View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

JOURNAL OF FUNCTIONAL ANALYSIS §9, 254-292 (1984)

Projections onto Translation—
Invariant Subspaces of L ,(G)

D. ALSPACH* AND A. MATHESON |

Department of Mathematics, Oklahoma State University,
Stillwater, Oklahoma 74078

AND

J. RosenBLATT?

Department of Mathematics, Ohio State University, Columbus, Ohio 43210
Communicated by the Editors

Received April 12, 1983; revised February 3, 1984

Let G be a locally compact abelian group. A translation-invariant subspace in
L,(G) may or may not be complemented depending on the structure of its hull in G.
Techniques for deciding this complementation problem in a variety of situations are
developed and illustrated with examples. A complete characterization is obtained
for those ideals with a discrete hull. ¢ 1984 Academic Press, Inc.

0. INTRODUCTION

In [13], Rosenthal gave necessary conditions on a subset 4 of I', the dual
group of a locally compact abelian group G, for an ideal I < L,(G) with
hull({} =4 to be complemented in L,(G). For the special case G =R, the
first two authors [1] were able to complete the characterization of the
complemented ideals. In this paper, we expand the investigation to other
locally compact abelian groups. We are not able to determine in general
whether a given ideal is complemented; however, we have been able to prove
some useful theorems and uncover some interesting phenomena which do not
occur in L,(R).

Rosenthal proved in [13] that if an ideal I < L,(G) is complemented, then
h(I)={ye I'=G:f(y)=0 for all fE I} is an element of the coset ring of I
with the discrete topology. Obviously A(f) is closed in I' in the usual
topology; and thus, a necessary condition for an ideal 7 to be complemented
in L,(G) is that A(J) be a closed subset of I" which is an element of the coset
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ring of I'y, i.e., I' with the discrete topology. In case of G = R, Rosenthal
(13] proved that such sets were of the form U7, (a;Z + §,)\F, where
a;, B, i=1,.,n, are real numbers and F is a finite set. Subsequently, other
authors [2, 3, 12, 16, 17] showed that in general a closed subset of I" which
belongs to the coset ring of I'y is of the form U7_; y; + TAUL, v + T4
where y;, .0 = L, vy, i= 1., n, are elements of I,1;,i=1,.,n, are
closed subgroups of I, and Iy, j= l,..,n;, are clopen subgroups of I7;.
Moreover, they showed that these sets are strong Ditkin sets and, thus, in
particular they are sets of spectral synthesis.

In the case of L,(R), the characterization of the complemented ideals is
that I is complemented if and only if A(J) = U}_, (a;Z + f;)\F as above with
{a;} pairwise rationally dependent, see [1]. Unfortunately, any charac-
terization for general L,(G) cannot be so simple. Several things contribute to
the simplicity of the result in L,(R): the elements of the coset ring to be dealt
with are discrete, independent translations of the cosets do not alter the
characterizing conditions, and these characterizing conditions only involve
pairs of cosets. We will show that in various situations the failure of these
properties causes difficulties. Because we do not have a complete charac-
terization of the complemented ideals, we will emphasize examples in this
exposition to illustrate the basic difficulties of the complementation question.

The first section of this paper is devoted to notation, definitions, and some
simple lemmas. In the second section, we generalize the characterization of
complemented ideals in L,(R) to case of ideals in L,(G) with discrete hulls.
The main result here is Theorem 2.3 which loosely speaking says that the
proper generalization of the algebraic condition of rational dependence used
in L,(R) is the topological condition of uniform seperation of the cosets. The
third section is devoted to the creation of an inductive procedure for proving
implementation in a large number of cases. This procedure is complicated,
but it seems to be needed even to prove this result: an ideal I in L,(R") is
complemented if the hull 4 is a finite union of affine subspaces. In the fourth
and final section some possible directions for further work are described and
an extension of one of the results of Section 2 is proved. This theorem says
that if I', and I', are closed subgroups of G, then I(I", U I',) is complemented
if and only if I', + I, is closed modulo I'y, N T,.

Let us remark that while most proofs are given for general locally
compact abelian groups, the reader will find that in most cases little of
interest is lost in assuming that the group is R" or one of its closed
subgroups. In fact, the following examples from R? and R’ will be used to
illustrate most of the results that we prove.

Let I(4) denote {f€ L,(G): fla)=0 for all a€€ A}. To avoid the use of
large numbers of parentheses, we will follow the convention that algebraic
operations and Cartesian products precede unions, intersections, and set
differences, unless otherwise indicated.
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0.1. ExampLes. (i) I(U]_, 4,R) = L,(R?), where , R denotes the line
x tan(f;) = y. This is complemented. See Section 3.

(i) IZXRURXZ)cL/(R?*. This is complemented. See
Section 1.

(ili) I(ZXRURXZWU 4R)<L,(R?). This is complemented if and
only if tan(f) is rational. See Sections 1 and 3.

(iv) I(RXZX{0}U{0}X2ZXR)cL,(R?. This is not com-
plemented. Sections 2 and 4.

(v) IIRXZ X {0} U {0} Xx2ZXR U {0} XR X {0}) c L,(R®).
This is complemented. See Section 4.

Even from these few examples, one can see that there are grave difficulties
in formulating a conjecture for a characterization of the complemented ideals
in terms of their hulls. The main unresolved question is whether there is a
geometrical, topological, or algebraic condition on the hull which is
necessary and sufficient for the ideal to be complemented in L,(R). Recently,
the first named author has been able to use the techniques of this paper to
give a complete characterization of the complemented ideals in L,(R?). The
characterization is not easily stated and this work will be published
elsewhere.

1. DEFINITIONS, NOTATION, AND PRELIMINARY RESULTS

Throughout this paper, G (possibly with subscripts) will be a Hausdorff
locally compact abelian (LCA) group and H will be a closed subgroup of G.
The dual of G, G, will usually be denoted by I'. Because our basic examples
are in L,(R"), we will use additive notation in both G and I" unless otherwise
noted. See Rudin [15] for standard notation and facts.

If H is a closed subgroup of G, then H*= {y€ I': y(h) =1 for all h € H}

and we will identify H" with G//ﬁ in the canonical manner. The map =, (or
if the subgroup H is fixed, then just 7) will denote both the quotient map of
groups 7y : G — G/H and the induced map 7,:L,(G)— L,(G/H) given by
M f(x) = g f(x + y) dmy(y) for ae. [mg,], x € G/H, where m,, is a Haar
measure on H. If H is compact, then my,(H) = 1; if H is not compact, then
we will always assume suitable normalizations so that the formula

[ ramo=] | 1ot y)dmu(y) dmeux)

is correct for all f€ L,(G).
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Let us remark that the quotient map 7, : L,(G)— L,(G/H) has many right
inverses. In particular, if ¢ is a locally bounded, locally measurable function
on G, ie., ¢ € L'%(G), satisfying

| st pamyn=1 ae lmul

then Sf(g)=/f(g+ H)é(g), for f€ L, (G/H), defines an isometry of
L(G/H) into L,(G) such that 7,8 =1, u), the identity operator. Reiter
[11, Chap. 8, Sect. 1.8], proves that such ¢, actually satisfying stronger
properties, always exist and, following Reiter [11], we call such a function a
Bruhat function. In Theorem 4.4, we will need ¢ € L (G) and uniformly
continuous. Indeed, it is not hard to show there exists a m;-measurable set
M such that my(M +x)=my(M+xNH)=1 for all x&€G. Then let
fECAG), [of(x)dmy(x)=1, and let ¢=f*1,. Then ¢ is uniformly
continuous Bruhat function with |¢| < || f,,-

One simple and well-known consequence of the existence of S is that

SN PORS
ny(L (G)) = L,(G/H). Moreover, we have f(y)=7,f(y) for y€ H*=G/H
and f € L,(G). We wish to carry this one step further. Suppose that 4 is a
closed subset of I. We would like to know that 7, (I(4))=I(A N H"'), as a
subspace of L,(G/H). A sufficient condition for this equality to hold is that
A be a strong Ditkin set (see Definition 1.1) because this implies that
ANMH"' is a set of spectral synthesis. Actually 4 " H* is also a strong
Ditkin set.

1.1. DEFINITION., A subset A of I' is said to be a strong Ditkin set if
there is a net {u,} of measures in M(G) such that

1) <M< o for all a,
(i) lim, ||lu, * f1l, =0 for f € I(4),

(iii) 4,=1 on a neighborhood of A4, for all a (the neighborhood
depends on a).

The class of strong Ditkin sets is closed under finite unions and inter-
sections. Moreover, if A and B are strong Ditkin subsets of I', then

I(A N B)=I(4) + I(B).

This follows from a general argument using approximate identities. See
Gilbert [3], Rosenthal [12], and Rudin [14]. Also, because 4 U B is a set of
spectral synthesis, I(4 \U B) = I(4) N I(B).

As was mentioned in the Introduction, we will be concerned only with
certain special closed subsets of I'. Let us denote the coset ring of I by 2(I)
and let 2.(I) be all closed sets in I which are in the ring Q2(I"y), where I'y

580/59/2-8
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denotes I with the discrete topology. We may state Rosenthal’s results as
follows.

1.1. ProposITiON. If I is a complemented translation invariant subspace
of L (G), then h(I) € 2 (I).

Also, summarizing the results of [2, 13, and 17}, we have

1.2. PROPOSITION. If A € Q ('), then A is a strong Ditkin set and A is
of the form Ui y,+T\UL,y,;+1T;), where {y:i=1..n}cT,
{rj:J=lLeon)cI,I; is a closed subgroup of I and I'; is a clopen
subgroup of T, for all i = 1,...,n;j = 1,..., n;.

Because the elements of £2.(I') are sets of spectral synthesis, we can use
the notation I{4) to denote the ideal with A(I(4)) = 4.

Let us now recall that the translation-invariant projections are given by
convolution against idempotent measures [15] and that by Cohen’s theorem,
the Fourier transform of such a measure is the characteristic function of a
set in (). Rosenthal observed that there are ideals which are
complemented, but not by a translation invariant projection. In particular,
I(Z) is complemented in L,(R) by

Pf(x)=f(x)— 2 flx+2mn) 11y 5(x)

neZ

for all f€ L,(R). The abstract version of this was proved in [10]. We include
a proof of this result here because it provides intuition for later arguments.
For p€ M(G), define g(d)=pu(—A4) for al/l\Borel sets 4. Then define

C,:L(G)-L,(G)by C,(f)y=uxf Then C,(f)=4 . ffor all f€ L,(G).

