JOURNAL OF ALGEBRA 27, 1-10 (1973)

Q-Divisibility and Injectivity

EFRAIM P. ARMENDARIZ

University of Texas, Austin, Texas 78712

AND

GARY R. McDonald*

Northwest Missouri State College, Maryville, Missouri 64468 Communicated by P. M. Cohn Received August 17, 1971

1. INTRODUCTION

Various types of "divisibility" have been considered in the literature [6, 12], all of which make injective modules "divisible." More recently, D. Wei [19] introduced a divisibility in terms of the maximal quotient ring Q of R. Thus an R-module M is divisible in the sense of Wei provided $\operatorname{Hom}_R(Q, N) \neq 0$ for each non-zero factor module N of M. Modifying the terminology slightly, we will call such an R-module Q-divisible. As noted in [19], all injective R-modules are Q-divisible and every R-module contains a unique maximal Q-divisible R-module.

Now the maximal quotient ring Q of R is the localization of R (in the sense of P. Gabriel [4]) corresponding to the (topologizing and idempotent) filter of dense left ideals of R, and the torsion class (in the sense of S. E. Dickson [2]) which corresponds to this filter is the class \mathcal{T} of R-modules M for which $\operatorname{Hom}_R(M, E(R)) = 0$, E(R) being the injective envelope of R. The connection between this torsion class, Q-divisible modules, and injective modules is the principal subject of this note, as well as some relationships between the torsion \mathcal{T} and the usual torsion R-modules. The principal results, which occur in Section 3, are as follows:

(1) Every \mathcal{T} -torsion-free Q-divisible R-module is injective if and only if Q is a semisimple artinian ring.

* The second author held an NDEA Title IV fellowship at the University of Texas at Austin during the preparation of this work.

(2) Assume Q is a quasi-Frobenius ring; if M is a homomorphic image of an injective R-module and M/T(M) is injective, then T(M) is a direct summand of M.

Both (1) and (2) have interesting consequences in the case of classical quotient rings; in particular (1) yields a result of L. Levy: If R has a classical quotient ring K, then every divisible R-module is injective if and only if K is semisimple artinian. Moreover, (2) can be applied in case R has a classical quotient ring which is quasi-Frobenius (or semisimple artinian).

Since the hypotheses in (2) requires Q to be quasi-Frobenius, in Section 4 two characterizations of rings having Q quasi-Frobenius are given; as a by-product, rings for which Q is self-injective and semiprimary are characterized.

2. Preliminaries

All rings considered will have a unit and modules will be unital left modules. We begin by giving the usual remarks concerning definitions and notation.

Let *M* be an *R*-module, *N* a submodule of *M*. For $x \in M$ let $(N : x) = \{a \in R \mid ax \in N\}$. Then *N* is *dense* in *M* if for $x, y \in M$ with $x \neq 0$ we have $(N : y)x \neq 0$. A left ideal *I* is a *dense left ideal* of *R* if *I* is dense in *R*. We will denote the maximal (left) quotient ring of *R* by *Q* [9], while *Z(K)* will denote the (left) singular ideal of a ring *K*.

Let \mathscr{T} denote the class of all *R*-modules *M* for which $\operatorname{Hom}_{R}(M, E(R)) = 0$. The class \mathscr{T} is then a hereditary torsion class [2], i.e., \mathscr{T} is closed under submodules, factor modules, extensions, and direct sums and so every *R*module *M* has a unique maximal \mathscr{T} -submodule, which is denoted by T(M). The torsion class \mathscr{T} has been considered in [5, 7, 14]. From [14], we have the following facts: For any *R*-module *M*, $T(M) = \{x \in M | (R : x) \text{ is dense}$ in *R*} and T(M/T(M)) = 0; T(M) = 0 if and only if *M* is embeddable in a direct product of copies of E(R). We call $M \mathscr{T}$ -torsion-free whenever T(M) = 0 and *M* is torsion-free if whenever ax = 0 for $x \in M$, $a \in R$ regular, then x = 0.

The relationship between \mathcal{T} and Q has been described in [10, p. 25]:

PROPOSITION 2.1. Let R be a ring with maximal quotient ring Q and define Q^* by $Q^*/R = T(E(R)/R)$. Then Q^* is a ring and there is ring isomorphism (fixing R) between Q^* and Q.

