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Abstract—This article deals with the study of the existence and behaviour of the optimal control
and the state of a perturbed boundary control linear system when the space of admissible controls
has finite dimension.
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INTRODUCTION AND PLACEMENT OF THE PROBLEM

In this paper, we are concerned with the boundary optimal control problem when the state

satisfies
Ay, =0, on €,

a
%ye—%eyﬁzu,57 at ' = 012,

/yedr —0, oy H(S)

r

(Pr)(ue)

where -3% Ye is the normal derivative of y., {2 is a regular and bounded open set in the Euclidean
space R™, u. is the optimal control solution of the problem

Je(ue) = min {J.(v); v &€ Uag}, (P2)

where

= [ -+ [ (2 =) ar
r r

ye(v) is a solution of (Py)(v), v € Uad, Uag is a closed convex set in L%(T), and z; and z are
fixed functions in the space L?(T") (decision functions).

The author in [1] dealt with this system, which is a mathematical modelization for problems
of layers phenomena in aerodynamics. He took a cost functional J. in the form

Jo(v):= /(ys(v) —zg)} dl + N/v2 dr,
T r

where N > 0. In this case, J.(v) is a definite positive and strictly convex function. Here, we
loose the positivity definiteness of the cost functional, so the techniques of [1] cannot be used
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here. The space Uf,g of admissible controls considered here will be an arbitrary linear subspace
of finite dimension in L?(T).

This paper is organised as follows. In the first section, we prove the existence of the state
in some Sobolev space (Theorem 1.1) and show, in Theorem 1.2, that the problem (P;) has a
solution. In the second section, we establish our main result, Theorem 2.1, where we study the
convergence of u, and y.(u,) (when € — 0). We end the paper with some concluding remarks.

1. EXISTENCE OF THE PERTURBED STATE
AND CONTROL FOR THE SYSTEM: (P;)(us) AND (P,)

The space of admissible controls Uaq will be a linear subspace of U with finite dimension m > 1
where

U=Lvel*T): [vdl =03}; (1.1)
/

H'(Q) is the usual Sobolev space with its scalar product and associated norm. We look for
solutions (i.e., the states) of the system (P;)(uc) in the space

V= yEHl(Q):/de:O . (1.2)
r
THEOREM 1.1. For all v € Uyg, there exists a unique solution of the problem (P;)(v), denoted
by y.(v), in the space V.

PROOF. We use a variational formulation of the problem (P;)(v). This yields a continuous
symmetric bilinear form defined on V x V by

Ay, q) = /Vqudx+e/yqu. (1.3)
Q r
We know [2] that the norm defined in H(f2) by
1/2
Ply) = /|vy|2 d:r+6/y2 dr (1.4)
! r

is equivalent to the usual norm ||y| m 0 H 1(Q). Then, there exists a constant o > 0 such
that
1/2
(Ae(yay)) > Qe ||y||H1(Q)~ (15)

Thus, A, is a continuous coercive bilinear form. The theorem of Lax-Milgram [3,4] gives the
existence of a unique solution, denoted by y.(v), satisfying for all g € V,

A (ye(v),q) = /quF- (1.6)
r
The representation theorem of Riesz [5] implies that there exists a unique linear (continuous)
isomorphism A, from V onto V'’ (the dual space of V) and a unique element denoted by ¥.(v)
in the space V', such that

Ac Ye(v) = T (v). (1.7)
Then, the solution of the problem (P;)(v) is given by
Ye(v) = Agl\Pe(v)» (1.8)

where AZ! is the inverse operator of A.. This completes the proof.
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REMARK 1.1. One can verify that the map ¥, is a linear operator from U4 into V'.

THEOREM 1.2. There exists a nonvanishing subset X, of U4, such that for all u, € X., we have

Je(ue) = min{Je(v); v € Uag}-

PRrOOF. To prove the existence of X, it suffices to prove that the two following conditions are
satisfied [5]:
(i) The map: v — J¢(v) is convex and ls.c. (i.e., lower semicontinuous) on the space Uaq.
(ii) For all sequences (vy,) of elements in Uaqg, such that ||va]jz2(ry — +o0, then J(vy,) — +o00,
when n — 4-o00.

It is easy to verify that the functional cost J; is convex. By using formula (1.3)-(1.6) we can see
that the map v € Uaa — ¥ (v) € H1(R) is continuous. On the other hand, the trace theorem and
the continuity of the norm ensure the continuity of the map

2

0
Je 10 €Upg — “ye(v) - Zl”iz([‘) + Ha— ys(v) - 23
v L2(r)

So condition (i) is satisfied. Condition (ii) results from the next Lemma.

LemMMA 1.1. The map B : U— L*(T), which associates to each v €U the element B (v) :=y,(v)]
is an injective linear map into L?(T"). As a consequence, there exists a constant C. > 0. In fact,
C, = (HBE” A“)_l, where BZ M is the inverse operator of B, defined on the range B.(U,q), such
that

CEHUHL2(I‘) < ||y5(v)||m(r), for all v € Upg. (1.9)

PROOF. It is clear that B, is a linear map. Let v € U such that B.(v) :=y5(v)|r = 0. Then,
Ye(v) is in the space H} () and is a solution of the following problem:

—‘Ays('l)) =0, on Qy

5}
B Ye (V) = v, at T' = 9Q,

[uwdr=0,  uw)er@),
r
Using Green’s formula, we obtain

/IVy,s(v)|2 dz+/vy€(v)dr =0.