1.3. ProposITION. Let I'y be a closed subgroup of I' and let A € Q(I',).
Then I(A) is complemented in L (G).

Proof. Let H=T}={g€G:y(g)=1 for all yETI,} and let ¢ be a
Bruhat function for H. Because 4 € Q(I"|), by Cohen’s theorem there exists
it € M(G/H) such that 4=1,. Define Qf(g)=4¢(g)C,n,f(g+H) and
Pf=f—Qf for all fEL,(G),gE€G. Then Q and P are continuous

SN SN
projections. Notice that for a €I, =n,f(a) =fla) and Qf(a)=
T s
C,(nyf)(a) = ji(a) ny f(a). Hence if f€ I(4), then C, (7, f) € L,(G/H) and

T N . . P
C,(nyf)=0o0n G/H=T,. So f€ I(A) implies Qf=0. If 0f(a) =0 for all
a€T,, then f(@)=0 for all a € A. Hence, ker(Q)=1I(4) and P is a
projection onto 7(4). N
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Let us note that if 4 € 2 (I') and I(4) is complemented, and y € I, then
I(y + A) is complemented. Also, it was observed in [10] that under suitable
conditions, if /(4) and I(B) are complemented, then /(4 U B) is also com-
plemented:

1.4. LEMMA. If A and B are closed subsets of I" such that I(A) and I(B)
are complemented in L,(G), and there is a measure u € M(G) such that
4|, =1 and |, =0, then I(A U B) is complemented in L ,(G).

Proof. Let P, and P, be the projections on I(4) and I(B), respectively,
and let Q, and Q, be their complementary projections. Define Q on
L(G) by Qf=U—-CpQpf+(C,Q,f) for fEL\(G). Then Q*F=

F(F—C,(F))+ QFC,(F)) for FEL_(G). If cEAUB, then Q*c=c.
Thus, Q* is the identity on the w*-closed span of 4'UB. Also,
range (Q*)cspan”'(4) + span” (B) c span” (4 U B). Because A UB is a
set of spectral synthesis, P =1 — Q is a projection onto /(4 UB). 1

We now consider the question of the existence of a measure g as in
Lemma 1.4.

1.5. LeMMA. Let A and B be closed sets in I'. The following are
equivalent:

(i) there exists u € M(G) such that i|, =1 and ji|, = 0;
(ii) there exists a compact neighborhood W of O in I’ such that
A+ WnNB+W=g;
(ili) there does not exist a pair of nets {a,} <A, {b,} =B such that
lim,a,—b,=0.

Proof. Suppose (i). Because £ is uniformly continuous, there exists a
compact neighborhood W of 0 in I such that for all y, with d(y,)=0,
G <3 if yEy,+ W, and for all y, with A(y,))=1, [d()|>3 if
YEY,+ W.S0 A+ WM B+ W=g. The equivalence of (ii) and (iii) is easy
to see. Assume (iii). Then let f4 and BB denote the closures of 4 and B in
the Bohr compactification SI" of I Condition (iii) means 4 NBB =@.

N O N\ . N\
Because L,(fI') = M(BI') is a normal algebra on I, there exists £ € L (B

such that f|;, = 1 and f|;, = 0. Since fr = Gy, fhas the form 3", ¢, 1, ,
where {g,} =G and ' ,|c,|<oo. It follows that the measure
H=23_1€,0, in M(G) has d|, =1 and d[;=0. |

The next lemma will be used in Section 3. It gives a slightly stronger result
than the previous lemma for elements in £2.(I).
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1.6. LemMA. If A, B€ Q.(I'), and there is a neighborhood W of O in I’
such that A + WNB + W=, then there exists a measure 1 € M(G) with
compact support such that i|, =1 and {i|, = 0.

Proof. Let BI" denote the Bohr compactification of I'; and for 4 = I, let
f4 denote the closure of A in fI. Since A+ WNB + W=g, B4 "B =0.
But also f4, B € Q (fI). Indeed, by Proposition 1.2, 4 = U%_, y; + (I \B)),
where y, € I, I'; are closed subgroups of I', and B, is a finite union of clopen
cosets of I;,i=1,..,n If C is a clopen coset of I, then
C+CNIT\C)+C=@ and so BCNBI\C)=0. Also, pIr;=pCU
B \C). So BC is a clopen coset of BI';. It follows that BB, is a finite union
of clopen cosets of BI'; and B(I'\B,)=pI'\BB;. Hence, f4 =",y +
(Br'\BB;) and pA is a closed set in Q((8I),). Also, below we construct

ueE M(Gy), Gy :,B/I\“, such that g=1 on B4, £=0 on BB, and also ¢ has
compact support. But then g is a finite linear combination of Dirac masses in
G such that f=1o0on A4 and =0 on B.

By the above, we may assume I is compact, 4,B € Q(I'), and
AN B =¢@. By Proposition 1.2, and by taking sums of convolutions of the
measures constructed below, we may assume that there are closed subgroups
r.,r, im Ia,,f,€r such that A=a,+4,,B=4,+B, for some
A, € 2(I'), B, € I',). Hence, it is enough to assume that we have closed
subgroups [I,I, in I, A€I,), BE€RI,), y,€I such that
ANB +y,=0@, and then construct 4 € M(G) with compact support such
that f=1on4,i=0o0n B +7,.

First, assume y, & I', + I',. Then there is g € G such that y,(g)=a # I,
and y(g)=1for yerI' +T,. Let u=(1/(1 —a))(d_, — ad,). Then |, =1
and d|p,, =0. Otherwise y,EI,+1I,, and then there is no harm in
assuming I'=I,+7I,. If A is an open subgroup of [, then
ANA+B+y,=@ and A+ B+ y,€ (') because I'=1T", +I',. Hence,
there exists an idempotent measure 4 € M(G) with f=1,,,, .. The measure
4 necessarily has compact support. But then u satisfies #=0on 4, 4= 1 on
B +y,, and £ has compact support. By translating {, this argument also
handles the case where 4 is a coset of an open subgroup of I',. Finally, if
A€ (I, then 4 = (J}_, 4;, where each 4, is a coset of an open subgroup
of I';. Choose u; as above with 4,=0 on 4, #=1 on B +y,, and g; has
compact support. Let g =6, —u, * --- *u,. Then g has compact support,
g=1lond,andi=0o0nB+y, 1

Remark. We see from the proof that the measure ¢ constructed above is
a finite linear combination of Dirac masses in G.

Let us now consider some examples in L (R?). Let A=Z X Z\{0} X Z
and let B=1{0}X /2 Z. By Proposition 1.3, both I(4) and I(B) are
complemented. Moreover, A and B are separated as in Lemma 1.5. So by
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Lemma 1.4, I(4 U B) is complemented. We will see in this section that
I(Z X Z\UB) is not complemented. This shows that unlike the case of
L ,(R), the relatively clopen cosets that are removed from a subgroup which
is part of the hull of an ideal can have a significant part in determining com-
plementation.

A second instance in which the general case and L,(R) differ is in the
importance of translations. Indeed, I(U}_, a;Z + f;) is complemented in
L,(R) if and only if (U} ,a;,Z) is complemented. However,
I({0} X Z\U {1} X\/2 Z) is complemented in L,(R?), but as we will see in
this section, I({0} X ZU {0} X \/2 Z) is not complemented.

Now let us consider some nondiscrete examples. First the ideal
I({0} X RUR X {0}) is complemented in L,(R?). Indeed, define

Q) =] flxnde- 1 ()

Q:f )= fl5,)ds  110,0)

for all € L,(R?). Then Q, and Q, are projections on L,(R?) having the
same form as Q in the proof of Proposition 1.3. An easy calculation shows
that P=(I—-Q)I—Q,)=(I—Q,){—Q,) is the required projection.
Second, the ideal I(Z X R\JUR X Z) is complemented in L,(R?); this is
Example 0.1 (ii). Indeed, define

Qlf(x’ y) = Z f(x’ 2nn + y) 1[0,27!](y)’

nez

Q,f(x,y)= Z SQ@2nn + x, y) 1[0,27:](-"),

nez

for f€ L,(R?). As above, P=(I—-Q,)I—-Q,)=UI—0Q,)I—0Q,) is the
required projection.

Both of these examples illustrate a phenomenon not present in L, (R);
namely, the hull in each case has the form I';\UI,, where the closed
subgroups I', and I', do have (many) points close together, i.e., given € > 0,
there are infinitely many points y, €I, y, €I, with d(y,,7y,) <¢ for a
metric d on R? in the usual topology. But these examples are also special in
that the projections Q, and Q, which correspond to the subgroups I'; and I',
are commuting projections. In general it seems unlikely that we can find
commuting projections like this.

The next proposition shows what is needed to build projections induc-
tively.

1.7. ProposITION. Let A € 2(I') and let I'| be a closed subgroup of I
Let H=T7y. Suppose that B € (I')) and that u € M(G/H) has fi= 1 \;.
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Then I(4 U (I',\B)) is complemented in I(A) if and only if there is a
subspace X of I(A) such that C,m|y is an isomorphism of X onto
I(I',"4)U B) < L,(G/H).

Proof. Suppose that X is complementary to I(4 U (I",\B)) in /(4) and
that P is a projection of I(4) onto X. Note n(I(4))=1I1(4 M TI,) and thus
C,n(I(4))=1((A N T,)UB). Now ker(C,m)=1I(4 U (I\B)) and so C, 7|
is one-to-one and onto I((4 N I,)U B) as required.

Conversely, define P,f=(C,7n|y)"' C,n(f) for all f€I(A). Then
P=1I—P, is a projection from 1(4) onto I(4 U (I',\B)). §

In the sequel, we will refer to X as a [lift of I((4 NI)U B). With the
same notation as in Proposition 1.7, we have the following:

1.8. CoROLLARY. Suppose that I(A\J(I'\B)) is complemented in
L (G). Then I(4) is complemented if and only if I{((ANT)UB) is
complemented in L,(G/H).

Proof. If I{4) is complemented, let X be the complement of
AU ('\B)) in I(4). Then X is complemented in L,(G) and by
Proposition 1.7 it is isomorphic to J = I((4 N I';)\U B) in L,(G/H). Hence, J
is isomorphic to a complemented subspace of L,(G) and thus J is
complemented in its second dual J** But also, by Gilbert [2], J* is
complemented in L,(G/H)*. Hence, J itself is complemented in L,(G/H).
See [7].

Conversely, suppose that I((4 N 1)U B) is complemented in L ,(G/H) by
a projection P,. Let X be the complement of I(4 U (I'\B)) in I(4), let
&= (C,nly)~" with domain(@)=I((4NI,)UB), and let P, be a
projection from L,(G) onto I(4 U (I',\B)). Then P=P, + ®P,C, 7 gives a
projection of L ,(G) onto I(A U (I'\B))+ X=1(4). |

Remark. In the first part of this proof, we used a general lemma for
Banach spaces. Let J be a closed subspace of Z with Z complemented in
Z** and J! complemented in Z*, Then J is complemented in Z if and only
if J is complemented in J**. See [1, 6, 7, 8] for details.

This last corollary gives us a technique for showing that some ideals are
not complemented. Indeed, consider I(Z X R \U R X Z \U 4R), where tan(f) is
irrational; this is Example 0.1 (iii). If this ideal were complemented in
L,(R?), then the fact that /(Z X R\UR X Z) is also complemented would
imply that 7((Z X R\UR X Z) M 4R) is complemented in L ,(R?/,R) ~ L,(R).
Because tan(f) is irrational, the two sets a,Z=(ZXR)MNy4R and
a,Z = (R X Z)M 4R have rationally independent periods a; and a,. Conse-
quently, by Alspach and Matheson [1|, I(@;ZUa,Z)=I(ZXRU
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R X Z)M 4R) is not complemented in L,(R*/4R). This contradiction shows
that Example 0.1 (iii) is not complemented if tan(f) is irrational.
Our next result refines Corollary 1.8.