We will identify Q with Q^* so that $Q = \{x \in E(R) \mid (R : x) \text{ is dense in } R\}$. Then Q is (left) self-injective if and only if Q = E(R) [9, p. 95]. An *R*-module *M* is *Q*-divisible if $\operatorname{Hom}_{R}(Q, N) \neq 0$ for all non-zero factor modules *N* of *M*; *M* is a Q_s -module if *M* is a factor of a direct sum of copies of *Q*. An *R*-module *M* is divisible if aM = M for all regular elements *a* of *R*. For an *R*-module *M*, let $q(M) = \sum \operatorname{Im} f$, where *f* ranges over $\operatorname{Hom}_{R}(Q, M)$. For each ordinal $i \geq 0$ define a submodule $q_i(M)$ by setting $q_0(M) = 0$ and, for $i \geq 1$, $q_i(M)/q_{i-1}(M)$) if i - 1 exists, while $q_i(M) = U_{j < i}q_j(M)$ otherwise. The least ordinal *k* for which $q_k(M) = q_{k-1}(M)$ is called the *q*-length of *M*.

The next proposition is now easily verified.

PROPOSITION 2.2. Let M be an R-module with q-length (M) = k. Then:

(a) $q_k(M) = maximal Q$ -divisible submodule of M. Hence M is Q-divisible if and only if $q_k(M) = M$.

(b) If Q is also a classical quotient ring of R, then every Q_s -module is divisible and thus $q_k(M)$ is a divisible R-module.

3. Q-DIVISIBLES, INJECTIVES, AND TORSION

The first result of this section characterizes those rings for which \mathcal{T} -torsion-free Q-divisible modules are injective.

THEOREM 3.1. Let R be a ring with maximal quotient ring Q. Then the following are equivalent statements:

- (a) Q is a semisimple artinian ring.
- (b) Z(R) = 0 and R is finite-dimensional.
- (c) Every \mathcal{T} -torsion-free Q-divisible R-module is injective.
- (d) Every \mathcal{T} -torsion-free Q_s -module is injective.

Proof. The equivalence of (a) and (b) is due to R. E. Johnson [8] while clearly (c) \Rightarrow (d). To show that (b) \Rightarrow (c), first note that, since Z(R) = 0, Q = E(R) and since R is finite-dimensional, any direct sum of copies of Q is an injective R-module [3, Prop. 1]. Let M be Q-divisible with T(M) = 0. Then q(M) is a Q_s -module. Since Z(R) = 0, T(M) is the singular submodule of M [5] and the kernel of the map of $Q^{(I)}$ (= direct sum of copies of Q over some index set I) onto q(M) can have no essential extension in $Q^{(I)}$ and so must be injective. Thus q(M) is isomorphic to a direct summand of $Q^{(I)}$ and hence is injective. But, since M is Q-divisible, it follows that M = q(M)so M is injective.

Now suppose (d) holds. If I is an essential left ideal of R then QI is an essential R-submodule of Q. Since QI is a Q-module, it is then a Q_s -module

and thus QI is an injective *R*-module since T(Q) = 0. Thus QI = Q for all essential left ideals *I* of *Q*. From this we then have Z(R) = 0 and so, by [18, Thm. 4.20] or [15, Thm. 1.6], *Q* is semisimple artinian, completing the proof.

As a consequence we obtain a result of L. Levy [11, Thm. 3.3].

COROLLARY 1. Let R be a ring having a classical quotient ring K. Then every torsion-free divisible R-module is injective if and only if K is semisimple artinian.

Proof. If K is semisimple artinian, then K = Q and every torsion-free divisible R-module M is a K-module and thus an injective K-module. But this readily implies M is an injective R-module. Conversely, suppose every torsion-free divisible R-module is injective. Then K is injective and so K = Q. If M is \mathcal{T} -torsion-free, then M is isomorphic to a submodule of a direct product of copies of K and so M is also torsion-free. If, further, M is a Q_s -module then, by Proposition 2.2(b), M is divisible. Thus M is injective and hence K is semisimple artinian.

