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1. INTRODUCTION

Various types of “divisibility”” have been considered in the literature
[6, 12], all of which make injective modules “divisible.” More recently, D.
Wei [19] introduced a divisibility in terms of the maximal quotient ring O
of R. Thus an R-module M is divisible in the sense of Wei provided
Homg(Q, N) # 0 for each non-zero factor module N of M. Modifying the
terminology slightly, we will call such an R-module Q-divisible. As noted in
[19], all injective R-modules are Q-divisible and every R-module contains
a unique maximal Q-divisible R-module.

Now the maximal quotient ring O of R is the localization of R (in the
sense of P. Gabriel [4]) corresponding to the (topologizing and idempotent)
filter of dense left ideals of R, and the torsion class (in the sense of S. E.
Dickson [2]) which corresponds to this filter is the class J of R-modules
M for which Homgy(M, E(R)) = 0, E(R) being the injective envelope of
R. The connection between this torsion class, Q-divisible modules, and
injective modules is the principal subject of this note, as well as some relation-
ships between the torsion J and the usual torsion R-modules. The principal
results, which occur in Section 3, are as follows:

(1) Every & -torsion-free O-divisible R-module is injective if and
only if Q is a semisimple artinian ring.

* The second author held an NDEA Title IV fellowship at the University of
Texas at Austin during the preparation of this work.
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2 ARMENDARIZ AND MCDONALD

(2) Assume Q is a quasi-Frobenius ring; if M is a homomorphic image
of an injective R-module and M/T(M) is injective, then T(M) is a direct
summand of M.

Both (1) and (2) have interesting consequences in the case of classical
quotient rings; in particular (1) yields a result of L. Levy: If R has a classical
quotient ring K, then every divisible R-module is injective if and only if K
is semisimple artinian. Moreover, (2) can be applied in case R has a classical
quotient ring which is quasi-Frobenius (or semisimple artinian).

Since the hypotheses in (2) requires Q to be quasi-Frobenius, in Section 4
two characterizations of rings having O quasi-Frobenius are given; as a
by-product, rings for which Q is self-injective and semiprimary are charac-
terized.

2. PRELIMINARIES

All rings considered will have a unit and modules will be unital left
modules. We begin by giving the usual remarks concerning definitions and
notation,

Let M be an R-module, N a submodule of M. For xe M let (N : x) =
{aceR|jaxe N}. Then N is dense in M if for x, y € M with x # 0 we have
(N : y)x == 0. A left ideal I is a dense left ideal of R if I is dense in R. We will
denote the maximal (left) quotient ring of R by Q [9], while Z(K) will denote
the (left) singular ideal of a ring K.

Let.J denote the class of all R-modules M for which Homg(M, E(R)) = 0.
The class  is then a hereditary torsion class [2], i.e., J is closed under
submodules, factor modules, extensions, and direct sums and so every R-
module M has a unique maximal 7 -submodule, which is denoted by T(M).
The torsion class 7 has been considered in [5, 7, 14]. From [14], we have
the following facts: For any R-module M, T(M) = {x € M |(R : x) is dense
in R} and T(M|T(M)) = 0; T(M) = 0 if and only if M is embeddable in a
direct product of copies of E(R). We call M I -torsion-free whenever
T(M) =0 and M is torsion-free if whenever ax =0 for xe M, aeR
regular, then x = 0.

The relationship between Z and Q has been described in [10, p. 25]:

ProrosrrioN 2.1. Let R be a ring with maximal quotient ving Q and define
O* by O*/R = T(E(R)/R). Then Q% is a ring and there is ving isomorphism
(fixing R) between Q* and Q.

We will identify O with O* so that Q = {x € E(R) | (R : %) is dense in R}.
Then Q is (left) self-injective if and only if O = E(R) [9, p. 95].
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An R-module M is Q-divisible if Homg(Q, N} = 0 for all non-zero factor
modules N of M; M is a Q-module if M is a factor of a direct sum of copies
of Q. An R-module M is divisible if ald = M for all regular elements a of R.
For an R-module M, let (M) = 3 Im f, where f ranges over Homg(Q, M).
For each ordinal 7 2> 0 define a submodule ¢,{M) by setting g,(M) = 0 and,
fori > 1, q(M)q; o(M))if i — 1 exists, while g,(M) = U,_,q,(M) otherwise.
The least ordinal % for which ¢,(M) = ¢, (M) is called the g-lengih of M.