1.9. PROPOSITION. Suppose A,Be€ Q.(I') and 1A\ UB) is com-
plemented in I(A) with complementary subspace X. Then

(i) IB)®X=I1ANB),
(ii) if in addition I{4) and I(B) are complemented in L (G), then
I(A N B) is complemented in L ,(G).

Proof. 1t follows that I1(B) + I(4) =I(A N B) and I(A)NI(B)=I1(4A U B)
as we observed earlier. Thus I(B) + I(4)=1(B)+I(A UB)+ X =I(B)+ X,
and I(B) N X = {0}. This proves (i).

For (ii), note that X is complemented in L,(G) and therefore
1(B) ® X =I(4 N B) is isomorphic to a complemented subspace of a second
conjugate space, L,(G)**@L,(G)Y** in this case. So I(AMB) is
complemented in I(4 N B)**. By Gilbert [2], I(4 N B)* is complemented in
L_(G)=L¥(G). Hence, by the previous remark, I(4MNB) is
complemented. [

This proposition will be used later to give other examples of ideals which
are not complemented.

2. IDEALS WITH A DISCRETE HULL

The main result of this section is a characterization of the complemented
ideals with a discrete hull. This is the natural generalization of the
complemented ideals in L,(R). As was noted in the discrete examples in the
last section, the result is complicated by the necessity of dealing with the
cosets removed from and translated in the hull. There are two main steps to
the theorem. First, we will give an obstruction criterion for the lift of
Proposition 1.7; second, we will prove a decomposition result for discrete
hulis.

2.1. ProposiTION. Let I, be a discrete subgroup of I', A an infinite set
in Q(I',), and B € 2 .(I') such that
(i) ANB=g,

(ii) for each compact neighborhood W of 0 in I, there exists
a€A,bE B, such thata—be W.

Then I(A \U B) is not complemented in I(B).
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Proof. Suppose that I(4'\UB) were complemented in I(B) by a
projection P. Then by Proposition 1.7, there is a subspace X = ker(P) < I(B)
such that C, 7|y is an isomorphism onto I(I''\A)=I((I' M)V (BNT,))c
L,(G/H), where H=T{ and u is an idempotent measure on G/H with
4=1,. Because I'; is discrete, G/H is compact and so A — L (G/H) when A4
is considered as a set of continuous bounded functions on G/H.

For each a € 4, y € I'\4, using multiplicative notation in I,

[ a(e+ H)7(g + H) dmg,(2)= | (@ 7)(g + H) dmgu(8) =0.

That is, a € I(I',\4). Hence for each a € 4, there is an element x(a) € X
such that C,7(x(a))=a with |x(a)|, <|[(C,7|y)~"[. We will arrive at a
contradiction by showing {x(a):a € A} is not relatively weakly compact,
while 4 — L,(G/H) is clearly relatively weakly compact.
N A . i

Because x(a) € I(B), x(a)|z = 0. But also x(a)(a)=d(a)=1since A < T,.
Because the topology on I is the compact-open topology, for any compact
neighborhood V of 0 in G, there is a neighborhood W of 0 in I" such that
[x(@) (1) —x@)], () <e if y—y EW,acd. If {x(@):a€ A} is in fact
weakly relatively compact, then it would be uniformly integrable; thus, given
any &, > 0, there is a compact K such that ||x(a)|4.[, < &,. Now let V" above

be a compact set containing K, let ¢, = ¢ = 1/4. Then for some neighborhood
W of 0,

<N PN
[x(@)y () — x(@)l, (7)< 3

for all y—y" € W,a € A. But by (ii), there is an a € 4 and b € B such that
a— b€ W. Hence,

PN SN
i> [x(@)l, (@) —x(@)|, (b)]

P PR PR e —

> |x(a)(@) — x(@)(®)| — |x(a)(a) — x(a) 1 ,(a)|

T SN

— |x(a) 1,(b) — x(a)(®)|

>1-2|x@—x@) [, =1-23)=1.

This contradiction completes the proof. |l

22. LEmMA. If A€ Q) and A is discrete, then there are discrete
closed subgroups I';,i = 1,...n, of T', {y;: i = 1,..,n} I, and finite unions B,
of cosets of subgroups of I'; such that

(i) A=Ul7+ \By),
(“) (yi + (FI\BI)) M (yj + (FJ\BJ)) = Qfor i#:j’ i’j = 1""’ n.
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Proof. We know that A = U, p; + (4 \U, p;; + 4,;), where A, are
closed subgroups of I, p, €T, p;; € A;, and A;; are clopen subgroups of 4;.
Because A is discrete, all the subgroups A, can be taken to be discrete.
Hence, we can write 4 =/, 7, + (I';\B;), where y, €I, I'; are closed
discrete subgroups of I, and B, are finite unions of cosets of subgroups of I';.
Our task is to guarantee disjointness of the terms {y, + (I'\B,): i = L,..,, n}.

First, let . consist of all sets of the form y, + (I',\B,), where y, €I, I'; is
a closed discrete subgroup of I, and B, is a finite union of cosets of
subgroups in I'y. We claim that % is a semi-ring; that is,

(i) fd,BE ¥, then ANBE .Y,

(i) if4,B€ %, then A\B =) j-1 C;, where the pairwise disjoint sets
CJE y,j= l,.u, n.

To prove (i), let a, + (I';\B,) and a, + (I';\B,) be in .. Without loss of
generality a, + I', Na, + I, # &; so there is an a € I such that

a, +(Fl\Bl)ma2+(FZ\BZ):a+(rlmFZ)\(al+Blua2+B2)
=a+(FlﬂF2)\a+B3=a+(T,('\TZ\B3),

where B, is a finite union of cosets in I', N TI,.

To prove (ii), first note that U7, y; + ;= Ur, (¢ + TAUIZ v+ 1), a
pairwise disjoint union of sets in . because each y; + I'\ULZ} 7, + T, takes
the form y; + (I'’,\B,) for some finite union B; of cosets in I';. Now

0+ CA\BINY; + (15\By))
= +T\( +B, Uy, + )Y+ B0y + (' \B)))-

Since B,c Ty, y, +I\(y +B,YUy,+T;) and y,+B\(y, +I\B,) are
disjoint. Clearly, y, + I'\(y, + B, Uy, + I,) € &. But also, by the remark
above, y, +B,=Uj.,C;,C;€ ., C; pairwise disjoint, i = 1,..., n. Hence,
¥, +B,MNy, + (C\B,) is also a disjoint union of sets in % by (i). This
proves (ii).

It is a routine set theory argument to show that any finite union of
elements of a semi-ring .% is a finite union of disjoint elements in S. See [5,

p-33.. 1

We are now ready to prove our characterization of complemented ideals
with discrete hulls.

2.3. THEOREM. Let A € Q(I') be discrete, and let A = J}_, y; + (I';\B)),
where y, € I, IT'; is a closed discrete subgroup of I', and B, is a union of cosets
of subgroups of I;. Assume y,+ T \B)Ny,+ T \B)=@ if i+]
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i,j=1,.,n. Then I(4) is complemented if and only if there is a
neighborhood W of 0 € I such that for all i + j,i,j=1....,n,

Vit TAB)+ Wy, + (T\B)+ W=g@.

Proof. Suppose that there is such a neighborhood W of 0 € I'. Each of
the ideals I(I'\B,) is complemented by Proposition 1.3. Say P, is a projection
onto I(I'\B,). Then define .Z(f)=y;P(y; ' f) for all f € L (G). Then .7, is
a projection onto I(y; + (I';\B;)). Now apply Lemmas 1.4 and 1.5 inductively
to show that I(4) is complemented.

Conversely, suppose that no such W exists. Then there is some i # j such
that for all neighborhood W of O0€rl, y,+ T \B)NU;.; v+
(I'’\B;)+ W+@. By Proposition2.1, we know that I{4) is not
complemented in I(UJ;,;y; + (I;\B,)). Hence, I(4) is not complemented in
LG). &

As a corollary of this theorem, we get the characterization of
complemented ideals in L ,(R); see [1].

2.4. THEOREM. If A € 2.(R), then I(4) is complemented if and only if
A=U",a,Z + B\F, where a;,; € R, F is finite, and {a;:i=1,..,n} are
pairwise rationally dependent.

Progf. The only closed proper subgroups of R are of the form aZ, @ € R;
so A=t a;,Z+B\F. If the {a;:i=1,.,n} are pairwise rationally
dependent, then it is easy to write |J}_, @;Z + f; as a finite union of cosets
of one subgroup 6Z. Thus, there is an ¢ > 0 such that any two of these cosets
is uniformly separated by a distance ¢. By Theorem 2.3, I(4) is com-
plemented.

Conversely, if there are two rationally independent «;, then in any decom-
position of A into pairwise-disjoint sets of the form a;Z + b\F,, F; finite,
there exists some a,, @, which are rationally independent. Thus, there is no
neighborhood W of 0 such that

(asZ + bs\Fs) + Wm (atZ + bt\Ft) + W= g

Hence, again by Theorem 2.3, I(4) is not complemented. [

Theorem 2.3 also applies to the two examples discussed in Section 1. Both
the ideals I(Z X Z\U {0} X /2 Z) and I({0} X Z\U {0} X /2 Z) are not
complemented in L,(R?).
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3. A SUFFICIENT CONDITION FOR COMPLEMENTATION

In this section, we will develop an inductive procedure for building
projections on ideals. At the end, we will need to know G is o-compact. So
we assume this now. We will explicitly point out where this is used. The
procedure in full is rather technical, so we will begin with some special cases.
The basic idea is simple. If 4 = {J}_, y; + (I';\B;), then we build projections
from I(U¥_, 7, + (IF'\B))) onto I(U%* !y, + (F\B))) for k=0,1,2,...,n—1
by using lifts as in Proposition 1.7.

First, suppose that we wish to find a relative projection from
UK 7:+ (T\BY)) onto I(Ui2 y; + (I\B))) and T, , = H, ., is compact.
Without loss of generality, we may assume y,,, =0. In this case, ¢(g) =1
for all g € G defines a Bruhat function for H, ;. Let X be the subspace of
L (G/H) consisting of all functions ¢(g)/f(g+ H,,,), where
SEIT MU 7+ (TAB)|UB,,,). We claim that X cI(Uf, 7 +
(F'\B;)).- Indeed, if yeU* ,y,+(T\B) and x€X, x(g) =
#(8) /(g + Hy.,). then

£0) = | 78) x(g) dmy(g)

= [ 7(2)#(2) Mg + Hy, 1) dme(g)

[ HetMaE+ W S(E Hyy ) dmyg dm

“G/Hyi"Hyq

= AgtHG)| Atk dmygy dmgy,

YG/Hy 11 Hy iy
Vit yen,
0 if ye&r,,,.

