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A b s t r a c t - - T h i s  article deals with the study of the existence and behaviour of the optimal control 
and the state of a perturbed boundary control linear system when the space of admissible controls 
has finite dimension. 

K e y w o r d s - - P e r t u r b e d  state, Boundary optimal control. 

I N T R O D U C T I O N  A N D  P L A C E M E N T  OF T H E  P R O B L E M  

In  th i s  pape r ,  we are  concerned wi th  the  b o u n d a r y  op t ima l  control  p rob lem when  the  s t a t e  

satisfies 
- A y e  = 0, on Q, 

0 
O---v Ye + e y~ = ue, at  F = c0f~, 

(P1)(u~) 
f y~dP=O, y~ ~ Hl(ft), 
F 

where  o y~ is the  no rma l  der iva t ive  of y~, ft is a regular  and  bounde d  open  set in the  Euc l idean  

space  ~ '~ ,  ue is t he  o p t i m a l  cont ro l  so lu t ion  of t he  p rob l e m 

where  

J~(ue) = min{J~(v ) ;  v e Uad},  (P2) 

&(v):= f (y~(v)-zl)2 dr+ f (Oy~(v)-z2) dr; 
F F 

ye(v) is a so lu t ion  of (P1)(v) ,  v E /Aad, ~ad is a closed convex set in L2(F) ,  and  zt and  z2 are  

fixed funct ions  in t he  space L2(F)  (decision funct ions) .  

T h e  a u t h o r  in [1] dea l t  w i th  th i s  sys tem,  which is a m a t h e m a t i c a l  mode l i za t i on  for p rob lems  

of  layers  p h e n o m e n a  in ae rodynamics .  He took  a cost  funct ional  J~ in the  form 

Je(v) : =  / (ye(v) - Zd) 2 dF + N I v  2 dF, 
, J  J 

F P 

where  N > 0. In  th is  case, Je(v) is a def ini te  posi t ive  and  s t r i c t ly  convex funct ion.  Here,  we 

loose t he  pos i t i v i t y  def ini teness  of the  cost  funct ional ,  so the  techniques  of [1] canno t  be used 
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here. The space /~ad of admissible controls considered here will be an arbitrary linear subspace 
of finite dimension in L2(F). 

This paper is organised as follows. In the first section, we prove the existence of the state 
in some Sobolev space (Theorem 1.1) and show, in Theorem 1.2, that  the problem (/)2) has a 
solution. In the second section, we establish our main result, Theorem 2.1, where we study the 
convergence of u~ and y~(u~) (when ~ --~ 0). We end the paper with some concluding remarks. 

1. E X I S T E N C E  O F  T H E  P E R T U R B E D  S T A T E  

A N D  C O N T R O L  F O R  T H E  S Y S T E M :  (P1 ) (us )  A N D  (P2) 

The space of admissible controls Uad will be a linear subspace of U with finite dimension rn _> 1 
where 

(1.1) 

We look for Hl(f~) is the usual Sobolev space with its scalar product and associated norm. 
solutions (i.e., the states) of the system (P1)(u~) in the space 

V:= { Y C H I ( ~ ) : / Y d F = O }  " r  (1.2) 

THEOREM 1.1. For all v E ~Alad, there exists a unique solution of the problem (P1)(v), denoted 
by y~(v), in the space V. 
PROOF. We use a variational formulation of the problem (P1)(v). This yields a continuous 
symmetric bilinear form defined on V x V by 

.A~(y,q) : = / V y V q d x  + ~ f y q d r .  (1.3) 

gt F 

We know [2] that  the norm defined in H 1 (f~) by 

7)(y) := IVyl 2 dx + e y2 dF (1.4) 

F 

is equivalent to the usual norm IlYIIHI(~) in gl(f~).  Then, there exists a constant ~ > 0 such 
that  

y) ) 1/2 >- (1.5) 

Thus, .A~ is a continuous coercive bilinear form. The theorem of Lax-Milgram [3,4] gives the 
existence of a unique solution, denoted by y~(v), satisfying for all q C V, 

: = / v q d F .  (1.6) A~ 
i 1  

F 

The representation theorem of Riesz [5] implies that  there exists a unique linear (continuous) 
isomorphism A~ from V onto V ~ (the dual space of V) and a unique element denoted by ~ ( v )  
in the space V t, such that  

A~ y~(v) = ~ ( v ) .  (1.7) 

Then, the solution of the problem (P1)(v) is given by 

y~(v) = A i l e d ( v ) ,  (1.8) 

where A[  1 is the inverse operator of A~. This completes the proof. 
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REMARK 1.1. One  can verify t h a t  the  m a p  k~e is a linear ope ra to r  from/-gad into V t. 