It should be noted that, by Theorem 3.1, the condition that \mathscr{T} -torsion-free Q-divisibles be injective does not imply that R must have a classical quotient ring.

The case when all Q-divisible R-modules are injective has been dealt with in [1]; for completeness we state the result:

THEOREM 3.2. Let R be a ring with maximal quotient ring Q. Then every Q-divisible R-module is injective if and only if R is left hereditary and left noetherian.

In the proof of Corollary 1 it was noted that, whenever Q is a classical quotient ring of R, every \mathcal{T} -torsion-free R-module is torsion-free. At this point it may be of interest to point out the class of rings R for which the \mathcal{T} -torsion R-modules and torsion R-modules coincide. In order to do this, and for later use, we recall that a ring K is a (right) S-ring if and only if $r_K(A) \neq 0$ for each proper left ideal A of K; S-rings have been characterized in the following manner:

PROPOSITION 3.3 [7, Thm. 3.2]. For a ring K, the following conditions are equivalent:

- (a) K is an S-ring.
- (b) K contains a copy of each simple K-module.
- (c) K has no proper dense left ideals.
- (d) 0 is the only \mathcal{T} -torsion K-module.

It follows that, if K is an S-ring, then K is its own maximal quotient ring. Rings R for which Q is an S-ring have been considered in [18, Thm. 3.2], where the following result occurs, essentially.

THEOREM 3.4. Let R be a ring with maximal quotient ring Q. Then the following statements are equivalent:

(a) Q is an S-ring.

(b) QI = Q for each dense left ideal I of R.

(c) For any R-module M, T(M) is the kernel of the canonical map $M \rightarrow Q \otimes_{\mathbb{R}} M$.

PROPOSITION 3.5. Suppose R is a ring with maximal quotient ring Q. Then the \mathcal{T} -torsion R-modules and torsion R-modules coincide if and only if Q is a classical quotient ring of R and Q is an S-ring.

Proof. If the two classes coincide, then any direct sum of torsion R-modules is torsion and so the torsion elements of any R-module form a submodule. Hence, by [11, Thm. 1.4], R has a classical quotient ring K and $R \subseteq K \subseteq Q$. Moreover, the filters associated with the two classes are identical and so every dense left ideal of R contains a regular element hence KI = K for each dense left ideal I of R. If J is a dense left ideal of K, then $J \cap R$ is a dense left ideal of R and so J = KJ = K. Thus K is an S-ring and so K is its own maximal quotient ring; it follows that K = Q.

For the converse, if *I* is a dense left ideal of *R*, then QI = Q so $1 = \sum_{j=1}^{n} q_j u_j$ for suitable $\{q_1, ..., q_n\} \subseteq Q$, $\{u_1, ..., u_n\} \subseteq I$. Then there exists $a \in R$ regular, $\{b_1, ..., b_n\} \subseteq R$ with $q_j = a^{-1}b_j$. Then $a = \sum_{j=1}^{n} b_j u_j \in I$, hence every dense left ideal contains a regular ideal. On the other hand, if $a \in R$ is regular, then *Ra* is dense: For let $x, y \in R$, with $x \neq 0$; then Qa = Q so $y = c^{-1} da$, $c \in R$ regular, so $c \in (Ra : y)$, hence $(Ra : y)x \neq 0$. Thus the filters corresponding to the classes coincide, hence \mathcal{T} -torsion *R*-modules and torsion *R*-modules coincide.

Another result concerning the torsion *R*-modules of interest is:

PROPOSITION 3.6. For a ring R the following statements are equivalent:

- (a) Any direct product of torsion R-modules is torsion.
- (b) 0 is the only torsion R-module.
- (c) Every regular element of R is invertible in R.

Proof. Clearly (c) \Rightarrow (b) \Rightarrow (a) so assume (a). Then, since submodules of torsion *R*-modules are torsion, the torsion *R*-modules form a torsion class. By [7, Thm. 2.1], the associated filter of left ideals, which consists of the left

ideals which contain regular elements, has a minimal element *I*. Moreover, $I^2 = I$, *I* is an ideal of *R*, and *I* is contained in every left ideal in the filter. Thus, if $a \in I$ is regular, then Ra is in the filter so Ra = I. Then $Ra = (Ra)^2$ implies R = RaR = IR = I = Ra so $a^{-1} \in R$. Then, for any regular element, $b \in R$, $Ra \subseteq Rb$ implies $b^{-1} \in R$.

