally well expressed in terms of the bivectors �B31(5̄) := S5̄2̄ ∧ S5̄4̄ and �B24(5̄) := S5̄3̄ ∧ S5̄1̄,

4! V4 = 1

4
εIJKL(�B31)

IJ (�B24)
KL = 1

2
≺ �B31, �B24 �, (E.17)

where in the last expression we identified the bivector �Bab with the corresponding sl2C element, 
that is 1

2 (�Bab)
IJJIJ . Note that in this formula it is crucial that all the bivectors are defined at 

the same point. Though it is not relevant whether this basepoint is vertex 5̄ or something else. 
It is now immediate to write the volume as the sum of two piece, each associated to either the 
selfdual or anti-selfdual parts of sl2C,

(2× 4!)V4 = i(�B+31)
k(�B+24)k − i(�B−31)

k(�B−24)k. (E.18)

Now, the Lie algebra element �Bab(a) in the frame of tetrahedron a is given by68

�Bab(a)= 2γjab(�u∧ nab)
IJJIJ = 2γjabn̂ab · �J

= 2γjabn̂ab · �T+ + 2γjabn̂ab · �T− . (E.19)

It is not hard to realize that when parallel transported by the holonomy Gca , this expression 
becomes69

�Bab(c)= 2γjabn̂ab ·
[
Gca

�T+G−1
ca

]
+ 2γjabn̂ab ·

[
Gca

�T−G−1
ca

]
= 2γjab�(Gca)kj n̂

k
ab
�T j
+ + 2γjab�(Gca)kj n̂

k
ab
�T j
− . (E.20)

Going back to the Chern–Simons invariant, the previous results tell us

CS[A] = �

48

(
1

γ
+ i

)
(�B+31(3))

k(�B+24(3))k

+ �

48

(
1

γ
− i

)
(�B−31(3))

k(�B−24(3))k +O(j3/h3)

= �

48

[
i(�B+31(3))

k(�B+24(3))k − i(�B−31(3))
k(�B−24(3))k

]
+ �

48γ

[
(�B+31(3))

k(�B+24(3))k + (�B−31(3))
k(�B−24(3))k

]
+O(j3/h3)

=�V4 + �

48γ
< �B31(3), �B24(3) >+O(j3/h3). (E.21)

Therefore, we obtain the cosmological term plus an extra term that is orientation-reversal invari-
ant. Such a term mirrors the “twisted volume” term of the continuous action of eq. (35).

68 The factor of 2 is due to the fact that γj is the area of a triangle, and not that of the parallelogram defined by S5̄2̄
and S5̄4̄ .
69 Notice that because �Bab is real, its selfdual and anti-selfdual components are related by complex conjugation.
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At this point, one might wonder where the sign of the cosmological constant has been fixed 
in this derivation, where the reconstructed 4-simplex is flat. The point is that by changing the 
sign of the cosmological constant, one changes the sign of the unit vectors n̂ab appearing in 
the holonomies. As a consequence, one is forced to change, at the same time, the orientation 
of the reconstructed 4-simplex, in order for the (curved) closure equations to have a meaning. 
This change in orientations flips the sign in the formula relating the 4-volume to the bivectors. 
Note that to understand this change in sign we need to appeal to the curved equations of motion. 
Indeed, these are the only equations that can be sensitive to the sign of the curvature, since in the 
flat approximation this information is completely lost.

The j -independent integration constant Cint in eq. (186) does not show up at the leading 
order in the perturbative computation. It cannot appear at higher orders since it is j -independent. 
Therefore Cint is vanishing up to some topological information, e.g. the framing of graph or 
gauges. So, Cint is a parity invariant contribution (up to an integer multiple of 2π
2

P ).
To conclude, we observe that the volume (as well as the “twisted volume”) terms can be seen 

as coming from the crossing in the �5 graph, and that this result is consistent with the earlier 
argument of [47], which used the Vassiliev–Kontsevich invariants.