Theé next proposition is now easily verified.

PropositioN 2.2. Let M be an R-module with g-length (M) = k. Then:

(2) qu(M) = maximal Q-divisible submodule of M. Hence M is Q-divisible
if and only if g (M) = M.

(b) IfQ is also a classical quotient ring of R, then every Q ~module is divisible
and thus q,{M) is a divisible R-module.

3. O-DivisiBLEs, INJECTIVES, AND TORSION

The first result of this section characterizes those rings for which 4 -torsion-
free O-divisible modules are injective.

TuroreMm 3.1. Let R be a ring with maximal quotient ring Q. Then the
Jollowing are equivalent statements:

(a) Q is a semisimple artinian ring.
(b) Z(R) = 0 and R is finite-dimensional.
(c) Zwery T -torsion-free Q-divisible R-module is injective.

(d) Every I -torsion-free Q-module is injective.

Proof. 'The equivalence of (a) and (b) is due to R. E. Johnson [8] while
clearly (¢) = (d). To show that (b) => (c), first note that, since Z(R) = 0,
O = E{R) and since R is finite-dimensional, any direct sum of copies of O
is an injective R-module [3, Prop. 1]. Let M be Q-divisible with (M) = .
Then (M)} is a Q~module. Since Z(R) = 0, T(M) is the singular submodule
of M [5] and the kernel of the map of QP (== direct sum of copies of Q over
some index set I) onto ¢(M) can have no essential extension in Q) and so
must be injective. Thus ¢(M) is isomorphic to a direct summand of O and
hence is injective. But, since M is Q-divisible, it follows that M = ¢(M)
so M is injective.

Now suppose (d) holds. If I is an essential left ideal of R then OF is an
essential R-submodule of Q. Since QI is a O-module, it is then a Q,-module
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and thus QI is an injective R-module since 7'(Q) = 0. Thus QI = Q forall
essential left ideals I of Q. From this we then have Z(R) = 0 and so, by
[18, Thm. 4.20] or [15, Thm. 1.6], Q is semisimple artinian, completing
the proof.

As a consequence we obtain a result of L. Levy [11, Thm. 3.3].

CoroLLARY 1. Let R be aring having a classical quotient ring K. Then every
torsion-free divisible R-module is injective if and only if K is semisimple artinian.

Proof. If K is semisimple artinian, then K = Q and every torsion-free
divisible R-module M is a K-module and thus an injective K-module. But
this readily implies M is an injective R-module. Conversely, suppose every
torsion-free divisible R-module is injective. Then K is injective and so
K =0Q. If M is I -torsion-free, then M is isomorphic to a submodule of a
direct product of copies of K and so M is also torsion-free. If, further, M is a
Q,module then, by Proposition 2.2(b), M is divisible. Thus M is injective
and hence K is semisimple artinian.

It should be noted that, by Theorem 3.1, the condition that Z -torsion-
free Q-divisibles be injective does not imply that R must have a classical
quotient ring.

The case when all Q-divisible R-modules are injective has been dealt with
in [1]; for completeness we state the result:

THeoreM 3.2. Let R be a ring with maximal quotient ving Q. Then every
Q-divisible R-module is injective if and only if R is left hereditary and left
noetherian.

In the proof of Corollary 1 it was noted that, whenever Q is a classical
quotient ring of R, every J -torsion-free R-module is torsion-free. At this
point it may be of interest to point out the class of rings R for which the
I -torsion R-modules and torsion R-modules coincide. In order to do this,
and for later use, we recall that a ring K is a (right) S-ring if and only if
rx(A) = 0 for each proper left ideal 4 of K; S-rings have been characterized
in the following manner:

ProrosrTioN 3.3 [7, Thm. 3.2]. For a ring K, the following conditions
are equivalent:

(a) K is an S-ring.