We now wish to use the properties of S-rings (in particular Theorem 3.4) to obtain certain instances when the \mathcal{T} -torsion submodule of an R-module M is a direct summand whenever M is close to being injective.

LEMMA 3.7. Let R be a ring with maximal quotient ring Q and assume Q is an S-ring.

(a) If A and B are Q-modules such that B is a \mathcal{T} -torsion-free R-module, then every R-homomorphism f: $A \rightarrow B$ is a Q-homomorphism.

(b) If A is a \mathcal{T} -torsion free injective R-module, then A is an injective A-module.

Proof. (a) Let $f: A \to B$ be an R-homomorphism, $q \in Q$ and $a \in A$. Then (R:q) is dense in R and, for any $x \in (R:q)$, we have $xq \cdot f(a) = f(xqa) = x \cdot f(qa)$, hence $q \cdot f(a) - f(qa) \in T(B) = 0$. Thus f is also a Q-homomorphism.

(b) Let A be a \mathcal{T} -torsion-free injective R-module; then $Q \otimes_R A$ is a Q-module and, by Theorem 3.4(c), we can consider $A \subseteq Q \otimes_R A$. Let $x \in Q \otimes_R A, x \neq 0$; then $x = \sum_{i=1}^n q_i \otimes a_i$, $\{q_1, \dots, q_n\} \subseteq Q, \{a_1, \dots, a_n\} \subseteq A$. Then $\sum_{j=1}^n (R:q_j) = I$ is dense in R so, since QI = Q, $Ix \neq 0$. Thus, if $r \in I$ such that $0 \neq rx$, then $rx = \sum rq_i \otimes a_i = 1 \otimes \sum rq_ia_i \in A$. Hence A is essential in $Q \otimes_R A$. Since A is also injective, we have $Q \otimes_R A = A$ and so A is a Q-module. That A is an injective Q-module follows easily.

We now come to the second main result of this paper.

THEOREM 3.8. Let R be a ring with maximal quotient ring Q such that Q is a quasi-Frobenius ring. If M is a Q_s -module such that M/T(M) is an injective R-module, then T(M) is a direct summand of M.

Proof. Let $Q^{(I)}$ map onto M via an R-homomorphism g, for some index set I. Now Q is quasi-Frobenius hence an S-ring; thus M/T(M) is an injective Q-module by Lemma 3.7(b), and so M/T(M) is a projective Q-module. If $h: M \to M/T(M)$ is the natural map, then $f = h \circ g: Q^{(I)} \to M/T(M)$ is an epimorphism and, by Lemma 3.7(a), f is a Q-homomorphism. But then $K = \ker f$ is a direct summand of $Q^{(I)}$, say $Q^{(I)} = K \oplus L$ as Q-modules. Since this is also a splitting of R-modules, it can be verified in a straightforward manner that $M = T(M) \oplus g(L)$. We now give some consequences of this result; note that, for any ring R, every injective module is a Q_s -module, hence every homomorphic image of an injective R-module is a Q_s -module.

COROLLARY 1. Let R be a ring with a semisimple artinian classical quotient ring. If M is a homomorphic image of an injective R-module, then the torsion submodule of M is a direct summand of M.

Proof. T(M) =torsion submodule of M by Proposition 3.5, and M/T(M) is injective by Theorem 3.1, Corollary 1.

The previous corollary generalizes Theorem 1.1 of [12]; we remark that F. L. Sandomierski has also generalized this last result to rings with Z(R) = 0 [15, Thm. 2.10].

COROLLARY 2. Let R be a ring with a classical quotient ring which is quasi-Frobenius. If M is a homomorphic image of an injective R-module and M/T(M)is injective, then T(M) is a direct summand of M.

Proof. Again use Proposition 3.5.

4. Self-Injective Maximal Quotient Rings

The hypothesis of Theorem 3.8 required that Q be quasi-Frobenius. In this section we obtain two characterizations of rings with this property. As a preliminary step we obtain a characterization of those rings for which Qis self-injective and semiprimary.