References

[1] R. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269.
[2] H. Murakami, J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 

(2001) 85.
[3] R. van der Veen, The volume conjecture for augmented knotted trivalent graphs, preprint, arXiv:0805.0094, 2008.
[4] R. van der Veen, Asymptotics of quantum spin networks, PhD thesis, 2010.
[5] F. Costantino, F. Guéritaud, R. van der Veen, On the volume conjecture for polyhedra, preprint, arXiv:1403.2347, 

2014.
[6] S. Nawata, P. Ramadevi, Zodinmawia, Trivalent graphs, volume conjectures and character varieties, preprint, 

arXiv:1404.5119, 2014.
[7] S. Gukov, Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial, Commun. Math. 

Phys. 255 (2005) 577.
[8] T. Dimofte, Refined BPS invariants, Chern–Simons theory, and the quantum dilogarithm, PhD thesis, 2010.
[9] T. Dimofte, Quantum Riemann surfaces in Chern–Simons theory, preprint, arXiv:1102.4847, 2011.

[10] T. Dimofte, S. Gukov, Quantum field theory and the volume conjecture, Contemp. Math. 541 (2011) 41.
[11] S. Gukov, I. Saberi, Lectures on knot homology and quantum curves, preprint, arXiv:1211.6075, 2012.
[12] E. Witten, 2 + 1 dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46.
[13] A. Achúcarro, P. Townsend, A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories, 

Phys. Lett. B 180 (1986) 89.
[14] K. Ezawa, Classical and quantum evolutions of the de Sitter and the anti-de Sitter universes in 2 + 1 dimensions, 

Phys. Rev. D 49 (1994) 5211.
[15] H. Matschull, On the relation between 2 + 1 Einstein gravity and Chern–Simons theory, Class. Quantum Gravity 

16 (1999) 2599.
[16] S. Carlip, Quantum Gravity in 2 + 1 Dimensions, Cambridge Monographs on Mathematical Physics, Cambridge 

University Press, 2003.
[17] E. Witten, Analytic continuation of Chern–Simons theory, in: Chern–Simons Gauge Theory, 2010.
[18] T. Regge, General relativity without coordinates, Nuovo Cimento 19 (Feb. 1961) 558–571.
[19] B. Bahr, B. Dittrich, Regge calculus from a new angle, New J. Phys. 12 (Mar. 2010) 033010.
[20] A. Perez, The spin foam approach to quantum gravity, Living Rev. Relativ. 16 (2013) 3, arXiv:1205.2019.
[21] B. Bahr, R. Gambini, J. Pullin, Discretisations, constraints and diffeomorphisms in quantum gravity, SIGMA 8 

(2012) 2–29.
[22] D. Oriti, Group field theory as the microscopic description of the quantum spacetime fluid: a new perspective on 

the continuum in quantum gravity, PoS QG-PH (2007) 030, arXiv:0710.3276.
[23] B. Dittrich, The continuum limit of loop quantum gravity – a framework for solving the theory, arXiv:1409.1450.
[24] M. Atiyah, Topological quantum field theories, Publ. Math. IHÉS 68 (1988) 175.

http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4B61736861657631393937s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4D7572616B616D6932303031s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4D7572616B616D6932303031s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib5665656E32303038s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib5665656E32303130s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib436F7374616E74696E6F32303134s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib436F7374616E74696E6F32303134s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4E617761746132303134s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4E617761746132303134s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib47756B6F7632303035s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib47756B6F7632303035s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib44696D6F66746532303130s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib44696D6F66746532303131s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib44696D6F6674653230313161s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib47756B6F7632303132s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib57697474656E31393838s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib41636875636172726F31393836s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib41636875636172726F31393836s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib457A61776131393934s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib457A61776131393934s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4D6174736368756C6C31393939s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4D6174736368756C6C31393939s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4361726C697032303033s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4361726C697032303033s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib57697474656E32303130s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib526567676531393631s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4261687232303130s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib506572657A32303132s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib62616872323031326469736372657469736174696F6E73s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib62616872323031326469736372657469736174696F6E73s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4F7269746932303037s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib4F7269746932303037s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib446974747269636832303134s1
http://refhub.elsevier.com/S0550-3213(15)00308-9/bib41746979616831393838s1