Q r

Since [vyc(v)dl = 0 and y.(v) € H3(Q), we have y.(v) = 0 on Q. Consequently, v = 0. The
T

existence of C, results from the fact that B, is linear injective and U,q has a finite dimension.

REMARKS 1.2.

(i) Since U,gq is a finite dimensional space, to decide the unicity of the solution of (P;), one
can use the Hessian function associated to J, after fixing (for example) an orthonormal
basis of U,q.

(ii) One can verify that there exist two constants C; > 0 and Cy > 0, such that: C; < ||B.||
<Cpforall0<e<1.
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2. STUDY OF THE CONVERGENCE OF THE STATE y.
AND CONTROL wu,

The main result of this article is the following theorem.

THEOREM 2.1. We have the following statements:
(i) The control u. converges strongly in the space L?(T), to u € Uaq, satisfying J(u) = min
{J(v); v € Upq}, where J(v):= [ (y(v) — z)? dI + J(v— 2)?dl, and y(v) is the solution
of the problem r r
—-Ay(v) =0, on 2,
]
—yv) =, atI' = 09,
O (Ps)(v)
/y(v) dr=0, y() e H(Q.
r

(i) The state y. converges strongly in the space H'(Q) to the state y(u), solution of the
system (Ps)(u).

PROOF. As the control 0 is in the space Uaq, we have Je(uc) < |21 H?LQ(P) + Hz2]|iﬁ(r)9 then there

exists a constant C; > 0 (independent of ), such that HyE < (1.

“L2(r)
2

Starting from the fact that ||§% Ye(ue) — z2|[L2(F) < Hzﬂlém + ||Z2”i2(r)’ one can show, by

using 68_11 Ye(ue) + €ye(Ue) = Ue, that there exists a constant Cy > 0, such that, for all 0 < £ < 1,

||u€||L2(r) < Ca. (2.1)

Since Uyq is of finite dimension, u. converges strongly to an element u in the space Uy,g.

Using the variational formulation of the problem (P;)(u.), we deduce that there exists a con-
stant C3 > 0 such that ||y5|| HI(Q) < Cs, independently of € (y.(ue) is denoted by y.). Conse-
quently, the state y. converges weakly in the space H(Q) to an element y(u) (denoted by ¥),
which is a solution of the problem (Ps)(u).

In order to prove the strong convergence of the state y. to y in H!(Q), it suffices to prove that
||Vy — Vy€||L2(m converges to 0, when ¢ — 0. We have

IVy — VysIIiz(Q) = /|Vy5|2 dx — Q/Vy Vyedz + / |Vy)? dz. (2.2)
Q o) Q

We remark that the application of Green’s formula to the problem (P;)(u.) gives

/IVy€|2 dz = —€/y3df+/y5uedl".
Q

r r

Then, the trace theorem [2] and the continuity of the restriction of the linear map B, to Uaqg (cf.
Lemma 1.1) allow us to assert that [ IVyE|2 dz converges to [ yudl', when € — 0. Consequently,
) r

||Vy—Vy5HL2(Q) converges, when ¢ — 0, to fuydl - f |Vy|2 dx; this quantity vanishes because
r Q

y is a solution of (Ps)(u).
Again, by the trace theorem and the continuity of the norm in L?(I'), we obtain that for all
U € Uad
J(u) = ;1_{’% Je(ug) < gl_r% Je(v) = J(v). (2.3)
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3. CONCLUSIONS

(1) We have established the existence of the state and the control for the perturbed bound-
ary optimal control systems (P;)(uc) and (F2), for a functional cost J. which is not
strictly convex and is defined on the boundary. We have considered Uaq, the space of
admissible controls, as an arbitrary linear subspace with finite dimension of the space

U= {v € L*(T): fvdl = O}. Our results remain valid if U,q is replaced by the affine
r

space w + Uy,q, where w is an element of U.

It is interesting to look at the questions treated here for other closed convex sets in
L?(T), for instance, we can replace, again, Uaq by W + Uaq, where W is a closed and
bounded convex set in U, and our results are still valid.

(2) Consider the (linear) perturbed boundary optimal control system on a bounded and regular

open set in R™ (Q1)(ue) and (Q2):

—Ay. + B(z)y. = 0, on {2,

0
%%«}—Eya = u,, at T' = 00, (Q1) (ue)

Je(ue) = min{J(v); v € Uaa};

7= [ -t e [ (L ) an (@)
r r

U,g := W + Wy, with Wy a closed and boundary convex set, W a linear subspace of finite
dimension (m > 1) in L?(I"), and B(z) is an essentially bounded and positive function
defined on €, for which we suppose the existence of Gy > 0, such that 3(z) > Gy for all
2 € Q. Then, our techniques may be adapted to treat this example, and yield similar
results concerning the existence of the control u., the state y., and the study of their
behaviour.
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