Hence, £(y) =0 if f € I([T, , N U 7 + T\B)| U By, ,). It follows from
Proposition 1.7 that I((U%f!y, + (I';\B,)) is complemented in I(U¥ 7+
(F\B2).

If G were compact, then 2.y = Q(I') and by Cohen’s theorem, I(4) is
complemented for any 4 € 2.(I'). The above argument used inductively
gives the following generalization of this fact:

3.1. PROPOSITION. Suppose A € Q (I and A = J}_, y;+ (I'\B;), where
each I'; has TI'/T; discrete, i=1,..,n, and each B, Q(I";). Then I(A) is
complemented in L ,(G).
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As a second example, consider the ideal I(,R U,,/,,R)C:LI(RZ), where
oR = {(x,y) €ER*: y=tan(f) x}. This is complemented by a projection
similar to the one given for I(4R U ,,,R) in Section 1, but the technique used
there does not seem to extend to a spectrum composed of three lines in R
We develop instead in this section a completely different technique. In order
to motivate the rather lengthy arguments used for this, we are going to show
how to find a relative projection from I(,R) onto I(,R U _ ,R) by this new
technique. This case, being unencumbered by other details, should provide
some intuition for what follows. The success of this method depends on the
following observations:

(i) as a subspace of L, (R?/,,R*), I((RN ,,R)~LYR)=1({0}) ~

ez Xa)y,» where X, = {f — [1* 1 f(e)dt 11g 12 supp(f) < [m,n + 1]};

(i) if gelx, ¥) = (1/k) 15 q((x — ¥)/V/2), kE Z*, and we define X, ,
(0 be (8,0, )/((x + ¥)/V2):f € X, }, then lim, ., ||7xlx, || = O for each
n>l;

(iif) there is a sequence of integers (k,) and perturbations X, of X, ,
such that X, < I(,R) for all n> 1 and 7_ ;. restricted to the closed span of
(J X, is an isomorphism onto I(,R M ,,,R).

Our approach here is to imitate the compact case as nearly as possible.
The difficulty with this is that the lifting needed depends on each part of the
space and, thus, the resulting map is not given by a single Bruhat function
lifting as was used previously. We now examine each of the observations (i),
(ii), (iii) in more detail.

For (i), note that ,,,R*= _,,R and therefore L (R?*/,,R*) can be iden-
tified with L,(R) by composition with the map (x, y) — (x + ¥)/1/2. Also, at
the same time, I(,R M , ,R) gets identified with L}(R) by this map. But also,
if x,€ X,,, n € Z, then

D oxell = 2 | 2 Xuhwasn
nezZ 1 keZ nez 1
5 - n+1
= Z lklpe sl + || %0 — Z j x,(0)dt - 1,
kEZ\[O] neZ\(O) n 1

But f§x4(t) dt =0, so this shows

2. Xn

nez

>(%) Z I|xk||1+(%)||xo‘|1-

1 kezZ\[0}

Since LY(R) can be identified with {},.,x,:x,€E X,}, this shows
LYR)~ (X ez X,);,- The importance of having an /; sum here is that we
can lift each piece X, independently and still be assured that the resulting
span is isomorphic to its image in L,(R*/_, R).
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In (ii), we have defined liftings for each X, which as k —» oo are close to
being in the correct ideal I(,R) because integrals along lines ,,R + (a, 0),
a € R, are close to being zero for large k. To see that ||z .|y [[—0 as
k— oo, observe that C,,=supp(@:) N {(x,»): (x+y)/\V2 €[0,1]U
[n,n + 1]} has the property that most vertical lines which intersect C, , will
intersect each of the two pieces of C, , in a set of linear measure /2. Indeed,
the proportion of these good vertical lines has the form (k — ¢,)/k, where ¢,
depends only on n. On each of these good vertical lines, the integral of any
x € X, , is zero. This shows that lim, ., |7 z1ly, | =0.

Finally, we can show that for large enough k, there are perturbations of
X, x in I(4R). Indeed, the map Sx=x—17 zi(x) lgyo,1;» X E Xy, is an
isomorphism of X,, into I(,R) for k sufficiently large. In particular,
lx =S <7 g 2(x)ll,. So choose k, such that ||z ..|X, , | < §. Then if
x, €X, , , we have

> x,—S (Z x,,)
nez nez

< Z ||xn - S(xn)Hl

1 nez

NOPNEARYE!

nez

2 %

nezZ

1

Let X,=S(X,,,) Then clearly X=3'X,cI(,R) and by standard
arguments 7_ 1|y is an isomorphism of X onto T, w2 Xnk,) =
I(,R U ,/4R). Thus, by Proposition 1.7, we have I(,R U , ,R) complemented
in I(,R).

This very same method allows us to prove this proposition.

3.2. ProposIiTiON. If T,,..,I, are hyperplanes in R* k>2, then
I(U7_, T) is complemented in L (R").

To prove this requires as much argument and notation as our general
inductive procedure, and so we do not treat this case separately. However, it
would be good to bear this case in mind (even with n =3, k=2) in the
sequel.

We now begin to formulate these ideas in general. First, we have some
perturbation results.

3.3. DErFINITION.  If P: L (G)~ I(Uf_, 7; + (I;\B,)) is a projection, we
say that P respects the ideals I(y;+ (I')\B;)) with bound M if
Id—P)x|, <M X, | C (%)l for all x € L(G), where m;=n;. and

ﬁi: lrt\Br'

The notation of this definition will be used throughout this section.
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3.3. PROPOSITION. Suppose that X is a subspace of L(G) such that
C,m.lx is an isomorphism onto Ir,\JiZ}' v+ T\B))UB,)
L (G/H ). Also assume that I()72]y; + (I \B))) zs complemented in L ,(G)
by a projection P which respects the ideals I(y; + (T \B)), i=1,..,n—1,
with constant M. Let 0<e<1/|u,ll. Then if |C, my;lxll <
¢/2n]|(C, 7z A I M )l for i=1l..,n—1, the subspace X,=PX
of I(UIZ 1 y, (I':B;)) is mapped isomorphically by C, m,|y, onto
T, Uiz 7+ (T\B)) U B,). Moreover, |lx, — (C,, T,[x) "' C,, 7, x,]; <
26 | H(Cuﬂ WXl Sfor all x,€Xy, and  [(C,m,ly,) 7t <
2(Cmal) " 1P

Proof. If x€ X, .
1€y, (= Px)lly < I = P) xly [l || < H#nHMZ 1€, mivexlly

<e(n— Lylix|,/2n H(Cu,, ale) L

Hence,

I1C,,maPxll > Cp ]l — 1€ 7, (I — P) x1]y

P
> (2n—e(n— 1) [|x],/2n [(Cyp,malx) "l
21X 11/ 2 I(C,,mal) Il

Hence, C, m, maps X,=PX isomorphically into I(I,M( Lyt
(I'\B;))J B,). Also, since ¢ < 1/|u,], it follows by a standard perturbatlon
argument that range(C, =,|y)=range(C, m,|px). This proves our first
assertion.

For the second, let x, € X, x, = Px. Then

#nlln

1y = (Cu,al) ™" Cutaxi = [1Px = (C Tulx) ' €y P
<NPx — (€ muly) ™" Cu Xl + I(CoiRali) ™" € 7a(x = PX)y
<IPx — x|l + 1, I(C o mal i)~ il 1 — Px]),
S+l IC o, male) ™ ) € — 1) 1113/ 27 [1(C o 7 ) ™ il 2
<ellxlh < 2elluaHICC,, 7l ) =" 1 e

Finally,
1€, 7 Px |l 2 |%01,/2 I(Coh 7ali) ™ I 2 IPx N /2T P ICC,, Ral) ™
Hence, [[(C,, Ty ) " I < 21PN I(Cy, mal) -

The next lemma shows that liftings of /, summands can be done indepen-
dently with appropriate control of the terms.
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3.4. ProposiTioN.  If I(I, N (U= v + (F\B;) U B,) = closed
span(}_ Y,) is isomorphic to (3. Y,), with isomorphism constant C,, and
there are subspaces X, of L,(G) such that C.,Tulx, is an isomorphism
onto Y, for each | with |(C, = IXI)*1||<C and ||C, 7,715 |l <
/C1C, |I(C, Tonlx)” Yl then X- closed span(}_ X,) is a subspace ole(G)
such that C, 7z,,(X) I, Uiz 7+ (T\B) U B,), while ||(C, n|,)" "I <
C,Cy and | C, m7i | <& ltaAIC o)

Proof. Suppose x;,€ X;, I=1,2,3,.... Then

Cunn" Z x[

= “2 C,, m,X
1 1
> (1/C) Y NIC,, mxll,
> (1/C) > IC, maly) Il
le
1

> (1/C,Cy)

Thus, C, 7,|y is an isomorphism onto I(I', N (U7Z) v; + (I;\B;)) U B,) with
IC,, 7, IX) 1||<C C,. Also,

Cui”i7i2x1 <Z‘|Cuini}7ixl“l
7 17
<2 ellx L /IC,, malx) I CTC
I

< X € “ Cu,,nnxlul/cfcz
i

/c%cz

1

/CICZ
1

/”(Cu,,ﬂnlx)l I

Z Cunnnxl
< € || Cu,,nn |XH

2%,
5

< € chnnnlx\'H

Remark. X above is C, C, [u,|-isomorphic to (3_ X,),, .

We now turn to the task of finding the lifts X,. In the actual induction,
these subspaces will be compactly supported, and this will be of technical
importance in assuring that the induction can be completed. The next two
measure-theoretic lemmas will be used in the induction to follow.
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3.5. LEMMA. Suppose that C is a compact subset of G and 1>¢> 0.
Then there is a nonempty open set V with closure V being compact such that

(1 +e)yma(V) > my (U c+ V) >mg(V)

>my (CQCc+ V) > (1 —¢)mg(V).

We omit the proof of this lemma since it says simply that a locally
compact abelian group satisfies the Folner condition. See Rudin |15, p. 52],
and Greenleaf [4]. In the next lemma, my,(4)=my, (4 N H) for a Borel
subset A of G.

3.6. LEmma. Suppose V< G is as in Lemma 3.5 and H is a closed
subgroup of G. Then there is a Borel set V, C V such that

(i) me(V)>(1—2Ve)me(V),
(ii) (l - \/E) mH(V_ v) < mli(ﬂceC c+V - U) < mH(V - U) <
My(Ueccc+V—0) < (1 +Ve)m,(V—v)forallve V,.