For a left ideal I of R, let $I^c = (closure of I)$ be defined by $I^c/I = T(R/I)$.

LEMMA 4.1. Let R be a ring with maximal quotient ring Q such that Q is a S-ring.

(a) If J is a left ideal of Q, then $J = Q(J \cap R)$; if J is a two-sized ideal of Q, then $J^k = Q(J \cap R)^k$ for all $k \ge 1$.

(b) If I is a left ideal of R, then $I^c = QI \cap R$.

Proof. (a) $Q(J \cap R) \subseteq J$, so let $x \in J$; then (R : x) is dense in R, so Q(R : x) = Q. Thus $x \in Qx = Q(R : x)x \subseteq Q(J \cap R)$, hence $J = Q(J \cap R)$. If $JQ \subseteq J$, then $J^k = J^{k-1}Q(J \cap R) = J^{k-1}(J \cap R) = J^{k-2}Q(J \cap R)^2 = \cdots = J(J \cap R)^{k-1} = Q(J \cap R)^k$. (b) Let $x \in QI \cap R$ so $x = \sum_{j=1}^{n} q_{j}u_{j}$, with $\{q_{1}, ..., q_{n}\} \subseteq Q, \{u_{1}, ..., u_{n}\} \subseteq I$. Then $T = \bigcap_{j=1}^{n} (R : q_{j})$ is dense in R and so, for $r \in T$, we have

$$rx = \sum_{j=1}^n rq_j u_j \in I.$$

Thus $T \subseteq (I:x)$ so (I:x) is dense in R and hence $x \in I^c$. If $y \in I^c$, then (I:y) is dense in R and so Q(I:y) = Q. Then $Qy = Q(I:y)y \in QI$, hence $y \in QI \cap R$ and equality follows.

THEOREM 4.2. Let R be a ring with maximal quotient ring Q. Then Q is a left self-injective semiprimary ring if and only if

- (a) $r_R(R:x) = 0$ for all $x \in E(R)$,
- (b) QI = Q for each dense left ideal I of Q,
- (c) Z(R) is nilpotent.

Proof. We first remark that condition (a) is equivalent to R(:x) being a dense left ideal for all $x \in E(R)$; thus Q is left self-injective if and only if (a) holds. Now assume Q is self-injective and semiprimary. By the proof of [17, Thm. 3.4], Q is an S-ring so (b) holds. Now $Z(R) = Z(Q) \cap R$ and Z(Q) = J(Q), the Jacobson radical of Q [16, Lemma 4.1]. Then Z(Q) is nilpotent and so, by Lemma 4.1, Z(R) is nilpotent. Conversely, assume (a), (b), (c) hold. Then Q is a self-injective S-ring by (a) and (b) and again, by Lemma 4.1, J(Q) is nilpotent. Since Q is finite-dimensional, Q/J(Q) is semisimple artinian by [17, Thm. 3.4] and so Q is semiprimary.

Using the previous result we can get the first characterization of rings with quasi-Frobenius maximal quotient ring.

THEOREM 4.3. Let R be a ring with maximal quotient ring Q. Then Q is a quasi-Frobenius ring if and only if

- (a) $r_R(R:x) = 0$ for all $x \in E(R)$,
- (b) QI = Q for each dense left ideal I of Q,
- (c) Z = Z(R) is nilpotent,
- (d) $R/(Z^k)^c$ is finite-dimensional for k = 1, 2, 3, ...

Proof. Suppose conditions (a)-(d) hold. Then Q is a self-injective semiprimary ring. Now $Z = Z(Q) \cap R = J(Q) \cap R$ and, by Lemma 4.1,

$$(Z^k)^c = QZ^k \cap R = Q(J(Q) \cap R)^k \cap R = J(Q)^k \cap R.$$

If $\overline{R}_k = (R + J(Q)^k)/J(Q)^k$, then \overline{R}_k is essential as an \overline{R}_k -module in $Q/J(Q)^k$.

Moreover, $R_k \approx R/(Z^k)^c$ and so $Q/J(Q)^k$ is finite-dimensional by (d). Then socle $(Q/J(Q)^k)$ is finitely generated for each $k \ge 1$ and, since J(Q) is nilpotent, this gives a composition series for Q; thus Q is left artinian, hence quasi-Frobenius.