THEOREM 1.2. There  exists a nonvanishing subset Xe ofldad, such that for a11 ue • Xe, we have 

Je(ue) = m i n { J e ( v ) ;  v • Llad}. 

PROOF. To prove the  existence of Xe, it suffices to prove t ha t  the  two following condi t ions are 
satisfied [5]: 

(i) T h e  map:  v --* Je(v) is convex and 1.s.c. (i.e., lower semicont inuous)  on the  space/-dad. 
(ii) For all sequences (vn) of e lements  in Ll~d, such t h a t  [[vnl]L2(r) --* +oo,  then  J~(v~) --* +oo,  

when  n --~ +oc .  

I t  is easy  to  verify t h a t  the  functional  cost Je is convex. By  using formula  (1.3)-(1.6) we can see 
t h a t  the  m a p  v • Llad ~ Ye(•) • H I ( f t )  is continuous.  On the  o ther  hand,  the  t race  t heo rem and 
the  cont inui ty  of the  no rm ensure the  cont inui ty  of the  m a p  

Je : v • u~a -~ Ilye(v) 2 0 L 22(r) - zll[L2(r) + ~vv y ~ ( v )  -- z2 

So condi t ion (i) is satisfied. Condi t ion (ii) results  from the next  Lemma.  

LEMMA 1.1. The map BE : Ll--~ L2(F) ,  which associates to each v ELl the element 13 e (v) :=  ye(v)]r 
is an injective linear map into L2(F).  As a consequence, there exists a constant Ce > O. In fact,  

Ce = ( lIB/All)  -1 ,  where  B~ -A is the inverse operator of Be defined on the range  Bs(Uad), such 
that 

CellVHL,(r) <_ [lye(v)[IL2(r) , for all v E/-dad. (1.9) 

PROOF. I t  is clear t h a t  BE is a linear map .  Let  v E L l  such t ha t  B E ( v ) : = y e ( v ) l r  = 0. Then ,  
ye(v) is in the  space H~(f t )  and is a solution of the  following problem: 

--Aye(v) = 0, on ft, 

0 
Ov ye(v) = v, at  r = 0ft ,  

fye(~) =o, ye(~) • dF H I ( ~ ) .  

F 

Using Green ' s  formula,  we ob ta in  

IVye(v)l dx + f v ye(v) d F  = o. 

F 

Since f v y e ( v ) d F  = 0 and ye(v) E H~(f~), we have ye(v) = 0 on ft. Consequently,  v = 0. The  
F 

exis tence of Ce resul ts  f rom the  fact t h a t  Be is linear injective and Llad has a finite dimension.  

REMARKS 1.2. 

(i) Since Llad is a finite dimensional  space, to  decide the  unici ty of  the  solut ion of (P2), one 
can use the  Hessian function associa ted to Je, af ter  fixing (for example)  an o r thono rma l  
basis  of/dad. 

(ii) One  can verify t h a t  there  exist two cons tants  C1 > 0 and C2 > 0, such tha t :  C1 < IIBell 
< C2 for all 0 < e < 1. 
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2. S T U D Y  O F  T H E  C O N V E R G E N C E  O F  T H E  S T A T E  Ye 
A N D  C O N T R O L  u s  

The main result of this article is the following theorem. 

T H E O R E M  2 . 1 .  We have the following statements: 

(i) The control u~ converges strongly in the space L2(F), to u e ~'~ad, satisfying J(u) = min 
{ J ( v ) ;  v e uad}, where J ( v )  := f (y(v) - Zl) 2 d r  + f ( v  - z2) 2 dr ,  and y(v)  is the solution 
of the problem r r 

- A y ( v )  = 0, on f~, 

O 
Ov y(v)  = v, at r = OO, (P3)(") 

f y(~) =0, y(V) e (0). d r  H 1 

F 

(ii) The state y~ converges strongly in the space H i ( f  t) to the state y(u), solution of the 
system (P3)(u). 