Proof. We may assume that 0€& C. Define h, g,f €L (G/H) by
h(x + Hy=my(Ueecc +V—x), glx+H)=m,(V—x), and flx+H)=
my((Vpec ¢+ V —x) for all x € G. Note that h > g > f and

(1+ 5)J< gdmg,, >J h de/,,>JA gdmg,y >J‘fdm6/,,

> (1—¢) | gdmgy.
Let v € M(G/H) be given by dv=gdmg,,/| g dm;,,. If g(x)=0, then we

define the ratios (f/g)(x), (h/g)(x) to be 0. Let 1>p >0 and define
A= {x:(f/g)x)>1—p}, B={x:(h/g)(x) <1+ p}. Then we have

(1 =&)< [ (f/g) dv <¥(A) + (1= p)(1 = ()
=pv(d) + (1 —p).
S0 ¥(A) > 1 — (¢/p). Also,
L+ [ hgdv> (1+p)(1—v(B)) +v(B)

=1+p—pv(B),
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so v(B)>1—(g/p). Let p=+/¢ and let ¥V, =((A NB)+ H)NV. We then
have mG(Vl)sz1+H gdmg={ gdme, - v(V,+ H) > (1-2Ve)[gdmg,,
= (1 —2\/e)mg(V). This inequality and the definitions A and B show that
(i) and (ii) hold. 1

We need oniy clarify one more point before construction of the lifts.
Recall that the perturbation Proposition 3.3 depends on estimating
|C,.7:7:|x|l- In order to keep control of this parameter, we need a
relationship between mg, my , and m, , where H; =T}, i=l,.,n. This will
be provided by the assumption that

(ri+rn)/rimrn:ri/rimrn®rn/rimrn (D)

for i=1,.,n—1. To see this note that (D) implies with appropriate
normalizations that

(H;+H,)/(H,NH,=H/HNH,®H,/HNH,
and hence

AMmy o u s, = My g, X @My -

Furthermore,
dmg = demHn dm,,',/,,m,,n den/Hm,,n de/Hi+Hn'
Because dm,, = dmy, ~, dmy 4.~y » this is the relationship that we require.

3.7. PropPOSITION. Suppose I';, i=1,..,n, are closed subgroups of I
such that (D) holds for i=1,.,n—1. Let y,€1TI;, i=1,.,n, I';; clopen
subgroups of T';,j=1,...,k;,i=1,..,n,and y,; € I',N T}, for all i, j. Suppose
X is a subspace of I(I, Uy, + (TN, vy + Ty)) O Ufry vy +
I, )< L,(G/H,), and there is a compact set K such that for all x€ X,
supp(x) < K. Then for all ¢ > O, there is a subspace Y — L ,(G) such that, if
u; € M(I';) with

4= lfi\U,"‘Ll yip+ T2

then || C, m;7;lyll <&, i=l,..,n—1, and also C, =,y is an isometry onto X.
Moreover, the support of Y is a compact subset of K+ H,. If H, is not
compact, then if > 0 and A = G, A compact, the subspace Y can be chosen
so that || y|, |, < 8| yll, for all y € ¥.

Proof. By the remarks at the beginning of this section, we may assume
H, is not compact. Let M be a compact subset of G such that 7,(M) =K.

580/59/2-9
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For each i,j, let H;=TIj. Then H,;,> H, and H;/H, is compact; thus
M—M+3% H; is a compact set in G/H;, i=1,.,n—1. For each
i=1,.,n let M/ be a compact subset of H,, 0&M;, such that
n, M =PM-M+3 ,H;NH +H,), where n, ;: G—» G/H,NH, is the
quotient map and P,:H,+ H,/HNH,— H,/H,NH, is the coordinate
projection guaranteed to exist by (D). Let C= 72/ M, + M; + M — M) N
H,. Choose a V as in Lemma 3.5 with G=H,,.

Define @: XL \(G) by @flx)=f(x+H,) 1, (x)/my (M+V—x).
Clearly, n,®f=f for all f € X. Define ¥ = @(X). This construction gives
the desired subspace Y. Indeed, C, 7,|, =7,|, and @ is an isometry. So
C,,Taly is an isometry onto X. The final requirement of the theorem is easy
to fulfill by taking FV sufficiently large. The hard part is to estimate
1€ il -

Fix i, 1<i<n—1. Notice that C,(g)=T1L, (6 — 7;mu,) * & To
estimate the above norm, we are going to replace functions by ones close to
them which are more easily dealt with in making estimates. Let F be a
compact subset of G such that 7(F)=WM+V+> H;)/H; and
my(F—(m+v—y)>3 for all meM, veEV, and y€ Y H;;. Let
Syx)=my~p (M+V—(x+y))/my (V) forx€Gandy€ Y H,;. Because
M and V are compact, {f,|,: y€ Y H,} is a lattice bounded subset of
L (F, dmg|;); and thus, because L,(F, dm/|;) is a complete lattice, there is a
lattice least upper bound g, € L (F,dmg|;) for {f,|-: ¥y €3 H;}. Notice
that g,(x)=g,(x +4) for xEF, x+h€F, and h€ ) H;. Define g by
glx+Hy)=[ g/(x + h)ydm, (h)/f 1,(x + h)dmy (k) for all xE F + H,; and
glx+ H)=0 otherwise. Then g€ L,(G/H,), and g(x+y)=g(x) ae.
[meu ]y € ). H;;/H;. Moreover, g(x + H,) > f,(x) a.e. [m;| y €Y H,;; and
gx + Hy) < SUPyey py My, o (M + V — (X + y)/my (V) ae. [mg]x€G.

Choose V| as in Lemma 3.6 with H=H, NH,, G=H,, and V and C as
above. We want to estimate for f € X,

LR g | @)+ )

+Hy/

X de,-+H,,/n,,(y) 1V1+M+§j11,4,-(x) 1
as a norm in L,(G/H,). To do this we will need two estimates.
Claim 1. With the notation above,
SUP my g M+ V —x—2z)—my gy M+ V —x —y)‘

z€Y jHyj

< elmH,-r\H,,(M"' V_x—y)
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Jor al xeM+V,+3 ;H;, yeEM+H,—xMNH,;, where &, =¢,(¢) and
g, —0ase—0.

Proof of Claim 1. Let x=3 h;+m+v, where meM, veV,,
h,€EH;. If yEM+H,—xNH;, then y=m +h,—Q h;+m+v),
where m, € M, h, € H,. We view P,: H,+ H,— H, as defined on H, + H,
modulo H;,NH,. Then P,ye H,NH, and P,(y)=P,(m, —m+h,—
v—2;h)=P,(my—m—3;h;)+h,—v. Hence, y—P,y=m, —m—
2ihy+h —P(m —m—3;h;) for some some h' € H,NH,. Also,

My~ (M +V — (X +))

=My . (M+ V—v—m, +P, (ml—m—ZhU)>
J

=My, (Mﬂm1 +P, (ml—m~2h,~j) + V—v).
Hence, by the choice of V and since v € V|,
|mH,~mH,,(M+ V—(x+y)~ My, (V — o)l
< \/EmH,-mH,,(V'“U)
SVE(l +VeE) My, g (M +V = (x + ).

Similarly, if z&€) H;, then M+V-x—z=M+V-m—v—
2 hy— 2 hj; for some hj;€ H;;, z=73";hj;. If we take h],= —h,;, all j, then
M+ V—-x—z=M-m+V—v So

Mgy, (M + V= x = Z) = My, (V = 0)] < V& My, e, (V D)
in this case. This shows that sup, .5y My, ~y (M + ¥V —x —z) is not 0 and is
obtained by taking values of z with M+ V —x—zMH,NH,+ @ Note

that this restriction on z forces us to have z € M| + M + v — x modulo
H;M H,. Hence, as above, we can show

SUPD my gy (M +V —x—2)— My ~pg (V— v)
z€XHy

< Ve My, (V= %)

It follows that

sup My, g M+V—x —zZ)—Myng M+ V—x “y)‘

zEZjHij

< BlmH,-nH,,(M +V—=(x+),
where ¢, =2 v/e(1 + ¢). 1
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Claim 2. With the notation above,
ImH,,(M +V—x+y)— mH,,(V)I < emH,,(V)

Jor all xeM+V+H+H,, yEM+V—-x+H)NH,=M—-x+H,) N
H;.

Proof. Let x=m+v+h,+h,, meM,veV, heH, h,€H,, and
y=m,+v,—m—v—h;,—h,+h, for meM, vi,€EV, h,€ H,. Again,
P,yeEHAH, and P,y=P,(m —m)+v,—v+h,—h, Thus y=
y—P,y+h=m —m—P,(m,—m)—h;+ h for some h € H N H,. By the
choice of V,

|mH,,(M +V—-x+y)— mH,,(V)|
=|my M+ V—(x+y—P,y)—my (V)
=|my (M +V —(m,— P, (m,—m)+v+h,+h))—my (V)
= |mH,,(M" m,+P,(m, —m)+V)— mH,,(V)'
<emy (V).

Having these two estimates, Claim 1 and Claim 2, we can return to our
proof of Proposition 3.7. Let x € G/H;. Then

mF )= Fix ) B+ ) dmy ()

= P+ Y+ DGy H 2+ H) Ly 3+ 9 +2)

Hi/H;"H,” H{"H,
X [my M +V—(x+y+2)] " dmy,q,(2) Ay 00, (V)
= o TG4 Y+ H) g (M4 = (54 )
X [my (M +V — (x+ )]~ dmy o,
Note that my ~, (M +V—(x+y))#0 means that x+yeM+V+

H,NH, and so x € M + V + H,. Identifying H, + H,/H, with H;/H, N H,,
we can then write

WROW)=8®) | xS0ty +H)

X de,-+H,,/H,,(y) 1M+V1+ZjH,-j(x) + &(x),
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where the error term &(x) is given by

F@=[ R DS A+ H) My MV = (x4 )

Hi/H;"H,

X [my (M +V —(x+y)] ™!
—8(%) Ly, p(x + ) Lyy V1+z,-H,~j(x)} de,-/H,-ﬁH,,(y)‘

Our Claims 1,2 above show that on M + V, + ", H,;, the error &(x) is
bounded by

&2 7+ ) S +y + Hy) My, (M +V — (X + )

H/H{NH ,

X [mH,,(M +V—(x+y)] ! dei/H,»mH,,(J’) =&, |7, 7; Df (x)l,
where &, = €,(¢) - 0 as ¢ = 0. Hence,
| Lars V,+sz,-jg(x)||L,(G/H,-) <& lm¥; ‘DfHL,(G/H,-)

for all fEX. On M+ V+HNM +V, +3 ;H;, the error &(x) can be
estimated in norm as follows:

||ni}7i¢f1M+V+H,<_ni}ji¢f1M+V1+EjH,~jHL1(G/H,~)
< ||7Ti77i‘pf1M+V+H,~— ”i7i¢f1M+V,+Hi||L,(G/Hi)

< ”7: d)fle - 71’ ¢f1M+ V1+H,'f'\M+V||L1(G)
<[ 1 H) [y M+ V—x)] !
G
X Iy v (®) = Lygiowyommme+ 1y (X)) | dm(x)
<[ Gt H) i (M 4V — )]
G/H,
X (mH,,(M+ V—x)—my (M+V, — X)) de/H,,(x)

= [ 1S+ B (1 = myg (M + V, = %)/ (M 4V = x)) dm (%)

<J 17+ B =y (VL +2) iy (V)] i, )

< HfHLl(G/H,,)(l —(1-2 \/E)/(l +e))=¢; Hf”Ll(G/H,,)’
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where €,=1¢6,(6)—~0 as £—- 0. These estimates show that Hg“L,(G/Hi) <
£, ||f|[Ll(G/Hn), where ¢, =¢,(6)—= 0 as 6> 0.
Now we may estimate || C, 7,7, Df |, ,/u, by calculating

YOI CESV IR A

+H,/H
X de'.+Hn/H"(y) 1M+V1+Ej”ij(x).