(b) K contains a copy of each simple K-module.
(¢) K has no proper dense left ideals.

(d) O s the only T -torsion K-module.
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It follows that, if K is an S-ring, then K is its own maximal quotient ring.
Rings R for which QO is an S-ring have been considered in [18, Thm. 3.2],
where the following result occurs, essentially.

TueoreM 3.4. Let R be a ring with maximal quotient ving Q. Then the
following statements are equivalent:

(a) O is an S-ring.
(b) OI = Q for each dense left ideal I of R.

(c) For any R-module M, T(M) is the kernel of the canomical map
M—~Q Rz M.

ProrosiTION 3.5. Suppose R is a ving with maximal quotient ving Q. Then
the 7 -torsion R-modules and torsion R-modules coincide if and only if Q is a
classical quotient ring of R and Q is an S-ring.

Proof. If the two classes coincide, then any direct sum of torsion &-
modules is torsion and so the torsion elements of any R-module form a
submodule. Hence, by [11, Thm. 1.4}, R has a classical quotient ring X and
R C K CQ. Moreover, the filters associated with the two classes are identical
and so every dense left ideal of R contains a regular element hence KI = K
for each dense left ideal 7 of R. If [ is a dense left ideal of K, then J N R
is a dense left ideal of R and so J = KJ = K. Thus K is an S-ring and so
K is its own maximal quotient ring; it follows that X = (.

For the converse, if I is a dense left ideal of R, thenQI = Qsol =Y, g,
for suitable {g; ,..., g} €O, {#y ,..., #,} C L. Then there exists a € R regular,
{By »oes by} C R with g; = a0, . Then a = Y, bju; € I, hence every dense
left ideal contains a regular ideal. On the other hand, if a € R is regular, then
Ra is dense: For let », ye R, with x 5¢ 0; then Qa =0 so y = ¢t dq,
¢ € R regular, so ce€(Ra:y), hence (Ra: y)x 5= 0. Thus the filters cor-
responding to the classes coincide, hence 5 -torsion R-modules and torsion
R-modules coincide.

Another result concerning the torsion R-modules of interest is:

ProrositioN 3.6, For a ring R the following statements are equivalent:
{(a) Amny direct product of torsion R-modules is torsion.

(b) O is the only torsion R-module.

(c) Ewvery regular element of R is invertible in R.

Proof. Clearly (c) = (b) = (a) so assume (a). Then, since submodules of

torsion R-modules are torsion, the torsion R-modules form a torsion class.
By [7, Thm. 2.1], the associated filter of left ideals, which consists of the left
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ideals which contain regular elements, has a minimal element I. Moreover,
I? =1, Iis an ideal of R, and I is contained in every left ideal in the filter.
Thus, if @ € I is regular, then Ra is in the filter so Ra == I. Then Ra = (Ra)?
implies R = RaR = IR =1 = Ra so a*eR. Then, for any regular
element, b€ R, Ra C Rb implies b~ € R.

We now wish to use the properties of S-rings (in particular Theéorem 3.4)
to obtain certain instances when the J ~torsion submodule of an R-module
M is a direct summand whenever M is close to being injective.

Lemma 3.7. Let R be a ring with maximal quotient ring Q and assume Q
is an S-ring.

(a) If A and B are Q-modules such that B is a J -torsion-free R-module,
then every R-homomorphism f: 4 — B is a Q-homomorphism.

(b) If A is a T -iorsion free m]ectwe R-module, then A is an injective
A-module.

Proof. (a) Let f: A— B be an R-homomorphism, g0 and ae 4.
Then (R : ¢) is dense in R and, for any x € (R : ¢), we have xq - f(a) =
f(xga) = x - f(qa), hence q-f(a) — f(ga)e T(B) = 0. Thus f is also a
O-homomorphism.