76 H.M. Haggard et al. / Nuclear Physics B 900 (2015) 1–79
[25] E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353.
[26] J. Baez, Four-dimensional bf theory as a topological quantum field theory, Lett. Math. Phys. 38 (2) (1996) 129–143.
[27] C. Rovelli, Quantum Gravity, vol. 15, Cambridge University Press, 2004.
[28] T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge University Press, Cambridge, England, 

2007.
[29] A. Ashtekar, J. Lewandowski, Background independent quantum gravity: a status report, Class. Quantum Gravity 

21 (2004) R53–R152.
[30] G. Ponzano, T. Regge, Semiclassical limit of Racah coefficients, in: S.G. Cohen, A. de Shalit, S. Sambursky, 

I. Talmi, F. Bloch (Eds.), Spectroscopy and Group Theoretical Methods in Physics: Racah Memorial Volume, 
North-Holland, 1968, p. 472.

[31] J.W. Barrett, I. Naish-Guzman, The Ponzano–Regge model, Class. Quantum Gravity 26 (2009) 155014.
[32] L. Freidel, D. Louapre, Ponzano–Regge model revisited: I. Gauge fixing, observables and interacting spinning 

particles, Class. Quantum Gravity 21 (2004) 5685.
[33] V. Bonzom, M. Smerlak, Bubble divergences from cellular cohomology, Lett. Math. Phys. 93 (2010) 295–305.
[34] V. Turaev, O. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31 (Oct. 1992) 

865–902.
[35] S. Mizoguchi, T. Tada, 3-Dimensional gravity and the Turaev–Viro invariant, Prog. Theor. Phys. Suppl. 110 (1992) 

207.
[36] Y.U. Taylor, C.T. Woodward, 6j symbols for Uq(sl2) and non-Euclidean tetrahedra, Sel. Math. 11 (2006) 539.
[37] M. Dupuis, F. Girelli, Observables in loop quantum gravity with a cosmological constant, Phys. Rev. D 90 (2014) 

104037.
[38] V. Bonzom, M. Dupuis, F. Girelli, E. Livine, Deformed phase space for 3D loop gravity and hyperbolic discrete 

geometries, preprint, arXiv:1402.2323 [gr-qc], 2014.
[39] V. Bonzom, M. Dupuis, F. Girelli, Towards the Turaev–Viro amplitudes from a Hamiltonian constraint, preprint, 

arXiv:1403.7121 [gr-qc], 2014.
[40] M. Dupuis, F. Girelli, E. Livine, Deformed spinor networks for loop gravity: towards hyperbolic twisted geome-

tries, preprint, arXiv:1403.7482 [gr-qc], 2014.
[41] J.W. Barrett, L. Crane, Relativistic spin networks and quantum gravity, J. Math. Phys. 39 (1998) 3296.
[42] J.W. Barrett, L. Crane, A lorentzian signature model for quantum general relativity, Class. Quantum Gravity 17 

(2000) 3101.
[43] K. Noui, P. Roche, Cosmological deformation of Lorentzian spin foam models, Class. Quantum Gravity 20 (2003) 

3175–3213.
[44] J. Engle, E.R. Livine, R. Pereira, C. Rovelli, LQG vertex with finite Immirzi parameter, Nucl. Phys. B 799 (2008) 

136.
[45] L. Freidel, K. Krasnov, A new spin foam model for 4D gravity, Class. Quantum Gravity 25 (2008) 125018.
[46] M. Han, 4-Dimensional spin-foam model with quantum Lorentz group, J. Math. Phys. 52 (2011) 072501.
[47] M. Han, Cosmological constant in loop quantum gravity vertex amplitude, Phys. Rev. D 84 (2011) 064010.
[48] W.J. Fairbairn, C. Meusburger, Quantum deformation of two four-dimensional spin foam models, J. Math. Phys. 

53 (2012) 022501.
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