Because both g and Lyiv is,n, are Hy invariant for j=1, 2,..,k; and
because fH,-+H,,/H,,7i(x+ V) f(x+y)ydmy . (y) is constant on cosets of
H,+ H,, we have

B g(x)fy o JEF NS+ Y+ H,)
itHp/Hy

X de;+H,./H,,(y) Ly s Vit E/Hii('x)

=80 (x| gty H)

+H o /H ,
Xdmy g (Y) Ligsv,s z_,n,-},-(x)> >

where v, =TT}, (6, — 7,v;;) and v;= My bty 10T J= L, k;. Now
observe that if n: L (G/H,) - L,(G/(H, + H})) is the canonical quotient map
then

vor [ R ) SOty Hy dmy, i (9)= 9,0 750,
H:+H,/H,

A~ ;
But if y€ I';N T, then 77, f(y) =f(y; + 7). So if y€ I T \US., v, + T,

AN A
then 7y, f(y) = 0 for all f € X. Hence, if F=v, x 7, f, f € X, then F(y)=0
for all y€ I T,. This means that

Uy x g(x) Fx+»)fx+y+H,)

H;+H,/H,
dei+H”/H"(y) 1M+V1+Zj1'1ij(x) =0.

Therefore, ||C, 7, 7|y ]| < &s(e) and &,(¢) can be made arbitrarily small by a
suitable choice of V.

We now extend Proposition 3.7 to handle ideals where not all of the cosets
intersect I',. This is useful because it eliminates the hypothesis (D) when it is
an unnecessary assumption.
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3.8. ProPOSITION. Suppose that I';, i= 1,..,n, I'l, s=1,..., k, are closed
subgroups of I. Let y;,, yi€T, i=1l,..,n, s=1,.,k Let B,€(I),),
B € Q(I'}) be finite unions of clopen subgroups of I'; and I';, respectively.
Assume there is a neighborhood W of 0 in I such that
T \B,) + WUy, + (T \B,) =@. Assume that (D) holds for (I';,T,),
i=1,.,n—1, and X is a compactly supported subspace of I(I', " (J7-]y; +
(I'\B;YU B,). Then for any ¢ > 0, there is a compactly supported subspace Y
of I(U%_, v+ (T)\BY)) such that, if u; € M(I',) with g, = lp,i=lo,n—1,
then ||C, m;¥ilyll <& i=1,.,n—1, and also C, m,|, is an isomorphism onto
X. Moreover, if H, is not compact, 6 > 0, and A = G, A compact, then the
subspace Y can be chosen so that ||y| ||, <d]| y|, forallye Y.

Proof. Proposition 3.7 shows that we can find a subspace Y, of L (G)
fulfilling the requirements relative to C, 7,7,. Because U5, v, + (I'\B)) is
separated from I',\B,, by the Lemma 1.6, there is a compactly supported
4 € M(G) such that 4= 1on I',\B, and 2= 0 on U*_, y! + ('\B!). Clearly,

A
ifyeY,, then g x y=73on I'\B,. We claim that ¥ = u * Y is the subspace
required above.
First, if y € Y, then C, 7,(u* y)=C, =, . Also,

a5 plly 21 C,, e % P
=[C,, 7>l

= I»l, (since C, 7,y is an isometry),

> lu =yl /el

Hence, C, m,|y is an isomorphism onto X. Because both Y, and 4 have
compact support, ¥ has compact support. Also, if C > supp(u), C compact,
and if [yl,,cl,<d]yl, for all y€Y,, then also [[(ux* )<
31l 171 <&l ey i % ¥ll; for all yEY,. So we need now only
estimate || C,, 7,7;|,|| to finish the proof.

It is convenient here to think of /'€ L,(G/H,) as a locally measurable
function on G by f(g)=f(g + H,), g € G. Observe that #; maps L,(G) into
the locally measurable functions on G that are constant on cosets of H,, i.e.,
nf=my xf Also, C, acts on these functions by convolution with the
idempotent measure v, where supp(v)cH; and P=1;,. Thus,
C i Tiu * y)=v* my x (Jyuu % y)=u = v+ my jy. Hence, in L(G/H), if
yeY,

||Cu,-7zi(7i# * YW= llu v = mH,-(?iJ")“x

<elll G mi7ivlly
<&l ety
e llel el el e = plly - W



280 ALSPACH, MATHESON, AND ROSENBLATT

Remark.  Here [[(C, n,1,)""|| < |ul.
We are now ready to formalize our induction procedure for constructing
relative projections. We will need a few definitions.

3.9. DeFINITION.  If X < L ((G) and X is isomorphic to (3 X;),, we say
that this sum decomposition is engulfing if

(i) for any compactly supported Y < X, there exists some finite set F
such that Y« , . X;,

(ii) if E is finite and ¢ > 0, there is a > 0 and K compact such that if
|kl <dl»ll, then || P, y|| < €] y||,, where P is the coordinate projection
of X onto ), ; X;.

3.10. DEFINITION. An operator P on Yc L (G) is said to preserve
compactness if, for any compactly supported subspace X <Y, PX is
compactly supported.

In order to make the induction procedure work, we will need to prove
more than complementation at each stage. In particular, we will need to
know that the projection constructed will respect the associated ideals,
preserve compactness, and that the ideals being considered have a decom-
position into an engulfing /, sum of compactly supported subspaces. The
induction advances from I(U7-]y;+ (F\B))) to (U7, 7+ (I'\B)) if
KT,N U %= va+ T\B,))UB,) is complemented in L (G/I'}) by a
projection of the same type and if (I';,I,) satisfy (D) for all i for which
¥; + (I';\B;) is not separated from y, + (I',\B,). We will also need to impose
an additional restriction on G so that the /, sums will be countable. This will
be guaranteed by assuming now that G is o-compact.

To begin, let us note that L (G) is isometric to an engulfing /, sum of
LK), i=1, 2,3,.., where the (K,) are pairwise disjoint measurable sets
with nonempty interior, compact closure, and satisfy (J°,K;=G. Also
observe that if B € 2(I') and B is a finite union of clopen cosets in I, then
I(I'\B) is complemented by a projection which preserves compactness and
I(I'\B) is isomorphic to an engulfing !, sum of compactly supported
subspaces. Indeed, let # be an idempotent measure with 4= 1, and define
Pf=f—uxffor f&€L,(G). Because yu has compact support, P preserves
compactness. To see that I(I'\B) is isomorphic to an engulfing /, sum of
compactly supported subspaces, note that we can choose sets K, in the
decomposition of L,(G) with 4 * 1x =1, and so 4 x L,(K;) = L(K,). This
follows from the fact that the supp(u) is contained in a compact subgroup for
any idempotent measure . This gives J(I\B)= (3 {2, u * L (K)), , which is
an engulfing /, sum. It easily follows then that I(y + (I\B)), y€T, is
complemented in L,(G) by a projection which preserves compactness; and
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I(y + (I'"\B)) has a decomposition as an enguifing /, sum of compactly
supported subspaces. This completes the first step of the induction.

We are now ready for the inductive step. Suppose that
U=} y;+ (' \B,)) is complemented in L,(G) by a projection P which
preserves compactness and respects the ideals I(y;, + (F'\B))), i=1,..,n— 1.
Also, suppose I(U7=}' 7,4+ (I';\B;)) is isomorphic to an engulfing /, sum of
compactly supported subspaces. Finally, assume that (I, I",) satisfies (D)
for all i=1,.,n—1 for which V. + ([ ,\B,) is not separated from
v;+ (I \B;) and that I(I', N U}y, — 7.+ (\B;)UB,) is isomorphic to
an engulfing /, sum of compactly supported subspaces (this will be true in
particular if this latter ideal is complemented by this procedure). We will
show that I(U?_,y,+ (I';\B,)) is complemented by a projection which
preserves compactness and respects the ideals I(y; + (I';\B;)), i = L,..., n, and
U7, y;+ (I \B,)) is isomorphic to an engulfing /, sum of compactly
supported subspaces.

By multiplication by vy, and 7,, we may assume without loss of
generallty that ¥o=0. We have I(U}Z]y,+ (\B))~ (2, X)), and
I(r,nUZ v+ T\B)VUB,) ~ (32, Z,), with the sums both being
engulfing l sums of compactly supported subspaces. There will be 4, ¢;, @; in
the sequel which will be chosen to satisfy certain constraints that are
described as we proceed. First, consider X, and let E; = {1}. There is a finite
F,,1€F,, such that C, n, X, <} ,.r Z,. Let P, be the coordinate
projection of L ,(G) onto X, and let K, be a compact subset of G and let
9, >0 such that if y€ 3 X; and || y[x [ <8, [ »ll;, then [Py yll, <e& [ yl,-
By Proposition 3.8, there is a subspace Y, of L (G) that
Co®n¥1=20er, Zps Y|k, li <O, ]Iyl for all yevY,, |C,m Vilv |l <ay,
i=1,.,n—1, and also |(C, 7,|y )" <4. Let E, be a finite set of integers,
{2} UE, CE,, such that PY, <} ,,, X;. This completes the first cycle of
the construction in the inductive step. We will do this once more for clarity
and then state precisely what this procedure will produce.

There is a finite set F,, {2} UF,cF,, such that C, 7,3 ;. X,
2per, Z,. Let P, be the projection onto 3 .., X; and let K, be a compact
subset of G, K,>K,, and d, > 0 such that if || y[ [, <, yl,, y € 2X;,
then ||P,yl|l <&,]| »|. By Proposition 3.8, there is a subspace Y, < L (G)
such that C, 7,Y, =3 scr, Zps 1Vl <6, 1yl for all y€Y,,
[ C i Pily, | <a2,z_l 2,.,n—1, and [(C, 7,]y,) 'II<A. Let E; be a
finite set of integers with {3} U E, < F; and PY T ier, X

In this way we get finite sets of integers E,c E, |, F,. cF,.H, i> 1, such
that U, E;= U™, F; =N, compact subsets K, c K;., < G, i > 1, sequence
4;), 8, > (5, >0, l> 1, lim,; , §,=0, and compactly supported subspaces
Y; CLI(G) such that

i—00

(a) Cu,,nn Yj= Z{pr EFﬂ j—l}’
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(b) “(Cu,,nnl}’j)‘l “ < A‘n]: 19 29---’
(C) “Culniy_i|YjH<aj5i: Loa,n—1,

(d) Iyl <91yl for all y€ Y}, and if y € 31X, || vlg L < 12l
then || P; y||, <¢; ||y||,, where P, is the coordmate pro_]ectlon onto Z,EE X,

(e) PYJCZIEEJ‘+1

With the proper choice of the (@;:j=1, 2 3,...), by Propositions 3.3 and
34, Y=P} Y; is a subspace of I(U]-} | i+ (C\B;)) such that C, =,|,
is an 1somorphlsm onto I(I,nU'!y,+ (T \B)UB,). Hence, by
Proposition 1.7, =I—(C,mly)"'C, )P is a projection onto
IV v+ (@ i\B,.)). We need to check that R preserves compactness and
respects the ideals.