PROOF. As the control 0 is in the space/~4/ad we have J~(u~) < [[z 1 2 2 , []L2(r) + [[Z21[L2(r); then there 

exists a constant C1 > 0 (independent of s), such that  [[y~[[L2(r ) < C1. 

Starting from the fact that  [[b-~ y~(u~) 2 2 2 - z.llL.(r ) < I]ZlllL.tr) + Ilz2llL.(r), one can show, by 

using ° y ~ ( u ~ )  +eye(us)  = u~, that  there exists a constant C2 > O, such that ,  for all 0 < s < 1, 

Ilu~llL2(r) _< C2. (2.1) 

Since ~'{ad is of finite dimension, us converges strongly to an element u in the space/dad. 

Using the variational formulation of the problem (Pi)(ue),  we deduce that  there exists a con- 
stant C3 > 0 such that  IlY~IIHI(a) <-- C3, independently of s (ye(u~) is denoted by y~). Conse- 

quently, the state y~ converges weakly in the space Hi ( f t )  to an element y(u) (denoted by y), 
which is a solution of the problem (P3)(u). 

In order to prove the strong convergence of the state y~ to y in Hi( f t ) ,  it suffices to prove that  

Ilvy - VY IIL.< ) converges to O, when s --~ O. We have 

2 

o f~ o 

(2.2) 

We remark that  the application of Green's formula to the problem (P1)(ue) gives 
i 

f~ F F 

Then, the trace theorem [2] and the continuity of the restriction of the linear map B~ to ~ad (cf. 
Lemma 1.1) allow us to assert that  f lVy~ ] 2 dx converges to f y u dF, when e -* 0. Consequently, 

F 

] IVy-  VysllL2(f~) converges, when s --* 0, to f u y dF - f IVyl 2 dx; this quantity vanishes because 
F 

y is a solution of (P3)(u). 
Again, by the trace theorem and the continuity of the norm in L2(F), we obtain that  for all 

V E ~ a d  

J(u) : ~01im Y~(u~) < j ~  J~(.) : J(.).  (2.3) 
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3 .  C O N C L U S I O N S  

( i )  We have e s t ab l i shed  the  exis tence  of the  s t a t e  and  the  cont ro l  for the  p e r t u r b e d  bound-  

a ry  o p t i m a l  control  sys tems  (P1)(us)  and  (P2), for a funct ional  cost  J~ which  is not  

s t r i c t ly  convex and  is defined on the  boundary .  We have considered /dad, t he  space of 

admiss ib le  controls ,  as an a r b i t r a r y  l inear  subspace  wi th  finite d imens ion  of the  space 

/ d : = { v E L 2 ( F ) : f v d F = O }  " r Our  resul ts  r emain  valid if L/ad is rep laced  by  the  affine 

space w +/dad,  where  w is an e lement  of /d .  

I t  is in te res t ing  to  look a t  the  ques t ions  t r e a t e d  here for o ther  closed convex sets in 

L~(F) ,  for ins tance ,  we can replace,  again,  /dad by W +/gad ,  where  142 is a closed and 

b o u n d e d  convex set in /~ ,  and  our resul ts  are stil l  valid.  

(2) Cons ider  the  ( l inear)  p e r t u r b e d  b o u n d a r y  op t ima l  control  sys tem on a b o u n d e d  and  regular  

open  set in R n (Q1)(ue)  and  (Q2): 

- A y ~  + f l ( z )  y~ = 0, on fL 

0 
O--v y~ + e y~ = u~, a t  F = 0fL 

J~(u~) = m i n { J ~ ( v ) ;  v C/dad};  

f (y (v)-Zl)2 dr+ f 
F F 

dr; (Q2) 

b/ad :=  W + W1, wi th  W1 a closed and b o u n d a r y  convex set, W a l inear  subspace  of finite 

d imens ion  (m _> 1) in L2(F) ,  and  f l (x )  is an essent ia l ly  bounde d  and pos i t ive  funct ion 

defined on ft, for which we suppose  the  exis tence of/30 > 0, such t h a t  f l ( z )  > flo for all 

x c t2. Then ,  our  techniques  m a y  be a d a p t e d  to t r ea t  th is  example ,  and  yie ld  s imi lar  

resul ts  concern ing  the  exis tence  of the  control  u~, the  s t a t e  y~, and  the  s t u d y  of the i r  

behaviour .  
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