On the other hand, if Q is quasi-Frobenius, then R satisfies (a)–(c). As above, $R/(Z^k)^c$ is essential in $Q/J(Q)^k$, which is artinian, and so $R/(Z^k)^c$ is finite-dimensional for each $k \ge 1$.

Our other characterization is prompted by Theorem 2.6 of [13].

THEOREM 4.4. Let R be a ring with maximal quotient ring Q. Then Q is a quasi-Frobenius ring if and only if

- (a) $r_R(R:x) = 0$ for all $x \in E(R)$,
- (b) R has ACC on annihilators of subsets of E(R).

Proof. If (a) and (b) hold, then Q is self-injective. Let A, B be annihilator left ideals in Q, $A = \ell_Q(X)$, $B = \ell_Q(Y)$ and suppose $A \subseteq B$. Thus $\ell_R(X) \subseteq \ell_R(Y)$. Suppose $\ell_R(X) = \ell_R(Y)$; then, for $b \in B$, (R:b) bY = 0so (R:b) bX = 0. Since (R:b) is dense in R, bX = 0 and thus $b \in A$. It now follows from (b) that Q has ACC on left annihilators and so, by [3, Thm. 2], Q is quasi-Frobenius.

Conversely, if Q is quasi-Frobenius, then (a) holds and Q is an S-ring. Suppose $A = \ell_R(X)$ with $X \subseteq Q$. Since $(QA \cap R)X = 0$, we have $A = A^\circ$. Thus, if $B = \ell_R(Y)$ with $Y \subseteq Q$ and if $A \subseteq B$, then $QA = \ell_Q(X), QB = \ell_Q(Y)$. Moreover, if QA = QB, then, by Lemma 4.1, $A = A^\circ = QA \cap R = QB \cap R = B$ and so R has ACC on annihilators of subsets of Q(=E(R)).

We remark that as in [13] the following can be verified; a proof is omitted.

PROPOSITION 4.5. Let R be a ring with maximal quotient ring Q. Then Q is self-injective and semiperfect if and only if

(a) $r_R(R:x) = 0$ for all $x \in E(R)$,

(b) *R* is finite-dimensional.

References

- 1. E. P. ARMENDARIZ, Q-divisible modules, Canad. Math. Bull. 14 (1971), 491-494.
- S. E. DICKSON, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235.
- 3. C. FAITH, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179-191.
- 4. P. GABRIEL, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.

- 5. E. GENTILE, Singular submodule and injective hull, Indag. Math. 4 (1962), 426-433.
- 6. G. HELZER, On divisibility and injectivity, Canad. J. Math. 18 (1966), 901-919.
- 7. J. P. JANS, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259.
- 8. R. E. JOHNSON, Quotient rings with zero singular ideal, *Pacific J. Math.* 11 (1961), 1385–1392.
- 9. J. LAMBER, "Lectures on Rings and Modules," Blaisdell, Waltham, Mass., 1966.
- J. LAMBEK, "Torsion Theories, Additive Semantic, and Rings of Quotients" (Lecture Notes in Mathematics No. 177), Springer-Verlag, New York/Berlin, 1971.
- L. Levy, Torsion-free and divisible modules over non-integral domains, Canad. J. Math. 15 (1963), 132-151.
- 12. E. MATLIS, Divisible modules, Proc. Amer. Math. Soc. 11 (1960), 385-391,
- A. C. MEWBORN AND C. N. WINTON, Orders in self injective semiperfect rings, J. Algebra 13 (1969), 4-9.
- 14. R. S. PIERCE, "Modules over Commutative Regular Rings," Memoirs American Mathematical Society 70, Providence, R.I., 1967.
- 15. F. L. SANDOMIERSKI, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128 (1967), 112-120.
- Y. UTUMI, On continuous rings and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158–173.
- 17. Y. UTUMI, Self-injective rings, J. Algebra 6 (1967), 56-64.
- C. L. WALKER AND E. A. WALKER, Quotient categories and rings of quotients, Rocky Mt. J. Math. 2 (1972), 513-555.
- D. WEI, On the concept of torsion and divisibility for general rings, *Illinois J.* Math. 13 (1969), 414-431.