If W is a compactly supported subspace of I(U7='y; + (I';\B,)), then
(Cu,maly)” 'c 4w, Tn W is compactly supported. Thus, if W, is a compactly
supported subspace of L,(G), then W=PW, is a compactly supported
subspace and, consequently, so is RW,.

If f€ L,(G), then

Id=R)fll, <Id—=P)fIl, + H(Cu,,” ly)'1 C o T ZPf 1
<I@-P)fl + “(Cu,,” )~ H(Cu,,” Pr,
< ”(I_P)le + ||(Cu,,7rn|y)_l|| (ch,,”nf“l + HC,,"ﬂn(I—P)le)

n—1

KM +C,, 1) D) X 1€, 7711

i=1

+(Co,maly) HIIC, oS

Thus, R respects the ideals y;, + (I'\B,), i = 1,..., n.

Finally, we need to show that I(U?_, ; + (I;\B,)) is isomorphic to an
engulfing /, sum of subspaces. We will ﬁrst show that there are subspaces
X; <Y jep, X;such that 372, X] + Y =I(U}Z] v, + (I'\B)))- Let 0 =1—R,
let R, be the projection of > °, X, onto Z ;i€ ENE, |}, and let S, be
the projection of the /, sum )  PY, onto PY,. InyPY,C 2iek,,, X;» then
IRy —ylI=IIPyll <églyll. Therefore, [IQR,,,y -yl <& lQlI¥l.
Thus, if &, <[|Q[|~" IS, 7"/2, we would have ||S,QR,,,y — y| <]/ »|//2 and
consequently S,QR,, ,|py, would be an isomorphism. Assume that ¢, has
been so chosen.

Consider the projection T}:3 .,  X;»PY, given by T,=
(SIQRI+1|PY,)_1 S)OR,,;. Let Xi=3l X, and Xj  =ker(T)N
2{X;:i€E;\E} and note that PY,®X/ ,® Xiep, Xi=Dicr,,, Xi
because ker(T;) D 3z, X;. Clearly, 3, X} is isomorphic to an /, sum and is
a complement for ZPY in Y X;. So Y, Xi®Y=I(U?-y; + (IT\B))).
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Now we must perturb 3 X; to get a decomposition of
U v+ (I"i'\B,)). However,

I <X‘L:)1 i+ (r,\B,.)) =R (ZPYJ.+ZX;) =R (2){;) =) RX].

Also, R|y, is an isomorphism and R preserves compactness, so )| RX; is an
[, sum decomposition of I(U?.,y;+ (I'\B,)) into compactly supported
subspaces. We want to show that this is an engulfing /, sum. Before doing
this, let us compute the estimates needed and how they restrict the choices of
€;s a;, 0, and A.

Let C, be the /, constant of }"Z,. Let M be the bound for which P
respects the ideals I(y; + (I',\B,)), i = l,..., n — 1. Let C, = ||u||, where 4 is the
separating measure in Proposition 3.8. Let C, be the I/, constant of 3> X,. In
our construction 4 = C, = ||| by the remark following Proposition 3.8. We
state the estimates needed below:

(1) As a subspace of L,(G), >Y, is C,C,|u,| isomorphic to
Y,

(2) ”(Cu,,nn|}:}’,)ﬁl||<clc2'

(3) ”Cuini?i|ZY1||<alcfcg ”ﬂn“/”(cu,,nnlzY1)71||‘ Here and in the
following we assume «;,,<a;<a;, j>1; and so (3) comes from
Proposition 3.4.

@) ®lzy) IS Y M—Mn—1)a,C,C,u,]). Indeed, for y=
LNEXYLyEY,

n—1
ly—Pyll,<M 3 |C,m7: ¥l
i=1

i=

n-1
<M Z Zl”Cu,'ni?iyl”l
iz
n—1
<M Z Z‘%”Jﬁ”l (by (c))
i=1 1

<M(n— l)alz Ipill, KM(n—1)a,C,C, ||l | ¥1l;-

Hence, Iyl <lly =Pyl + 1Pyl <M@mn—1)a,C,C, |zl ¥ + 1Pyl
and [Py, > (1 -M(n—1)a,C,C, [[u, ) [ 1,

(5) NCu,Ruls pr) 1< 2I(C, 7als ) "I PI < 2C, C, [|P]| by Prop-
osition 3.3.

(6) With Q=1—R= (Cu,,tzpy,)_l Cu,Tns 121l <2u,ll C,C, ||P|| by
5). Also |R| = - QII<1+2]g,l C,C,|P|.
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(7) The spaces ) PY, and (3 PY)), are C; isomorphic for some
constant C, which we estimate as follows. Let y, € Y, /> 1. Then

S| el 1|3

2Pl y) ™ 171 CUC a7 2 1l
I

2((Plgy) 7 COICy I THIPIT 2 NPy -

1
Hence, C;<[[(Plyy) "I C,CollualllIPl. By 4), C3<CiCollull{IPI/(L—
M(n—1)a,C,C, |1,
(8) 118l <C,, where S,: 3" PY,— PY, is the coordinate projection.
) IRIsx)'N <K MH=XTM < 1+IXT < 14 Cysup, [T <
L+ CHIQIC IS, QR 1 lpy) s s0 [R5 x) IS T+ 2CEQIC.

We see then that our requirements on (¢;) and (¢;) could be, up to now,
just that

M) & <1/4]u,ll C,C, [P Cysi 21, and
(D a, <1/2nM |p,|* CIC;.

Indeed, with the requirement from (I) and (6) and (8),
€; < 1/2] Q| sup, ||S,|l, i > 1, and so €, < 3 || @[ ||.S;] as required earlier. Also
(I) is exactly what is needed to apply Propositions 3.3 and 3.4 in both (3)
and (5) and still satisfy the restriction in Proposition 3.3 that ¢ < 1/| g, || for
the appropriate £ > 0. Moreover, (II) implies that a, < 3(n — 1) M ||, || C,C,
which is needed for (4) to be meaningful.

In order to show ) RX] is an engulfing /, sum, we first show that for any
£>0 and any m > 1, there is a compact set K and J > 0 such that if
IR D5l <SIR L x M, with x€X;, i>1 then [RYL,x]<
e|lR Y x;. Since Y RX;~ (3_RX]),, we need only show that for
arbitrarily large n, there is a compact set K/ and J/, >0 such that if
IR in|K,’,||1 <Op IR X xilly, then [[RIE xlly <enllR 2 xlly, with (g;)
decreasing to 0. Indeed, if /< n, then there is a constant C=
IRIN(R|sx) 'l C,y independent of n, ! such that C|[IR X7, X, >
IR X, xi“l' Thus, if |R in|x,’,”1 <O IR x;ll,, then ||R Xi, x, <
Ce, IR 2. xill;-

Fix 1> 1. Let x=R 3} x;,x;€X], with ||x|g[l, <d,[lx[l;; then also
x|k Ml < & llx|l; for s = 2,...,I. Hence, for s =2,..., 1,

IR xly = 1i(Ps — Py_y) x|l <[ Psxlly + 1Py x]is
<2C,[[Px|| <2C,¢(lxll;  by(d).
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Because T,_, = (S,_, QR |py,_)~' S,_,QR,, it follows that
| Ty 1 x[l; <2C¢ ”(Ss—lQRs'pyS,])fl S QI lxll-

Now x=R)Y x;=(I—-Q)Xx;, and T,_,x;=0, i>1; therefore, for
s=2,..,1,

Ts—lQin

If s > [, then

1 <2C.&lI(S,-, QRstYs,,)_l S, Qllxl;-

Ts-lQin|K1 < Ts—lQinlx,“((PIYM)_ITs-lQin)
1 LB
(en ez |
1

<a,_ M(n—1) “(Plysl)A] T,_,Q in

1

+9,_, H(Plys_,)" T,_1Q2 x,

1

< (as—lM(n - 1) + 55‘—1)

(P}YS,,)“I TsleZ Xi

1
because (d) holds, K,_, @ K, and P respects ideals with bound M. Summing
over s gives

03}

w0

S

03

<
1

K; 5=2 K; 11

crey

X IRl | 2%
1
+ > (aSAIM(n—l)ﬁ'as—l)l(P‘Ys1)_1 TS—IQin
s=1+1 1

.....

X IR Is )~ |3

1

[29)

> (Pl )T, Q2 X

s=1+1

+ (aM(n—1)+3) C,C, ||u,| -

1
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ceuy

> %

X IR |5 x|

1

+(a,M(n—1)+6) C,C, |/l I(Pl5v,) " Q ”Zx,- :
1

Hence, we have the estimate

“Z xi‘K, < HR 2 xilK,
1

+ H 0 2 Xk,
1

1

<4 “RZXi +HQZX:'|K,

1

<P in

s
1

where

.....

+ (e M(n— 1)+ 6) C,Cy [|u, || 1P yx)_l Qll.

By (6), |RII<1+2[u,llC,C, NPl By (9), IRlgx) "< 14 2C,C3IQI.
By (4) and (6),

(Pl v) ™" G 2fiaall €, CLIIPI/( = M(n— 1) @, C, C, | al))-

And finally it is easy to see that [(S,_,QR,|py) 'll<2 always. So
max,_, _;[[(S;_ QR ™' S,_ QI < 2G5 [[Q < 4 [|u,ll €, C,Co [Pl by (6)
and (8). Hence,

Pr< Ot + 2 |lug| € Co P
+8(I— 1) ¢ |lu,lly C;C3C 1P| (1 + 4]lu, | C,C,C;CLIPI)
+ 2(e,M(n — 1) +8,) CTCl|ua | [IPI/(1 — M(n — 1) @, C, C, ||z, ).
We now make the assumptions that
(IIr) lim,, le,=0 and lim;,, a;,=0.

It is clear than (¢,) and (a,) can be chosen to satisfy {(I), (II), (III)
simultaneously.

But now we have that for any ¢ 1, there exists /(¢) >¢ such that
pt) < 6,. Hence,

Py Z Xi

2%

<€y
1 1
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In short, if |R 3= x;[l; <9y |20 x,l,, then

[{§3]
“R > x; Py D x;
i=1

<||R||'
1

1

<R €1y

2%

1

<Rl ||(R|zx,!)_1” Ep | R D%,
Since lim,_, &, =0, this establishes (ii) in Definition 3.9 for the decom-
position " RX] of I(U}_, 7; + (I'\B)))

Finally, for (i) of Definition 3.9, let W be a compactly supported subspace
of I(U7_, y; + (I')\B,)). Then W< Y, X, for some /. Hence,

1

-1 li i
W=RWcR ) X,=R (Z PY + X;) =) RX].
i=1 i=1 i=1

i€eE;

This completes all of the details of proving that under our inductive
hypotheses, the ideal I(U}_,y;,+ (I'\B;)) is complemented by a pro-
jection R which preserves compactness, respects the ideals, and that
I(UP, y,+ (I'\B))) is isomorphic to an engulfing /, sum of compactly
supported spaces. We remark that in this induction we used the fact that G is
o-compact and we do not know if this restriction can be removed, although it
seems likely.