(b) Let 4 be a J -torsion-free injective R-module; then O ®z 4 is a
O-module and, by Theorem 3.4(c), we can consider 4CQ ®z A. Let
x EQ ®R A) x O; then x = Zail 9; ® a;, {ql 2ty Qn} QQ: {al yeeey an} c4.
Then 3, (R: g;) = I is dense in R so, since QI = Q, Ix # 0. Thus, if
r €l such that 0 =4 rx, thenrx =Y 7rq; ®a; = 1 QT rqa; € A. Hence 4
is essential in Q ®z 4. Since 4 is also injective, we have Q ®z A = 4 and
s0 A4 is a Q~-module. That 4 is an injective Q-module follows easily.

We now come to the second main result of this paper.

TueorREM 3.8. Let R be a ring with maximal quotient ring Q such that Q
is a quasi-Frobenius ring. If M is a Q ~module such that M|T(M) is an injective
R-module, then T(M) is a direct summand of M.

Proof. Let QY map onto M via an R-homomorphism g, for some index
set I. Now Q is quasi-Frobenius hence an S-ring; thus M/T(M) is an injective
O-module by Lemma 3.7(b), and so M/T(M) is a projective Q-module. If
h: M — M{T(M) is the natural map, then f = ko g: Q@ — M{T(M) is an
epimorphism and, by Lemma 3.7(a), f is a Q-homomorphism. But then
K = kerf is a direct summand of QW, say Q) = K @ L as Q-modules.
Since this is also a splitting of ‘R-modules, it can be verified in a straxght-
forward manner that M = T'(M) @ g(L).
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We now give some consequences of this result; note that, for any ring R,
every injective module is a Q,module, hence every homomorphic image
of an injective R-module is a Q~module.

CoroLLARY 1. Let R be a ring with a semisimple artinian classical quotient
ring. If M is a homomorphic image of an injective R-module, then the torsion
submodule of M s a divect summand of M.

Proof. T(M) = torsion submodule of M by Proposition 3.5, and M/T(M)
is injective by Theorem 3.1, Corollary 1.

The previcus corollary generalizes Theorem 1.1 of [12]; we remark that
F. L. Sandomierski has also generalized this last result to rings with Z(R) = 0
[15, Thm. 2.10].

CoroLLaRY 2. Let R be a ring with a classical quotient ring which s quasi-
Frobenius. If M is a homomorphic image of an injective R-module and M|T(M)
is injective, then T(M) is a divect summand of M.

Proof. Again use Proposition 3.5.

4. SeLr-INjECTIVE MaxiMAL QUOTIENT RINGS

The hypothesis of Theorem 3.8 required that O be quasi-Frobenius.
In this section we obtain two characterizations of rings with this property.
As a preliminary step we obtain a characterization of those rings for which O
is self-injective and semiprimary.

For a left ideal 1 of R, let I¢ = (closure of I) be defined by 7¢/1 = T(R/I}.

Lemma 4.1, Let R be a ring with maximal quotient ving Q such that Q is a
S-ring.

(a) If Jis a left ideal of Q, then | = O(J N R); if ] is a two-siced ideal
of O, then J* = O(J N R for all k > 1.
(b} If 1is a left ideal of R, then I = QI N R,

Proof. (a) QUJNR)C ], so let xe J; then (R: x) is dense in R, so
O(R:x) =0. Thus xeQx = Q(R : x)x CO(J N R), hence | =0(J N R).
It JOCJ, then Ji= J&IO(JNR) = JFXJ N R) = J*=0(] N Rp=
o= TR =0O(] 0 R~
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(b) LetxcQIN Rsox =3, 1 q; , With{q; ., ¢} SO, {tty yoey 4} C L.
Then T' = (\;., (R : ¢;) is dense in R and so, for 7 & T, we have

re =y rgau;el.

j=1

Thus TC(I: %) so (I:x) is dense in R and hence sl If y €I, then
(Z:y)is dense in R and so QI : y) = Q. Then Oy = Q(I : y)y €QI, hence
y€QIN R and equality follows.