Our inductive method gives a proof for complementation of
I(U? v, + (I'\B))) in special cases.

3.11. THEOREM. Suppose G is o-compact and I';, i = 1,..., n, are closed
subgroups of I. Assume that the pairs (I, I;, I'\_ O\ T};) for
1<j<s—2, s=3,.,n, and the pairs (I';,[,), i = 1,...n— 1, satisfy (D).
Then for all y,€T, i=1,..,n, and all finite unions B, of cosets of clopen
subgroups of I';, i + ..., n, the ideal I{(U}_, v, + (' \B,)) is complemented.
Moreover, there is a complementing projection which preserves compactness
and respects the ideals I(y; + (I'\B;)).

This is a much weaker result than our induction procedure allows because
(D) is not required for pairs that have their associated cosets separated. We
get this corollary which generalizes Proposition 3.2.

3.12. CorOLLARY. Suppose I'; is isomorphic to R*" c R", where

i

1<k(iy<n Let F, be a finite set. Then I(U}_,v,+I',UF,) is
complemented for any choice of vectors v, R", i=1,.,n.
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Remark. We know generally that for g-compact metric groups G, an
ideal I(U7 7+ (T \B))<=L,(G) is a & space. Also, the ideal is
complemented if and only if it is isomorphic to L,[0, 1}. This says something
a posteriori about some particular ideals above which are (or are not)
complemented. However, to use this information to prove the complemen-
tation theorems does not seem possible from what is known about the
structure of these ideals.

4. GENERALIZATIONS AND QUESTIONS

In the last section, we formulated an inductive procedure to construct
projections. However, the procedure appears to fail for examples such as
Example 0.1 (v), the ideal J=IRXZX{0}U{0}X\/2ZXRU
{0} X R X {0}). We know that J(RX Z X {0} {0} X R X {0}) is com-
plemented by the inductive procedure. The difficulty in the next step is that
RXZX{0}+{0}XxV2ZXR is not a direct sum. But notice that
R X R X {0} + {0} X /2 Z X R is direct modulo {0} X \/2 Z X R, and thus
we can lift into /(R X R X {0}) = I(R X Z X {0} U {0} X R X {0}), i.e., there
is a subspace X of I(R X R X {0}) such that ”((opx\/z‘zxmi maps X
isomorphically onto I({0} X V2 ZXRNR X R X {0})=I({0} X /2 Z X
RNRXZx{0}U {0} ><R X {0})). By Proposition 1.7, it follows that J is
complemented. Moreover, we retain all the properties needed in this comple-
mentation of J to continue the inductive procedure; thus, we can continue
building projections onto appropriate smaller ideals.

The basic idea of this example is that although a group I'; occurs in the
representations of the hull such that I'; and I', fail to satisfy (D), there is a
larger group I{>I; such that I and T, satisfy (D) and
rimr,cUiz '’\B,)Nr,. This could be modified to include more
general coset forms. This leads to the following questions.

4.1. Question. Given two closed subgroups I'; and I, in I failing (D), is
there a (unique) minimal closed subgroup Iy, I'>I'; o I', such that I'; and
I satisfy (D)?

Indeed, for the particular case above, we actually have this stronger
question.

4.2. Question. Given two closed subgroups I',, I, of I failing (D), is
there a (unique) minimal closed subgroup H of I' such that all the pairs,
(H,I'), (H,TI,), (I',, H+I,), and (I',, H + I',) all satisfy (D)?

In Example 0.1(v), H exists and is {0} X R X {0}. But even if there is no
minimal object, we can ask the following question.

4.3. Question. Suppose I',, I', are closed subgroups of I failing (D), but
I(A) is complemented for some A,I"> A4 > I',\UT,. Is it true then that there
exists some H as in Question 2 with Hc A4?
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All these questions are related to the problem of discerning when, and
how, the spectrum A4 of I(4) contains parts which cover up the flaws in other
parts, flaws that at first would seem to prevent I(4) being complemented.
These questions are also closely related to Proposition 2.1 and this
generalization of it.

4.4. THEOREM. If I'|, I', are closed subgroups of I such that (D) fails
SJor (I'y, T,), then I(I',\J I',) is not complemented in L (G).

Proof. The failure of (D) means that for any compact neighborhoods L
and W of 0 in I, there exists y, € I'\L + (I', " T,), v, € I,\L such that
¥.— Y, €W+ (I', " I,). Assume I(I', U T,) is complemented, so there exists
a projection P:I(I,)-I(I',\JT,). Let X=ker(P). Let H=TI; and let
n:L(G)-» L,(G/H) be the associated map. By Proposition 1.7,
n: X - I(I'y N I',) € L (G/H) isomorphically.

Now let W, be a compact neighborhood of 0 in G/H with mg,,,(W,) = 1.
Consider 4 = {a,: y € I'|}, where a,=yl,, . Then 4 < L,(G/H), 4 is weakly
relatively compact, d(y) =1 for all y € I',. Denote the group (I', NI )t in
G/H by H,/H. Let n,:G/H- G/H,=(G/H)/(H,/H), and let ¢, be a
continuous Bruhat function for H,/H, as discussed in the beginning of
Section 1. Let P,:L,(G/H)— L,(G/H) be the projection onto I(I'y N T,)
given by P, x=x-—¢,n,(x) from Propositionl.3. For y€&€rI, let
x,=(n|y)P,a,)=nl;'(a,— ¢,7(a,). Then {x,:yET,} is also weakly
relatively compact in L (G). Hence, there is a compact set K such that
Ix,|elly < 3 for all yET,, by the uniform integrability of {x,y€I,}.
Again, by the uniform integrability, there is a compact neighborhood W of 0

. /\ /\ 1 . .

in I such that [x[c(y,) — x,Ix(y)| <5 if y,—7, €W, y€T,. But notice
. A /\ A

also that if y, €T, y,€T,, then X,(y,)=(a, —¢,7,(a,)y) =4, —

T T A
¢, m(a,)¥)=1—¢,7m(a,)y) Also, £,(y,)=0 because x, € I(I;). We
claim that if € >0, there exists a compact set L such that for

/\
"W&L+ T NT,, then |¢,7,(a,)(y,) < g. Given this, choose y, € I'\L +
(NI, and py€N\L, y,—y,€EW+TI' ' NT,. Then y,—y;—h€ W for
some heI', NI, Let y,=y5+ h. We have

% < 'x‘yl(yl) —xAyl(yZ)l
A PR N\ P
<&, () — X, [k ()] + 1%, [x (Y1) — X | (2]

N .
+ lxyl lx(¥2) — xyl(}’z)l
<i
This contradiction would complete the proof.

580/59/2-10
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. //—\ .
We have to estimate ¢, 7,(a,)(y), y € I',. This can be done as follows:

Brm@)h= || 61ma)00) 1) drmg)

gy (@) x + k) Fx + k) dmy (k) dm 0y at, oy (X)

J(G/H)/(Ih/li) ’(Hl/H

| | ¢(x+k)f (Pl )(x + & + k) Fx + k)

(G/H)/H\/HY H /H

X dmy, g (h) dimy () A Gy, (X)

j Wy(x)j YL Yx + h) dmy (B dmg 00, 00 (X))
(G/H)/(H /H) H\/H

where W (X)) =y 4 ¢:1(x + k) Fx + k) dmy, 4(k). Since yfx) is H,/H-
invariant this gives the estimate

B0 = || 010 g
< sup (w,(x)J 7L dmg ()
= sup v fo).

We claim sup,cp, v x)| >0 as y—~ oo in I'//TMNI,, which gives the
/A\ . . .
estimate on ¢,7,(a,)(y) that we wanted. Certainly, if x is fixed, y(x)—~ 0,
N
Y= oo in I/, O\ 1,. Indeed y(x) = .8,() - ¥(x), where ,§,(h) = @,(x + h),
SN
h€ H,/H. Note ¢, € L(H,/H) and H,/H=T,/T,NT,. Since |y fx)|=

P
| «0,(»), the Riemann—Lebesgue lemma proves the fact above.

Now recall that ¢,=fx1,,, f€ C.(G/H) and M a measurable set. If
xy, X, € G/H, then

SN AN
|5, 21(0) — 5,820

= “H . [9.0x, + B) — 6y(x, + R)] F(h) dmy, ,i(h)

1

<“x1¢1 x2¢ ”L,(u,/m ‘x,f xzf“L,(G/H)
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. . . /\
Slncefe Cc(G)’ hmxl—xz—-»o Hxlf_ xzf“Ll(G/H) =0. Hence’ hmxl—xz—»o |x1¢1(y)
— 5,8,(0)|=0 uniformly in y. Because W, is compact, and because
S
[«6:(»)»0asy—- oo in /Ty NT, for any fixed x € W, this shows that we

AN
can make |y (x)=|,8,(y) uniformly small on W, by letting y—> co in
r/rnr,.

Remark. In Reiter [11], the construction of the Bruhat functions shows
that we could assume at the outset in the above that ¢, , 4, is compactly
supported. This would be enough to make the last part of the argument work
too without our special form for ¢,.

Almost all that we have done here is based upon the relationship between
the pairs of subgroups in the representation of the hull of the ideal. However,
we know that we cannot handle some ideals in this way. In particular, this is
the case for Example 0.1(iii). Each pair of subgroups satisfy (D). So the
inductive procedure must fail when tan(d) is irrational because the ideal
I(gRN(ZXRUR X Z))is not a /, sum of compactly supported subspaces.
We have no direct method of reaching this conclusion. It is only by
Proposition 1.8 and the nature of the inductive procedure in Section 3 that
we see it is true. Unfortunately, Proposition 1.8 is of limited usefulness
because of the strength of the assumptions. In particular, we cannot decide
when an ideal J =I({J}_, y; + (I'\B,)) is complemented in L,(R?) if n > 5.
But if n< 4, then Proposition 2.1 and Proposition 3.1 can be used to show
that if J is complemented, and the cosets are not separated, then there are
two pairs of subgroups in the representation which satisfy (D), i.e., we have
without loss of generality some I({U?_, 7, + (I';\B;)) and I(U}_,y; + (I'’\B;))
which are complemented. Then we apply Proposition 1.9 or use the inductive
procedure of Section 3 to complete the construction of a projection on J. The
result is that, for any complemented ideal J in L,(R?), with no more than
four terms y; + (I';\B;) in the representation of its hull, the ideal can be
shown to be complemented by the inductive procedure.

Indeed, as far as we know, every complemented ideal in L,(G) may be
complemented by the modified inductive procedure discussed, by way of
Example 0.1(v), at the beginning of this section. But this would not give a
nice criterion on 4 for 1(4) to be complemented.
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