THEOREM 4.2. Let R be a ring with maximal quotient ving Q. Then Q is
a left self-injective semiprimary ring if and only if

(@) rg(R:x) =0 for all x e E(R),

(b) OI = Q for each dense left ideal I of Q,

(¢} Z(R) is milpotent.

-Proof. We first remark that condition (a) is equivalent to R(:x) being
a dense left ideal for all x € E(R); thus Q is left self-injective if and only if
(a) holds. Now assume Q is self-injective and semiprimary. By the proof of
[17, Thm. 3.4], Q is an S-ring so (b) holds. Now Z(R) = Z(Q)N R and
Z(Q) = J(Q), the Jacobson radical of Q {16, Lemma 4.1]. Then Z(Q) is
nilpotent and so, by Lemma 4.1, Z(R) is nilpotent. Conversely, assume (a),
(b), {(c) hold. Then QO is a self-injective S-ring by (a) and (b) and again, by
Lemma 4.1, J(Q) is nilpotent. Since Q is finite-dimensional, O/ J(Q) is
semisimple artinian by [17, Thm. 3.4] and so Q is semiprimary.

Using the previous result we can get the first characterization of rings
with quasi-Frobenius maximal quotient ring.

Trrorem 4.3. Let R be a ring with maximal quotient ring Q. Then Q is
a quasi-Frobenius ring if and only if

(a) 7x(R:x) =0 for all xe E(R),

(b) QI = Q for each dense left ideal I of Q,

(¢) Z = Z(R) is nilpotent,

(d) R{(Z*)¢ is finite-dimensional for k =1, 2, 3,... .

Proof. Suppose conditions {(a)—(d) hold. Then O is a self-injective semi-
primary ring. Now Z =Z(O)NR = J(Q)N R and, by Lemma4.l,

(2 =QZFN R =Q(J(Q) N RFN R = OO R.
If R, = (R + J(O)¥)/ J(Q)*, then R, is essential as an R;-module in Q] J(Q)*.
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Moreover, R, ~ R/(Z¥)¢ and so Q/ J(Q)* is finite-dimensional by (d). Then
socle (Q/ J{O)*) is finitely generated for each 2 >> 1 and, since J{Q)is nilpotent,
this gives a composition series for O; thus Q is left artinian, hence quasi-
Frobenius.

On the other hand, if Q is quasi-Frobenius, then R satisfies {a)-{c). As
above, R/(Z*)® is essential in Qf J(Q)*, which is artinian, and so R[(Z%)° is
finite-dimensional for each £ > 1.

Our other characterization is prompted by Theorem 2.6 of [13].

TaeoreM 4.4. Let R be a ving with maximal quotient ving Q. Then Q s
a quasi-Frobenius ring if and only if

(a) rxr(R:x) =0 for all xe E(R),
(b} R has ACC on annihilators of subsets of E(R).

Proof. If (a) and (b) hold, then Q is self-injective. Let 4, B be annihilator
left ideals in 0, 4 = £o(X), B = /p(Y) and suppose AC B. Thus
(X)) C Z5(Y). Buppose £p(X) = £p(Y); then, for be B, (R:5)sY =0
so (R :b5ybX = 0. Since (R :0) is dense in R, bX = 0 and thus be 4. It
now foliows from (b) that Q has ACC on left annihilators and so, by
[3, Thm. 2], O is quasi-Frobenius.

Conversely, if O is quasi-Frobenius, then (a) holds and @ is an S-ring.
Suppose 4 = £(X) with X CO. Since (04 N R)X = 0, we have 4 = 4°.
Thus, if B = (V) with Y CQand if 4 C B, then Q4 = £,(X), 0B = £,(Y).
Moreover, if QA4 = OB, then, by Lemma 4.1, 4 = A°=0ANR =
OB N R = B and so R has ACC on annihilators of subsets of O(=E(R)).

We remark that as in {13] the following can be verified; a proof is omitted.

PrOPOSITION 4.5. Let R be a ring with maximal quotient ring Q. Then
O is self-injective and semiperfect if and only if

(a) 7x{R:x) =0 for all xc E(R),
(b) R is finite-dimensional.
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